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Parallel Processing Can Be Harmful: 
The Unusual Behavior of Interpolation Search 
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Several articles have noted the usefulness of a retrieval algorithm called sequen- 
tial interpolation search, and Yao and Yao have proven a lower bound 
log log N - O( I), showing this algorithm is actually optimal up to an additive con- 
stant on unindexed tiles of size N generated by the uniform probability distribution. 
We generalize the latter to show log log N-log log P - 0( 1) lower bounds the 
complexity of any retrieval algorithm with P parallel processors for searching an 
unindexed tile of size N. This result is surprising because we also show how to 
obtain an upper bound that matches the lower bound up to an additive constant 
with a procedure that actually uses no parallel processing outside its last iteration 
(at which time our proposal turns on P processors in parallel). Our first theorem 
therefore states that parallel processing hefore the 1iterall.v last iteration in the search 
of an unindexed ordered tile has nearly no usqfulness. Two further surprising facts 
are that the preceding result holds even when communication between the parallel 
processing units involves no delay and that the parallel algorithms are actually 
inhere+ slower than their sequential counterparts when each invocation of the 
SIMD machine invokes a communication step with any type of nonzero delay. The 
presentation in the first two chapters of this paper is quite informal, so that the 
reader can quickly grasp the underlying intuition. i-1 1989 Academic Press. Inc. 

1. INTRODUCTION 

Searching an ordered file is a very common operation in data processing 
and so should be accomplished as rapidly as possible. Given N records, 
stored (ideally) in successive memory locations in the order of their 
numeric keys Y, < Y2 . < Y,, one often wishes to find a particular record 
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whose key equals y. For simplicity, the literature on interpolation search 
(Gonnet, 1977; Gonnet, Rogers, and George, 1980; Per1 and Reingold, 
1977; Perl, Itai, and Avni, 1978; Peterson, 1957; Yao and Yao, 1976) 
generally assumes these N records were generated by the uniform 
distribution over the (0, 1) interval and that this tile is initially padded with 
the two pseudo-key boundary values of Y, = 0 and YN+ , = I. Each 
iteration i of interpolation search will search a sublile of the form 
Fi= { YL,< y,,+, < ... < Y,}, where the contents of only the boundary 
keys Y,, and Y,, are known at the start of the ith iteration (for instance, 
the first iteration has L, = 0, R, = NS 1, Y,, = 0, and Y,, = 1). Inter- 
polation search’s ith iteration will generate the cut address C,* below and 
check to see whether Yc* = ,r, 

c*=Li+ (K-k 1N.v Y,,) 
YR, - YL, 1 . 

If Y,: > y then the next iteration of interpolation search will search the 
subfile F,, I = ( Y,, < Y,, + , < . . . Y,: }, and it will search the subfile 
Fj+,={Y,.<Ycs+,< ... Y,,} when Y, . < y. This process will continue 
until interpolation search either finds a record storing the key Y or reduces 
the search problem to an empty state Fi (where R, = L, + 1). Note inter- 
polation search is identical to binary search except that it uses Eq. (1.1) 
rather than the formula Ci = r(L, + R,)/21 to define the address probed by 
the ith iteration. 

The desirable aspect of interpolation search is that it runs in expected 
time log log N when the set of keys are generated by the uniform dis- 
tribution. Per1 et al. (Perl, Itai, and Avni, 1978; Per1 and Reingold, 1977) 
offer short proofs that the interpolation search has complexity 
O(log log N), and (Gonnet, 1977; Yao and Yao, 1976) provide a slightly 
more elaborate treatment that establishes the tighter upper bound of 
log log N + O( 1). Yao and Yao (1976) also prove the interpolation search 
is optimal up to an additive constant by showing that no procedure can 
search unindexed ordered files in time better than log log N - 0( 1). Willard 
(1981, 1983a) illustrates modifications of interpolation search that are 
useful for probability distributions that are both nonuniform and unknown 
to the search algorithm, and (Mehlhorn and Tsakalidis, 1985) presents 
several useful generalizations of the latter result. See also (Karlson, Munro, 
and Robertson, 1985; Van Emde Boas, Kass, and Zijlstra, 1977; Willard, 
1983b, 1984) for some alternatives to interpolation search for indexed files. 

