Completion of a Prüfer domain ${ }^{1}$

B.G. Kang*, M.H. Park
Department of Mathematics, Pohang Institute of Science and Technology, Pohang 790-784, South Korea
Communicated by C.A. Weibel; received 28 June 1997; received in revised form 10 October 1997

Abstract

Let V (resp. D) be a valuation domain (resp. SFT Prüfer domain), I a proper ideal, and \hat{V} (resp. \hat{D}) be the I-adic completion of V (resp. D). We show that (1) \hat{V} is a valuation domain, (2) Krull dimension of $\hat{V}=\operatorname{dim} V / I+1$ if I is not idempotent, $\hat{V} \cong V / I$ if I is idempotent, (3) $\operatorname{dim} \hat{D}=\operatorname{dim} D / I+1$, (4) \hat{D} is an SFT Prüfer ring, and (5) \hat{D} is a catenarian ring. © 1999 Elsevier Science B.V. All rights reserved.

MSC: 13A15; 13C15; 13F05; 13F25; 13J10

Throughout this paper, all rings are assumed to be commutative rings with identity. It is well known that for a Noetherian ring R and a proper ideal I of R, the Krull dimension of the I-adic completion \hat{R} of R equals $\sup \{$ ht $M \mid M$ is a maximal ideal of R containing $I\}$ [7, Proposition 7.3, p. 35]. In this paper, we will study the completion of a valuation domain and a Prüfer domain and get a similar equation for the Krull dimension of the completion.

First we describe some properties of prime ideals of the power series ring $V \llbracket X \rrbracket$ of a valuation domain V. In [4], Arnold gave a collection of principal prime ideals of $V \llbracket X \rrbracket$, where V is a finite-dimensional valuation domain with the SFT-property, i.e., a finite-dimensional discrete valuation domain: Let Q be a prime ideal of $V \llbracket X \rrbracket$ and let $Q \cap V=P$. If $P[X \rrbracket \neq Q$ and $Q \neq P+(X)$ (i.e., $X \notin Q$), then Q is a principal ideal (and $Q \subset P_{1}+(X)$, where P_{1} is the prime ideal just above $\left.P\right)$. In a nondiscrete valuation domain or a non-SFT valuation domain, these conditions are not enough to guarantee Q to be a principal ideal (see the remark following Corollary 2). Under an additional hypothesis that Q contains a power series with unit content, we prove that Q is a

[^0]principal ideal. This result will enable us to extend a part of [4, Proposition 5] to the infinite-dimensional case. We will give a characterization of prime elements of $V \llbracket X \rrbracket$, V an SFT valuation domain. For $f \in V \llbracket X \rrbracket$, we denote by C_{f} the ideal of V generated by the coefficients of f. When C_{f} is a unit ideal, we usually write $C_{f}=1$.

Lemma 1 (see Arnold [4, Proposition 5]). Let V be a valuation domain with the maximal ideal M and Q a prime ideal of $V \llbracket X \rrbracket$ such that $X \notin Q$. If Q contains an element f such that $C_{f}=1$, then Q is a principal ideal.

Proof. Let $g=\sum_{i=0}^{\infty} a_{i} X^{i} \in Q$ with $C_{g}=1$. Let $n(g)$ be the smallest integer such that a_{n} is a unit. Let $f \in Q$ be such that $n(f)$ is the smallest in the set $\{n(g) \mid g \in Q$ and $\left.C_{g}=1\right\}$. Let a_{0} be the constant term of f. Note that $a_{0} \neq 0$. For otherwise $f=X h$, $h \in V \llbracket X \rrbracket$. Since $X \notin Q, h \in Q$. However, $n(h)=n(f)-1$, which contradicts the minimality of $n(f)$. Thus $a_{0} \neq 0$. We claim that the value $v\left(a_{0}\right)$ of the constant term a_{0} of f is the minimum among the values of constant terms of elements in Q. Suppose not and let $g=b_{0}+b_{1} X+\cdots+b_{n} X^{n}+\cdots \in Q$ be an element such that $v\left(b_{0}\right)<v\left(a_{0}\right)$. For a $c \in M, a_{0}=b_{0} c$. Now $f-c g=X\left(\cdots+\left(u-c b_{n}\right) X^{n-1}+\cdots\right) \in Q$, where $n=n(f)$ and u is the unit coefficient of X^{n} in f. Since $X \notin Q, h=\cdots+\left(u-c b_{n}\right) X^{n-1}+\cdots \in Q$, contrary to the fact that n is minimal. Thus $v\left(a_{0}\right)$ is the minimum as claimed. We show that $Q=(f)$. Let $g \in Q$. For a $c_{1} \in V, X \mid\left(g-c_{1} f\right)$. Let $g-c_{1} f=X g_{1}, g_{1} \in Q$. Likewise $g_{1}-c_{2} f=X g_{2}$ for $c_{2} \in V$ and $g_{2} \in Q$. Then $g=c_{1} f+X g_{1}=c_{1} f+X\left(c_{2} f+X g_{2}\right)=c_{1} f+$ $X c_{2} f+X^{2} g_{2}$. Continuing in this way, we get $g=\sum_{i=1}^{\infty} c_{i} X^{i-1} f=\left(\sum_{i=1}^{\infty} c_{i} X^{i-1}\right) f$.