Throughout this paper, Ni will denote the number of unprobed keys in 
the subtile F, = { YLc < Y,,+, < ... Y,}; in other words, 

N,= Ri- L,- 1. (1.2) 
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Let P denote a fixed integer constant 3 2, and define VARIATION(P) to 
be an algorithm that is identical to interpolation search except that if 
the iteration i has N,< P then VARIATION(P) will turn on P parallel 
processors and reach a termination during this iteration. One of our 
theorems generalizes methods from Yao and Yao (1976) and shows 
VARIATION(P) searches files generated by the uniform probability 
distribution in expected time log log N - log log P + 0( 1). Intuition would 
suggest that even faster times would be possible if P parallel processors 
were used during each iteration of a search. However, the lower bound in 
Section 5 shows, to the contrary, that such further parallel processing 
improves performance by no more than an additive constant. (By an 
additive constant, this paper means a quantity whose value is, of course, 
independent of both N and P.) 

The results summarized in the preceding paragraph are surprising 
because they take place in a complexity model, henceforth called the 
iterative time model, that measures costs by just counting the number of 
iterations of a SIMD machine searching the file F. Since this complexity 
model does not take into account the further time cost for communication 
delays, it is somewhat surprising that parallel algorithms using P 
processors during every iteration have only O(1) fewer iterations than the 
essentially sequential VARIATION(P) procedure. An added surprise 
is that nontrivial parallel algorithms are demonstrably slower than 
VARIATION(P) when one takes into account communication delays. In par- 
ticular for any C > 1, consider a cost model where a SIMD machine’s time 
to search P addresses in parallel exceeds by any factor C> 1 the com- 
parable search time of a nonparallel machine (because of communication 
delays). Certainly, one would expect the parallel SIMD machine to be 
slower if C was a large number, as say C= P. However, the surprising fact 
is that our theorem implies that the SIMD machine is also slower for any 
C> 1 because a multiplicative constant loss clearly outweighs an additive 
constant gain. That is, a fully parallel interpolation algorithm between P 
communicating processors is inherently slower because its number of 
iterations decreases by an additive constant whereas the communication 
cross-talk increases the cost of each iteration by a multiplicative constant. 

Until Theorem 5.6 at the end of this paper, we will not again consider 
the cost of communication delays and our discussion will instead focus on 
the “iterative time” model, where communication is free. Our main goal 
will be to establish that VARIATION(P) falls within an additive constant 
of optimality under such tight models that ignore communication costs. 
This result will imply that VARIATION(P) does even better under the 
final models of Theorem 5.6, that take into account communication delays. 
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2. INTUITION BEHIND THE PROOF 

The results announced in the last section may sound counterintuitive, 
but the intuition behind their proof is actually quite simple. Let D, be 
defined 

D, = MIN(R, - CT, C,* - ~5,) 

= WN( Y,,- ~'3 J'- Y,,) N,l( YR,- Y,Jl. (2.1) 

A theme in the prior literature about sequential interpolation is that Di+ I 
satisfies the following equality with high probability 

D,,, g&. (2.2) 

It is easy to verify that if Eq. (2.2) held with 100% certainty then log log D, 
iterations would be sufficient to reduce an initial file F, to a statej where 
D, < O( 1). Gonnet (1977) and Yao and Yao (1976) establish that inter- 
polation search runs in time log log D, + O( 1) by showing Eq. (2.2) holds 
with extremely high probability as D, approaches infinity. Further, Yao 
and Yao (1976) show that no algorithm can run in better time than 
log log D, - O( 1) by establishing essentially that no algorithms can cause 
the expected value of D,, , to shrink faster than Eq. (2.2). 

Our analogous analysis will indicate that any algorithm using P parallel 
processors satisfies Eq. (2.3) with high probability: 

D;, ,3 Q(&/P). (2.3) 

A reader can appreciate part of the intuition behind our lower bound 
log log N-log log P- O( 1) by noting that if Eq. (2.3) held with 100% 
probability and if D, z N then clearly log log N - log log P - O( 1) 
iterations would be necessary to reach a state where Di < 0( 1). 