Corollary 2. If V is a valuation domain with the maximal ideal M, Q a prime ideal of V such that $Q \cap V=(0)$ and $Q \nsubseteq M \llbracket X \rrbracket$, then Q is a principal ideal.

Remark. In Lemma 1, the assumption that Q contains an element f with $C_{f}=1$ is necessary: for a one-dimensional nondiscrete valuation domain V with maximal ideal M, it is well known that the ideal $M \cdot V \llbracket X \rrbracket$ is a nonprincipal prime ideal of $V \llbracket X \rrbracket$. In Corollary 2, the condition that $Q \nsubseteq M \llbracket X \rrbracket$ is essential. In [9], we constructed an infinite descending chain of prime ideals $\left\{P_{n}\right\}_{n=1}^{\infty}$ inside $M \llbracket X \rrbracket$ and such that $P_{n} \cap V=(0)$ for each $n \geqslant 1$. It is easy to see that these P_{n} are not principal ideals either by looking at the construction or by the observation that in a completely integrally closed domain, a nonzero principal prime ideal is necessarily a height 1 prime ideal.

A ring R is called an SFT-ring (strong finite type ring) if for each ideal J of R, there exists a finitely generated ideal $I \subseteq J$ and a natural number n such that $j^{n} \in I$ for each $j \in J$. This class of rings is extensively studied in [1, 3]. An SFT Prüfer domain (resp. SFT valuation domain) is a Prüfer domain (resp. valuation domain) that is also an SFT-ring. Recall that a valuation domain is said to be discrete if every primary ideal is a power of its radical. For a finite-dimensional valuation domain V, V is discrete if and only if V is an SFT-ring (see Lemma 2.7 and Proposition 3.1 of [1]). Although an SFT valuation domain is always a discrete valuation domain, the
converse does not hold: see the example in [9]. In the proof of [4, Proposition 5], it is implicitly assumed that V is finite-dimensional. Using Lemma 1, we will fill this gap. In fact the prime ideals of $V \llbracket X \rrbracket$ satisfying the hypotheses of [4, Proposition 5] always satisfy those hypotheses of Lemma 1 as the next result shows. We also give a characterization of the prime elements of $V \llbracket X \rrbracket$, which is an answer to a question posed in [4].

Corollary 3 (see Arnold [4, Proposition 5]). Let V be an SFT valuation domain (not necessarily finite-dimensional) and let Q be a prime ideal of $V \llbracket X \rrbracket$.
(1) If $Q \cap V=P, P \llbracket X \rrbracket \subsetneq Q$, and $Q \neq P+(X)$, then Q is a principal ideal. In fact, Q is generated by an element f such that $C_{f}=1$.
(2) An element f of $V \llbracket X \rrbracket$ is a prime if and only if either f is irreducible and $C_{f}=1$ or f is an associate of p, where (p) is the maximal ideal of V.

Proof. (1) Let M be the maximal ideal of V. In view of [1, Corollary 3.6], it is obvious that $Q \nsubseteq M \llbracket X \rrbracket$. Moreover $X \notin Q$. Now the conclusion follows from Lemma 1 .
(2) Since $M^{2} \neq M, M$ is a principal ideal, say $M=(p)$. Let (f) be a principal ideal of $V \llbracket X \rrbracket$ which is not an associate of p. Then $(f) \nsubseteq M \llbracket X \rrbracket$, for otherwise $(f)=P \llbracket X \rrbracket$ for a prime ideal P of V [1, Corollary 3.6]. In this case, P is a principal ideal and hence necessarily the maximal ideal M, a contradiction. So $C_{f}=1$. For the reverse implication, let $f \in V \llbracket X \rrbracket$ be an irreducible element such that $C_{f}=1$ and f is not an associate of X. It is not difficult to see that $X \notin \sqrt{(f)}$. So there exists a prime ideal Q minimal over (f), which does not contain X. Lemma 1 implies that Q is a principal ideal, say $Q=(g)$. Thus $(f)=(g)$ since f is irreducible, whence f is a prime element.

Let D be a domain, (a) a principal ideal of D, and \hat{D} the (a)-adic completion of D. Let $\theta: D \rightarrow \hat{D}$ be the canonical ring homomorphism and $\varphi: D[X] \rightarrow \hat{D}$ be the natural ring epimorphism such that $\varphi\left(\sum_{i=0}^{\infty} a_{i} X^{i}\right)=\sum_{i=0}^{\infty} \theta\left(a_{i}\right) a^{i}$.

Lemma 4 (Greco and Salmon [7, Proposition 3.4]). $\operatorname{ker} \varphi=(X-a)$ and thus $\hat{D} \cong$ $D \llbracket X \rrbracket /(X-a)$.

Proof. Let $g=a_{0}+a_{1} X+\cdots+a_{k} X^{k}+\cdots \in \operatorname{ker} \varphi$. In $\hat{D}, a_{0}+a_{1} a+a_{2} a^{2}+\cdots=0$. If we regard \hat{D} as $\lim D /\left(a^{n}\right)$, then $a_{0} \in(a), a_{0}+a_{1} a \in\left(a^{2}\right), a_{0}+a_{1} a+a_{2} a^{2} \in\left(a^{3}\right)$, \ldots. Let $a_{0}=a b_{0}, b_{0} \in D$. From $a_{0}+a_{1} a=a b_{0}+a_{1} a \in\left(a^{2}\right)$, we get $a_{1}=a b_{1}-b_{0}$ for $b_{1} \in D$. From $a_{0}+a_{1} a+a_{2} a^{2} \in\left(a^{3}\right)$, we get $a^{2} b_{1}+a_{2} a^{2} \in\left(a^{3}\right)$. So $a_{2}=a b_{2}-b_{1}$ for $b_{2} \in D$. Proceeding this way, we get $a_{n+1}=a b_{n+1}-b_{n}$ for $b_{0}, b_{1}, \ldots, b_{n}, \ldots$ in D. From these, we deduce that $a_{0}+a_{1} X+\cdots=(X-a)\left(-b_{0}-b_{1} X-b_{2} X^{2}-\cdots-b_{n} X^{n}-\cdots\right)$.

Let $\theta: D \rightarrow \hat{D}$ be the canonical ring homomorphism. Recall that $\operatorname{ker} \theta=\bigcap_{n=1}^{\infty}\left(a^{n}\right)$ [5].

Lemma 5. Let R be a ring and a an element of R. Then $(X-a) R[X] \cap R \subseteq \bigcap_{n=1}^{\infty}\left(a^{n}\right)$. If R is a domain, then the converse holds: $(X-a) R[X] \cap R=\bigcap_{n=1}^{\infty}\left(a^{n}\right)$.

Proof. Since the diagram

commutes, $(X-a) R[X] \cap R \subseteq \operatorname{ker} \theta=\bigcap_{n=1}^{\infty}\left(a^{n}\right)$. Suppose R is a domain. By Lemma 4, $\bigcap_{n=1}^{\infty}\left(a^{n}\right) \subseteq \operatorname{ker} \varphi=(X-a) R[X]$.

Theorem 6. Let V be a valuation domain and a a nonunit element of V. Then $X-a$ is a prime element of $V[X]$.