On the other hand, Section 4 of our paper shows that a consequence of 
Yao and Yao (1976) and Gonnet, Rogers, and George (1980) is that 
log log N-log log P + 0( 1) iterations are on the average sufficient for 
interpolation search to produce a state where N, < P when the tile is 
generated by the uniform probability. A consequence of this fact is that the 
expected number of iterations for VARIATION(P) to reach a termination 
is log log N - log log P + O( 1). Hence, the combination of our upper and 
lower bounds shows that parallel processing helps by no more than 
an additive constant when applied outside the very last iteration of 
interpolation search! 

Once again, it should be repeated that the results in the preceding 
paragraph hold even when one assumes a zero cost for communications 
between parallel processors, and VARIATION(P) will be proven by 
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Theorem 5.6 to actually he faster than any parallel algorithm when any type 
C$ non-zero communication delay appears. 

The next three sections prove these facts formally by examing the exact 
probabilities associated with our search process. As with prior literature 
about interpolation search, the formal analysis is more complicated than 
an intuitive overview, where the probability qualifications are absent. 

One further point. The theorems in the next two sections technically 
discuss probabilistic bounds for the case of unsuccessful searches (that is, 
the case where the target key 1’ is different from the N stored keys 
Y, < Y, < . . < Y,). The same time bounds would hold up to an additive 
constant for successful searches, but it is preferable to discuss only unsuc- 
cessful searches for the sake of simplicity. Many of the earlier papers about 
sequential interpolation search make a similar simplification (Gonnet, 
1977; Yao and Yao, 1976), where they discuss either successful searches or 
unsuccessful searches, but not both. 

3. BACKGROUND INFORMATION FROM PROBABILITY THEORY 

This section provides the machinery from probability theory for analyz- 
ing parallel interpolation search. Let B(j, N, p) denote the probability that 
N Bernoulli trials (Feller, 1968) produce j successes when each trial has a 
probability p of success. Then it is well known that 

W,N,p)= ; p’(l-p)” ‘. 
0 

(3.1) 

We now list three fairly easy consequences of classic probability that our 
paper will employ. The proofs of these propositions are kept brief because 
they are straightforward consequences of classic probability theory. 

PROPOSITION 3.1. B(j, N, j/N) 6 O[MIN( 1; fi/&=-$]. 

ProoJ: Follows by substituting Stirling’s formula (Eisen, 1969) into 
Eq. (3.1). Q.E.D. 

PROPOSITION 3.2. B(j, N, P) G WMIN(1; l/‘J~(l- P)WI 
Proof. It is easily verified that 

B(j, N, P)< MAX{WpNl, N PI; B(LpNd, N P,). 

Since rpN1 # pN # LpN] for most values of p and N, Proposition 3.1 does 
not technically determine the value for the two Bernoulli probabilities on 
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the right side of the equation above. However, it is clear that a minor 
discrepancy in rounding errors cannot change asymptotic magnitudes very 
much and that the preceding equation therefore implies B(j, N, p) < 
O(B(rpN1, N, rpNl/N)) + O(B(rpN1, N, LpNJ/N)). The latter asymptote 
lies in 0 { MIN( 1; dm) i by Proposition 3.1. Q.E.D. 

PROPOSITION 3.3. 3k > 0, Vp, QN there is a probability > k that at least 
LpN_I successes occur in a sequence of N Bernoulli trials blhere each 
individual trial produces a success u!ith a probability p > 0. 

Proof Outline. Since pN is the expected number of successes during N 
Bernoulli trials, the inequality pN2 LpNj certainly suggests, at least 
intuitively, that a result similar to Proposition 3.3 should hold. We will not 
give a detailed proof of Proposition 3.3 here because similar results are 
known in the probability literature, and the next paragraph will instead 
outline how to infer Proposition 3.3 from Samuels (1965). 

Equation (23) of Samuels (1965) offers a lower bound on the probability 
of at most rpN1 successes occurring in N Bernoulli trials. The mirror 
image of this formula, of course, provides a lower bound for the probability 
of at least LpN_I successes occurring in N trials, and it indicates that this 
probability is bounded below by [ 1 - l/( 1 + Np)]“‘p. Now we observe the 
the preceding probability equals 

NP 
=,~NP-Inll+liNp)>,,-Npi”p=,-1. 

Hence, one constant meeting the claim of Proposition 3.3 is k = l/e. 
Q.E.D. 

Let F,= (Y,< YLz+, < .. . < Y,, ) once again denote the sublile that is 
examined in the iteration of a search for the key -r. Define the S-tuple, 

Sz = (L;, Ri, Y,,, Y,,, I,). (3.2) 

as the state of the ith iteration of this search. Intuitively, this tuple 
represents all the information known about the file Fi= { Y,, < 
Y L,+, < . .. < Y,} at the beginning of the ith iteration of our search 
algorithms. Say A’ is a state-dependent variable iff it is a function of the 
5tuple Si. Three examples of state-dependent variables are C,?, Nj, and Di 
(from Eq. ( 1.1 ), (l-2), and (2.1)). The variable D, will play an especially 
important role in the discussion which follows. 

Let Qj denote the number of interior keys in the file 
F, = { Y,, < . . . < Y,,} that satisfy Yj< y, and fi, represent the quantity: 

a, = MIN( Q;, N, - Qi). (3.3) 
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Say a variable is file-dependent iff its value is a function of the tuple 
{.I!, -L R,, Y,<, Y,,. , ... Y, j. Q, and B, are examples of variables that are 
file-dependent but not stateidependent. 

Assume X is a file-dependent variable. Let Prob(Xdjl S,) denote 
the probability that X<j assuming the interior keys in the file 
F, = ( Y,, < .. < Y,,; are generated by the uniform distribution. Then this 
quantity is a state-dependent variable! Also x”s expected value, denoted 
E(XI S,), is state-dependent. 

The distinction between state- and file-dependent variables will be 
greatly helpful in providing a simple but rigorous analysis for parallel inter- 
polation search. A variable can be curiously state-dependent relative to one 
iteration but file-dependent relative to another. For example, D,, , is a 
state-dependent relative to S, + , , but it is a file-dependent variable relative 
to Si under all the search algorithms considered in this paper. 

We will now state five lemmas about file-dependent variables. Some 
readers may wish to skim the proofs of these lemmas, since each is fairly 
straightforward consequence of Propositions 3.1 thru 3.3. The lemmas 
below are important because they provide the machinery for calculating the 
upper and lower bounds in Sections 4 and 5. In each of the next lemmas 
and throughout the paper, we assume the file F and therefore all the sub- 
files F, are generated by the uniform probability distribution. For the sake 
of keeping their proposition statements short, this assumption does not 
appear explicitl~~ in the lemmas that ,fbllo\r. 

LEMMA 3.4. The jile-dependent variable Q, satisfies the ,following three 
conditions: 

(A) For each j~OProb(Q,=jls;)=B(j,N,,(~- Y,.,)/Y,,- Y,~,)) 

(B) Ify< ( Y,,$+ YR,)/2 then QQ;l S,) GD, 
(C) For eachj30, Prob(Q,=jlS,)<O(l/&). 

Proof oj‘Assertion A. Obvious: since the interior keys in F, are selected 
by generating N, records (initially in unsorted order), where each record’s 
probability of being less than ~3 is independent of the next record’s 
likelihood of satisfying this condition, and this probability equals the 
quantity p defined 

P = (J’ - y,, J/f YR, - YL,) (3.4) 

Proof of Assertion B. It is well known that N, .p is the expected number 
of successes when p is the probability of success during a sequence of Ni 
Bernoulli trials. This quantity is < Di when .V < ( Y,, + Y,,)/2, by Eqs. (2.1) 
and (3.4). 
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Proof of Assertion C. Equations (2.1) and (3.4) imply MAX( 1; 
p( 1 - p) Ni) z Dj. Assertion (C) follows by substituting this inequality into 
Propositions 3.2 and 3.4A. Q.E.D. 