Proof. We may assume that $a \neq 0$. Let $P=\bigcap_{n=1}^{\infty}\left(a^{n}\right)$, which is a prime ideal of V [6, Theorem 17.1]. P is contained in $(X-a)$ by Lemma 5. It is easy to see that $P \llbracket X] \subseteq(X-a)$. By Lemma 5, $\sqrt{(X-a)} \cap V=P$ where $\sqrt{(X-a)}$ is the nil radical of $(X-a)$. Passing to V / P, we may assume that $\bigcap_{n=1}^{\infty}\left(a^{n}\right)=(0)$, so that $\sqrt{(X-a)} \cap V=(0)$. Pick a prime ideal Q minimal over $(X-a)$ such that $Q \cap V=(0)$. (Note that if $Q \cap V \neq(0)$ for every Q, then $Q \cap V \supseteq \sqrt{(a)}$, which is the height 1 prime ideal of V. This leads to $\sqrt{(X-a)} \cap V \supseteq \sqrt{(a)})$. Clearly, Q satisfies the hypotheses of Corollary 2. So Q is a principal ideal, say $Q=(f)$. We claim that $(f)=(X-a)$. Since $X-a \in Q, X-a=f g$ for a $g \in V[X]$. Suppose g is not a unit. Then the coefficient of X in $f g$ would not be a unit. So g is a unit and hence $X-a$ is a prime.

Theorem 7. Let V be a valuation domain, I a proper ideal of V, and \hat{V} the I-adic completion of V. Then \hat{V} is a valuation domain and the value group $v(\hat{V})$ of \hat{V} is isomorphic to $v\left(V / \bigcap_{n=1}^{\infty} I^{n}\right)$.

Proof. If $I=I^{2}$, then I is a prime ideal by [6, Theorem 17.1]. So $\hat{V} \cong V / I$ is a valuation domain. Now let us assume that $I \neq I^{2}$. Choose a such that $a \in I \backslash I^{2}$. Since $I^{2} \subseteq(a) \subseteq I$, the (a)-adic completion of V is isomorphic to the I-adic completion of V by the bounded difference. Thus, we may assume that I is a principal ideal, say $I=(a)$. By Lemma 4 and Theorem $6, \hat{V}$ is a domain. We identify \hat{V} with $V_{[X]} /(X-a)$. To prove \hat{V} is a valuation domain, let $\overline{f(X)} \in \hat{V}$. Let n be such that $\overline{f(X)}=a^{n} \overline{g(X)}$ and $a+\overline{g(X)}$ where $\overline{g(X)} \in \hat{V}$. Such an n exists since $\bigcap_{i=1}^{\infty}\left(a^{i} \hat{V}\right)=(0)$, which follows from the fact that \hat{V} is complete w.r.t. the $a \hat{V}$ topology and so $\hat{V} \cong \hat{V}$ canonically. (By [5, Lemma 10.1, Proposition 10.5], $\bigcap_{i=1}^{\infty}\left(\widehat{a^{i} V}\right)=(0)$. Since $\bigcap_{i=1}^{\infty}\left(a^{i} \hat{V}\right) \subseteq \bigcap_{i=1}^{\infty}\left(\widehat{a^{i} V}\right)$, $\bigcap_{i=1}^{\infty}\left(a^{i} \hat{V}\right)=(0)$.) Let $\overline{g(X)}=\overline{b_{0}+b_{1} X+\cdots+b_{n} X^{n}+\cdots}=\bar{b}_{0}+\bar{X}\left(b_{1}+b_{2} X+\cdots\right)=$ $\bar{b}_{0}+\bar{a}\left(b_{1}+b_{2} X+\cdots\right)=\bar{b}_{0}+\bar{a} \bar{h}$, where $h=b_{1}+b_{2} X+\cdots$. Since $a+\overline{g(X)}$ in $\hat{V}, a+b_{0}$ in
V. So $b_{0} \mid a$ in V and $a=b_{0} c$ for a nonunit c of V. Now $\overline{g(X)}=\bar{b}_{0}(1+\bar{c} \bar{h})$ and $1+\bar{c} \bar{h}$ is a unit since \bar{c} is a nonunit and \hat{V} is a local ring. Thus $\overline{f(X)}=a^{n} \overline{g(X)}=a^{n} b_{0} u=c^{\prime} u$ where $a^{n} b_{0}=c c^{\prime}$ and u is a unit of \hat{V}. This completes the proof of the first assertion. Recall that $\hat{V} \cong\left(\widehat{\bigcap \bigcap} I^{n}\right)$. We assume that $\bigcap_{n=1}^{\infty} I^{n}=\{0\}$, and under this hypothesis, we show that $v(\hat{V}) \cong v(V)$. Then the general case easily follows: $v(\hat{V}) \cong v\left(V / \bigcap I^{n}\right) \cong v\left(V / \bigcap I^{n}\right)$. Let K (resp. F) be the quotient field of V (resp. \hat{V}), K^{*} (resp. F^{*}) the nonzero elements of K (resp. F), and \mathscr{U} (resp. \mathscr{V}) the group of the units of V (resp. \hat{V}). Since the natural ring homomorphism $\theta: V \rightarrow \hat{V}$ is an injection, K can be embedded into F. Clearly $\mathscr{U} \subseteq \mathscr{V}$. Next we show that $\mathscr{V} \cap V=\mathscr{U}$. Let $\alpha \in \mathscr{V} \cap V$. Then $\bar{\alpha}$ is a unit of $\hat{V}=V \llbracket X \rrbracket /(X-a)$. So $\bar{\alpha} \notin \overline{M+(X)}$, which is the unique maximal ideal of \hat{V}, where M is the maximal ideal of V. Hence $\alpha \notin M$. So α is a unit of V, i.e., $\alpha \in \mathscr{U}$. From this, we obtain another embedding $\phi: K^{*} / \mathscr{U} \rightarrow F^{*} / \mathscr{V}$. It remains to show that ϕ is onto. Let $y=\overline{(a / b)} \in F^{*} / \mathscr{V} ; a, b \in \hat{V}$. As is shown previously, $a=c u, b=d v$ for $c, d \in V$ and $u, v \in \mathscr{V}$. Now $\overline{a / b}=\overline{(c / d) u v^{-1}}=\phi \overline{(c / d)}$. So ϕ is onto.