LEMMA 3.5. The file-dependent variable B, satisfies two conditions: 

(A) E@,lS,)<D;. 
(B) Prob(d, < 20,I Si) 3 l/2. 

Proof of Assertion A. Since ai< Qi, it follows that 

m; I Si) G -wei I Si). (3.5) 

The combination of Lemma 3.4B and Eq. (3.5) imply E(aiI S,) < Di 
whenever y d ( Y,, + Y&2. By a symmetry argument, the same result must 
be true when 4’ b ( Y,( + YJ2. 

Proof of Assertion B. Let us assume for the sake of contradiction that 
Assertion B is false, and therefore that bi had a probability > t of 
exceeding 20,. Since bi is always 2 0, this would imply E(B,I Si) > Dj. But 
the latter inequality contradicts Assertion A, whose proof was given in the 
previous paragraph. Hence, we must conclude that Assertion B is valid 
because Assertion A was. 

LEMMA 3.6. There exists k > 0 such that every iteration i of interpolation 
search satisfies Prob( Nj + , < Dj ( S,) > k. 

ProoJ: With no loss of generality, we may assume y > (Y,! + Y,!)/2. 
Then since Q,a N,- D, holds exactly when Nj+ 1 d Di, our formalism 
implies 

Prob( N I+! ~DilSi)=PrOb(Q,~N,-DiISi) 

=j=~p, B(i N,, (Y- YL,MYR,- YL,)) 
I / 
by Lemma 3.4A. (3.6) 

Proposition 3.3 then implies there exists some positive constant k, indepen- 
dent of Ni and Di which bounds from below the latter term. (In particular, 
you can confirm that proposition 3.3 implies the last term in Eq. (3.6) is 
bounded below by k by setting N = Nj and p = (y - Y,)/( Y,, - Y,,) and by 
noticing that Eq. (l.l), (1.2), and (2.1) imply that j in Eq. (3.6) is no 
greater than LPN].) Q.E.D. 

Define an iterative search procedure with P parallel processes as a 
algorithm which probes the subtile F;= { Y,, < . . . < YR,} by first 
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generating P indices C,l 6 Cf < . d Cy and then checking for whether any 
of these indices C: has Y,.. = .v. If the answer is yes then the parallel 
algorithm terminates; other&se using a notation convention where C’p = L, 
and C”+ 1 = R;, the next iteration will search the unique sublile of the form 
; Y,.<, < . . < Y,.zt+ I ;. whose range contains y. As with an interpolation 
search, this procedure continues until either the key 1% is found or the 
search space becomes empty, i.e., N, = 0. (Note by Eq. (2.1) this condition 
also implies D, = 0.) 

LEMMA 3.7. For each integer m > 0, every iterative search algorithm 

using P parallel processors satisfies Prob( D, + , < m 1 S;) d O(mP/fi). 

Prooj Lemma 3.4C implies each cut index C:, satisfies 

Prob(IC:‘-p,-L,I <mlS,)<O(m/&) (3.7) 

The definition of b (i.e., Eq. (3.3)) implies 

b ,+r=MIN[JCP-e;-L;l, IC,‘-Q,-L,I ,..., IC;+‘-Q,-L;l]. (3.8) 

These two equations imply 

Prob(Di+ , <M / S,) 6 O(mP/&). (3.9) 

Equation (3.9) implies there exists some constant k > 0 such that 

Prob(Di+, <mJS,)QkmP/&,. (3.10) 

Applying Lemma 3.5B to the latter equation we conclude 

Prob(D,+ , < m/2) S,) G 2kmP/&. (3.11) 

Since all numbers m > 0 satisfy Eq. (3.11). so must all numbers m > 0 
satisfy 

Probed, + , <: m / Si) < 4kmP/fi ,< O(rnPJfi.1. Q.E.D. 

In the remainder of this article, log log+ j denotes max( 1, log log j), and 
LSUM(j) denotes the quantity 

LSUM(j) = (l/j) c log log+ i. (3.12) 
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This definition implies: 

LEMMA 3.8. LSUM(j) 2 log log + j - O( l/log j). 

Proof Let COUNT(k, j) denote the number of distinct non-negative 
integers i, where (log log+ j- log log+ i) has a value lying between 
(k - l)/log j and k/log j. It is easily seen that COUNT(R, j) < O(j2-&). The 
proof of Lemma 3.8 is then completed by the observation 

log log+ j - LSUM(j) < ,& -g k .COUNT(k, j) < 0 (&). QED. 
!, I 

The next section shows how Lemmas 3.6 and Gonnet et al. (1980) and 
Yao and Yao (1976) imply the log log N-log log P+ O( 1) iterative 
complexity of VARIATION(P), and Section 5 shows how to establish a 
complementary lower bound by using Lemmas 3.7 and 3.8. 

4. ANALYSIS OF VARIATION(P) 

This section proves VARIATION(P) runs in expected iterative time 
log log N - log log P + 0( 1). Our discussion begins with one preliminary 
lemma whose proof explains how our new result is related to the prior 
literature. 

LEMMA 4.1. Suppose interpolation search is probing a file whose initial 
state satisfies D, > d. Then the expected number of iterations to reach a 
state j satisfying D, < d is 6 log log N-log log d + 0( 1) when the file is 
generated by the uniform probability distribution. 

Proof: Let L: denote the greatest lower bound on the expected number 
of iterations for interpolation search to reach a terminating D = 0 state 
when it starts in a state j satisfying D, > d. Also, let LT denote the greatest 
lowest bound on the expected number of additional iterations that inter- 
polation search will need to finish the same search just after it has reached 
a state satisfying D, < d. The phrase “just after” in the definition of L; 
implies that this lower bound has the relationship to L,+, 

L;>L,+-1. (4.1) 

Also, let U(N) denote a least upper bound on the expected number of 
iterations for interpolation search to reach the terminating D = 0 state dur- 
ing a search on a file of size N. This formulation is useful because it enables 
us to apply Gonnet et al. (1980) and Yao and Yao ( 1976) to prove 
Lemma 4.1. In particular, Eq. (4.2) is the main upper bound theorem of 
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their works and Eq. (4.3) is the main lower bound theorem of Yao and Yao 
(1976)‘: 

U(N) < log log N + 0( 1 ), (4.2) 

L<; > log log d - 0( 1). (4.3) 

These results imply the validity of Lemma 4.1, since the expected time to 
reach a state S,, where D, < cl is then certainly no more than U(N) - L, 6 
U-L;+l<loglogN-loglogd+O(l). Q.E.D. 

THEOREM 4.2. The expected number of iterations used by the algorithm 
VARIATION(P) is log log N - log log P + 0( 1) when the file is generated 
by the uniform probability dirtribution. 

ProoJ: Yao and Yao (1976) show the D-vector forms a nonincreasing 
sequence over time: therefore if D, < P then all i > j satisfy Di < P. In this 
context, Lemma 3.6 implies that 0( 1) is the expected number of iterations 
for VARIATION(P) to reach a state satisfying Nj 6 P after it has reached a 
state j satisfying D, < P. 

But Lemma 4.1 indicates that log log N- log log P + 0( 1) is the expec- 
ted number of steps needed to satisfy Di6 P. Taking the sum of these two 
quantities, we see that log log N-log log P + 0( 1) bounds the expected 
number of steps for VARIATION(P) to reach a termination. Q.E.D. 

5. THE MATCHING LOWER BOUND 

Yao and Yao give a lower bound for the expected time of a sequential 
search into a random ordered table, which we will now generalize to any 
algorithm using P parallel processors. 

Let SET(d) denote the set of all file states Si satisfying Di3 d and 
ALG(P) the set of all iterative search algorithms that use no more than P 
processors during each iteration. If SE SET(d) and A EALG(P) then 
TIME(A, S) shall denote the expected time that the algorithm A needs to 
process a state S when it is searching a uniformly generated file. Define 
T,(d) as the greatest lower bound on TIME(A, S) for the set of all ordered 
pairs (A, S) where A E ALG(P) and SE SET(d). Two immediate con- 
sequences of this definition are 

T,(O)=0 (5.1) 

if d, d d2 then TAd, ) 6 T,(d, 1. (5.2) 

We will now use these recurrence equations to prove the following lemma. 