Theorem 8. Let V be a finite-dimensional valuation domain, I a nonidempotent ideal of V, and \hat{V} the I-adic completion of V. Then:
(1) $\operatorname{dim} \hat{V}=\operatorname{dim}\left(V / \bigcap_{n=1}^{\infty} I^{n}\right)=\operatorname{dim} V / I+1$.
(2) $\operatorname{Spec}(\hat{V})=\left\{P \hat{V} \mid P \in \operatorname{Spec}(V)\right.$ and $\left.P \supseteq \bigcap_{n=1}^{\infty} I^{n}\right\}$.
(3) For $P_{1}, P_{2} \in \operatorname{Spec}(V)$ with $P_{1}, P_{2} \supseteq \bigcap_{n=1}^{\infty} I^{n}, P_{1} \hat{V} \supseteq P_{2} \hat{V} \Leftrightarrow P_{1} \supseteq P_{2}$ and $P_{1} \hat{V}=P_{2}$ $\hat{V} \Leftrightarrow P_{1}=P_{2}$.

Proof. (1) follows from Theorem 7. In proving (2), we give another proof of (1). Choose $a \in I \backslash I^{2}$. As in the proof of Theorem 7, we may assume that $I=(a)$. Since $\hat{V} \cong\left(V / \bigcap_{n=1}^{\infty}\left(a^{n}\right)\right)$ and $V / \bigcap_{n=1}^{\infty}\left(a^{n}\right)$ is a valuation domain, we may also assume that $\bigcap_{n=1}^{\infty}\left(a^{n}\right)=\{0\}$. So a is contained in the minimal prime ideal P of V. Let Q be a prime ideal of $V \llbracket X \rrbracket$ properly containing $(X-a)$. By Corollary 2 and Theorem $6, Q \cap V \neq\{0\}$. So $P \subseteq Q \cap V$, which implies $P+(X) \subseteq Q$. So $\operatorname{dim} \hat{V} \leq \operatorname{dim}(V \llbracket X \rrbracket /(P+(X)))$ $+1=\operatorname{dim}(V / P)+1=\operatorname{dim}(V / I)+1$. Let $0 \subsetneq P_{1} \subsetneq \cdots \subsetneq P_{n}$ be the chain of all the prime ideals of V. The chain $0 \subsetneq \overline{P_{1}+(X)} \subsetneq \overline{P_{2}+(X)} \subsetneq \cdots \subsetneq \overline{P_{n}+(X)}$ is a chain of prime ideals of $\quad V \llbracket X \rrbracket /(X-a)$. So $\quad \operatorname{dim} \hat{V} \geq n=\operatorname{dim} V / I+1$. Hence $\operatorname{dim} \hat{V}=$ $\operatorname{dim} V / I+1=n$ and so $0 \subsetneq \overline{P_{1}+(X)} \subsetneq \overline{P_{2}+(X)} \subsetneq \cdots \subsetneq \overline{P_{n}+(X)}$ is the chain of all prime ideals of \hat{V}. Note that $\overline{P_{i}+(X)}=P_{i} \hat{V}$.
(3) It is routine to check this.