’ Readers who wish to examine (Yao and Yao. 1976) should note that our quantity D 
corresponds to their [N. MIN(a, 1 -x)1, and that their term z corresponds to our ratio 

(?‘- Yr)/(Y,- YL). 
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LEMMA 5.1. There exists a constant k > I whose value is independent of 
both P and d that assures 

1 rv’;j:(kP~i I 

T’(d) ’ ’ + r$,(kP), 
c Tp(j)- (5.3) 
,=o 

Proof Let Prob(A, F, j) denote the probability that the (i + 1)th 
iteration of the algorithm A will have D,, , = j when the ith iteration of this 
algorithm is searching a subfile F. Also, let T,,,(d) denote a lower bound 
on A’s remaining expected number of iterations when the ith iteration has 
Di = d and A is using P parallel processors. Then our notation suggests 

% 

TA.P(d) 2 1 + c Prob(A, F, j) . TA,&) 3 1 + f Prob(A, F, j). T,(j). 
/=O /=O 

(5.4) 

Theorem 3.7 implies every algorithm with P parallel processors must satisfy 

Prob(A, F, j) < O( l/P &I. and this fact indicates that there must exist a 
constant k, whose value is independent of both P and d such that 

Prob(A, F, j) 6 l/,lrd(kP). (5.5) 

Since T,(l) Q T,(2) d T,(3)..., Eqs. (5.4) and (5.5) imply 

1 r,,GkkPl~ I 
T,,,(d) 3 1 + 

I-,bkf=‘-l 
c TpW. 

,=0 

(5.6) 

Since T,,,(d) = T,(d) when A is chosen to be the fastest possible search 
algorithm in the set ALG(P), Eq. (5.6) implies (5.3). Q.E.D. 

The chief goal of this section is to show recurrence relations (5.1) thru 
(5.3) imply T,(d) > log log d - log log P - U( 1). Recall that LSUM was 
defined in Eq. (3.12). We state one preliminary lemma about this quantity 
before proving our main result. 

LEMMA 5.2. There exist constants C > 0 and C* > 0 independent of both 
i and j, such that if j >, i’ > 1 then the following two equations hold: 

log log(j/i) 2 log log(j) - C* log( i)/log(j/i) 

LSUM (r j/i-l) 3 log log(j) - C . log( i)/log( j/i). 

(5.7) 

(5.8) 

Proof. Let a and b be a pair of positive numbers satisfying a <b. Since 
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the natural log function has a derivative d l/a over the interval [a, b], it 
must follow that 

b-a 
In(b) d In(a) + - 

a 

Throughout this paper, we take logarithms in base 2 rather than in base e. 
If we let C* denote the constant l/n 2, then the immediate translation of 
Eq. (5.9) into base 2 logarithms is 

b-a 
log(b) 6 log(u) + c* - 

a 

If we set b = log j and a = log(j/i), Eq. (5.10) implies 

log log j 6 log log(j/i) + c* 
log j - log(j/i) 

hiw) . 

(5.10) 

Equation (5.11) clearly implies Eq. (5.7) by the fact that log i = log j - 
log(j/i). Equation (5.8) is then an immediate consequence of Eq. (5.7) and 
Lemma 3.8. Q.E.D. 

Now we prove a proposition whose corollary is that T,(d) 2 
log log d- log log P - 0( 1). 

THEOREM 5.3. Let C> 0 and k > 1 denote the constants defined in 
Lemmas 5.1 and 5.2. Then 

T,(d) 3 log log d-log log(kP) - 2 - C. MAX(0; 2 - 2 log(kP)/log d}. 

(5.12) 

Proof by Induction on d. It is obvious Eq. (5.12) is valid when 
d<(kP)4, since the right side of (5.12) is then ~0. For the case of 
d> (kP)4, we may inductively assume Eq. (5.12) holds for all d* < d. Then 
the combination of this assumption and Eq. (5.3) implies 

T,(d) 3 1 + LSUM( r&/(kP)l) - log log(kP) - 2 

- C. MAX {O; 2 - 2 log(kP)/log(&/kP)}. (5.13) 

By substituting Eq. (5.8) and the facts kP> 1 and d> (kP)4 into the 
inequality above, we get the desired conclusion that d also satisfies 
Eq. (5.12). Q.E.D. 

COROLLARY 5.4. T,(d) 2 log log d - log log P - 0( 1). 
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Proof Since C and k were constants in Theorem 5.3 and since we 
always assume P > 2 when discussing parallel processing, it is evident that 
both llog log(kP) - log log PI and C. MAX[O; 2 - 2 log(kP)/log d] are 
also bounded by constants independent of both P and d, i.e., they are both 
O(1). From those facts, it is evident that Eq. (5.12) implies Corollary 5.4. 

Q.E.D. 

We now state a second corollary which indicates that VARIATION(P) 
is optimal up to an additive constant. 

COROLLARY 5.5. Suppose the .records in the ordered file F, = 
( Y, < Y, . YNj are generated by the uniform distribution over (0, 1) and 
this distribution also generates the search key y. Then log log N - 
log log P - 0( 1) lou>er bounds the expected number of iterations to search the 
file F, with any algorithm using P or fewer parallel processors. 

Proof For simplicity, our proof shall assume N is an even number. 
Then since y is generated by the uniform distribution, it follows that 
Prob(D, = i) = 2/N, for each id N/2. Let LOW,(N) denote a lower bound 
on the iterative time for an algorithm to search a file of size N. Then the 
last two sentences combined with Corollary 5.4 imply 

LOW,(N)>; y T,(d) 
*=I 

BLSUM(N/2)-loglogP-O(1) 

>loglogN-loglogP-O(1) by Lemma 3.8. Q.E.D. 

The key phrase in Corollary 5.5 was that log log N-log log P - 0( 1) 
lower bounded “the expected number of iterations” of the file search. In 
Corollary 5.5, as well as in all our other propositions, we ignored the cost 
of communication delays. Even in this tight model, we have seen the com- 
bination of Theorem 4.2’s upper bound and Corollary 5.5’s lower bound 
imply that VARIATION(P) falls within an additive constant of optimality. 
Our next theorem shows VARIATION(P) compares even better to its 
alternatives in models that take into consideration communication delays. 

THEOREM 5.6. Assume that each iteration of VARIATION(P) takes one 
unit of time, and let A denote an algorithm using P parallel processors where 
each iteration consumes c units of times (when one takes into account com- 
munication delays). Then tf c > 1, the parallel algorithm A will be slower than 
VARIATION(P), as the problem size N attains a limiting value approaching 
infinity. 
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Proof: Proposition 4.2 and Corollary 5.5 imply respectively that there 
exist two constants K, >O and K,>O such that Eq. (5.14) and (5.15) 
characterize the cost of these two algorithms ivhen communications delays 
are considered: 

VARIATION( P)'s TIME d log log N - log log P + K, (5.14) 

LOWER BOUND ON A's TIME 3 c’ (log log N - log log P - K2). (5.15) 

Since K, and K, are constants and since the hypothesis of Theorem 5.6 
indicated c > 1, these equations imply that for fixed P, VARIATION(P)‘s 
real time will be better than A's actual time as N approaches infinity. 

Q.E.D. 

6. CONCLUSION 

We have determined, within an additive constant, the expected com- 
plexity of parallel searching an unindexed ordered random table with keys 
independently chosen from a uniform distribution, and we have 
demonstrated that parallel processing does not significantly improve the 
complexity of this search problem except when used in the very last 
iteration. Our theorems hold in even the most conservative case where the 
communication delay is zero. Theorem 5.6 shows that our proposed 
VARIATION(P) procedure becomes even more cost-effective in models 
where the communication delay is assumed to have a nonzero cost. 
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