Now we consider the global case.
Lemma 9. Let D be a finite-dimensional SFT Prüfer domain. Let $\left(a_{1}, \ldots, a_{n}\right) \subsetneq D$ be a proper ideal. Then any prime ideal Q of $D \llbracket X_{1}, \ldots, X_{n} \rrbracket$ containing $\left(X_{1}-a_{1}, \ldots, X_{n}-a_{n}\right)$ has height $\geq n$.

Proof. Let $Q_{0}=Q \cap D \llbracket X_{1}, \ldots, X_{n-1} \rrbracket$. In [3], it is shown that $\operatorname{dim} D \llbracket X_{1}, \ldots, X_{n} \rrbracket=$ $(\operatorname{dim} D) n+1<\infty$. According to [1], the power series ring over a non-SFT-ring is
infinite-Krull-dimensional. From this, we deduce that $D\left[X_{1}, \ldots, X_{n-1}\right]$ is an SFT-ring. Since $Q_{0} \cdot D \llbracket X_{n} \rrbracket \subseteq Q$ and $D \llbracket X_{1}, \ldots, X_{n-1} \rrbracket$ is an SFT-ring, we have $Q_{0}\left[X_{n}\right]=$ $\sqrt{Q_{0} \cdot D\left[X_{1}, \cdots, X_{n-1} \llbracket X_{n} \rrbracket\right.} \subseteq Q\left[2\right.$, Theorem 1]. Since $\left.1 \notin Q, X_{n}-a_{n} \notin Q_{0} \llbracket X_{n}\right]$. So $Q_{0} \llbracket X_{n} \rrbracket$ $\subsetneq Q$. By induction on n, we get the inequality ht $Q_{0} \geq n-1$, so that ht $Q_{0}\left[X_{n}\right]$ $\geq n-1$ (note that $\left.\left(X_{1}-a_{1}, \ldots, X_{n-1}-a_{n-1}\right) \subseteq Q_{0}\right)$. So ht $Q \geq n$. For the case $n=1$, note that any prime ideal containing $X-a$ is nonzero, and thus ht $Q \geq 1$.

Let D be a commutative ring, I an ideal of D, \hat{D} the I-adic completion of D, and $S=\left\{i_{\alpha} \mid \alpha \in A\right\}$ a generating set of I. Let $\theta: D \rightarrow \hat{D}$ be the canonical mapping and $\varphi: D \llbracket\left\{X_{\alpha} \mid \alpha \in A\right\} \rrbracket_{2} \rightarrow \hat{D}$ the canonical epimorphism defined by $\varphi\left(X_{\alpha}\right)=\theta\left(i_{\alpha}\right)$ for each $\alpha \in A$ and $\varphi(d)=\theta(d)$ for $d \in D$. For the definition of the second type power series ring $D \llbracket\left\{X_{\alpha} \mid \alpha \in A\right\} \rrbracket_{2}$, readers are referred to [6, p. 6].

Lemma 10. If Q is a prime ideal of $D\left[\left\{X_{\alpha} \mid \alpha \in A\right\} \rrbracket_{2}\right.$ containing $\operatorname{ker} \varphi$, then the radical \sqrt{I} of I and $Q \cap D$ are not coprime. If $f \in \operatorname{ker} \varphi$, then the constant term of f is in I.

Proof. Suppose $\sqrt{I}+Q \cap D=D$. For an $x \in \sqrt{I}$ and a $d \in Q \cap D, x+d=1$. Choose l so that $x^{l} \in I$. For an $e \in Q \cap D$, we have $x^{l}+e=1$. Put $y=x^{l}$. Since $y \in I, y=d_{1} i_{1}+$ $\cdots+d_{k} i_{k}$ for $d_{1}, \ldots, d_{k} \in D$ and $i_{1}, \ldots, i_{k} \in S$. Put $h=-d_{1}\left(X_{1}-i_{1}\right)-\cdots-d_{k}\left(X_{k}-i_{k}\right)+e$. Then $h \in Q$ since $\left(X_{1}-i_{1}, \ldots, X_{k}-i_{k}\right) \subseteq \operatorname{ker} \varphi \subseteq Q$ and $e \in Q \cap D$. Now $h=\left(d_{1} i_{1}+\cdots+\right.$ $\left.d_{k} i_{k}\right)+e-d_{1} X_{1}-d_{2} X_{2}-\cdots-d_{k} X_{k}=1-d_{1} X_{1}-\cdots-d_{k} X_{k}$ is a unit in $D \llbracket\left\{X_{\alpha} \mid \alpha \in A\right\} \rrbracket_{2}$, which contradicts that $Q \neq(1)$. So \sqrt{I} and $Q \cap D$ are not coprime. Let $f=a_{0}+f_{1}+$ $f_{2}+\cdots \in \operatorname{ker} \varphi$, where f_{i} is homogeneous of degree i in $D\left[\left\{X_{\alpha} \mid \alpha \in A\right\}\right]$. If we realize \hat{D} as the inverse limit $\lim _{\leftarrow} D / I^{n}$, then $0=\varphi(f)=\left(\bar{a}_{0}, \overline{a_{0}+f_{1}\left(X_{\alpha}=i_{\alpha} \mid \alpha \in A\right)}, \ldots\right)$. Since $\bar{a}_{0}=0$ in $D / I, a_{0} \in I$.

Let D be a finite-dimensional SFT Prüfer domain, $I=\left(a_{1}, \ldots, a_{n}\right)$ a finitely generated proper ideal of D, \hat{D} the I-adic completion of D, and φ the canonical ring epimorphism from $D\left[X_{1}, \ldots, X_{n} \rrbracket\right.$ to \hat{D}. For a nonzero prime ideal P of D, we denote by $\mathscr{B}(P)$ the prime ideal of D just below P.

Lemma 11. Let D be a finite-dimensional SFT Prüfer domain. Suppose the radical \sqrt{I} of I is a prime ideal P. Then (1) the prime ideal $P+\left(X_{1}, \ldots, X_{n}\right)$ is not minimal over $\operatorname{ker} \varphi$ and (2) if Q is a minimal prime ideal of $\operatorname{ker} \varphi$, then $Q \cap D=$ $\mathscr{B}(P)$.

Proof. (1) $P \nsubseteq \sqrt{\operatorname{ker} \varphi}$. For otherwise some power of P is contained in $\operatorname{ker} \varphi \cap D$, which is $\bigcap_{m=1}^{\infty} I^{m}=\mathscr{B}(P)$. This would lead to the contradiction $P \subseteq \mathscr{B}(P)$. Thus $P \nsubseteq$ $\sqrt{\operatorname{ker} \varphi}$ and so there exists a prime ideal Q minimal over $\operatorname{ker} \varphi$ such that $P \nsubseteq Q$. By Lemma 10, $Q \cap D$ and P are not coprime. Since D is a Prüfer domain, this implies that $Q \cap D$ and P are comparable. So either $Q \cap D \subseteq P$ or $P \subseteq Q \cap D$. However $P \nsubseteq Q$. So $Q \cap D \subsetneq P$. Since $\mathscr{B}(P) \subseteq Q \cap D \subset P, Q \cap D=\mathscr{B}(P)$. Let Q_{1} be a prime ideal just
above Q so that height $\left(Q_{1} / Q\right)=1$. By Lemma 9, height $\bar{Q} \geq n$ in $(D / \mathscr{B}(P))\left[X_{1}, \ldots, X_{n}\right]$, and so height $Q_{1} \geq n+1$, from which it follows that $\bar{P}_{1}=\bar{Q}_{1} \cap \bar{D} \neq\{0\}$ [3, Lemma 3.5]. By [4, Lemma 1], $Q_{1} \subseteq P_{1}+\left(X_{1}, \ldots, X_{n}\right)$ and $\operatorname{ht}\left(P_{1} / \mathscr{B}(P)\right)=1$. Since $I \subseteq P_{1}$, $P=\sqrt{I} \subseteq P_{1}$ and so $P=P_{1}$. Since ker $\varphi \subseteq Q \subsetneq Q_{1} \subseteq P_{1}+\left(X_{1}, \ldots, X_{n}\right)=P+\left(X_{1}, \ldots, X_{n}\right)$, $P+\left(X_{1}, \ldots, X_{n}\right)$ is not minimal over $\operatorname{ker} \varphi$. (2) Let Q be a minimal prime ideal of ker φ. By (1), $P \nsubseteq Q$. Then the proof of (1) validates the claim.

Theorem 12. Let D be a finite-dimensional SFT Prüfer domain, I a proper ideal of D, and \hat{D} the I-adic completion of D. Then $\operatorname{dim} \hat{D}=\operatorname{dim} D / I+1$.

Proof. Let P_{1}, \ldots, P_{m} be the minimal primes of I [1, Corollary 2.6]. $\sqrt{I}=P_{1} \cap \cdots \cap P_{m}$. For any $l \geq 0,(\sqrt{I})^{l}=P_{1}^{l} \cap \cdots \cap P_{m}^{l}=P_{1}^{l} \cdots P_{m}^{l}$ since $P_{1}^{l}, \ldots, P_{m}^{l}$ are pairwise coprime. By the Chinese remainder theorem, $D /(\sqrt{I})^{l} \cong D / P_{1}^{l} \oplus \cdots \oplus D / P_{m}^{l}$. So $\hat{D} \cong \hat{D}_{1} \oplus \cdots$ $\oplus \hat{D}_{m}$, where \hat{D}_{i} is the P_{i}-adic completion of D. Since $\operatorname{dim} \hat{D}=\max _{i}\left(\operatorname{dim} \hat{D}_{i}\right)$, we will assume that $\sqrt{I}=P$ is a prime ideal and $I=\left(a_{1}, \ldots, a_{n}\right)$. Let $\varphi: D \llbracket X_{1}, \ldots, X_{n} \rrbracket \rightarrow \hat{D}$ be the canonical ring epimorphism. Since $\hat{D} \cong\left(D / \widehat{\bigcap_{m=1}^{\infty} I^{m}}\right)$, we may assume that $\bigcap_{m=1}^{\infty} I^{m}=\{0\}$. Since $\mathscr{B}(P)=\bigcap_{m=1}^{\infty} P^{m}=\bigcap_{m=1}^{\infty} I^{m}=\{0\}$, ht $P=1$. Let $l=\operatorname{dim} \hat{D}$ and $\operatorname{ker} \varphi \subseteq Q_{0} \subset \cdots \subset Q_{l}$ be a chain of prime ideals which gives the dimension l. By Lemma 9, ht $Q_{0} \geq n$. By [3, Lemma 3.5], $Q_{1} \cap D \neq\{0\}$. By Lemma 10, P and $Q_{1} \cap D$ are comparable. Since $Q_{1} \cap D \neq\{0\}$ and ht $P=1, P \subseteq Q_{1} \cap D$. So $\left(X_{1}, \ldots, X_{n}\right) \subseteq$ Q_{1} and hence $P+\left(X_{1}, \ldots, X_{n}\right) \subseteq Q_{1}$. From this, we deduce that $l-1 \leq \operatorname{dim} D / P$. So $l \leq \operatorname{dim} D / P+1=\operatorname{dim} D / I+1$. For the reverse inequality, let $m=\operatorname{dim} D / I$ and let $I \subseteq P_{0} \subset \cdots \subset P_{m}$ be a chain of prime ideals of D which gives the dimension of D / I. By Lemma 10, $\operatorname{ker} \varphi \subseteq I+\left(X_{1}, \ldots, X_{n}\right) \subseteq P_{0}+\left(X_{1}, \ldots, X_{n}\right)$. Now $\operatorname{ker} \varphi \subset P_{0}+\left(X_{1}, \ldots, X_{n}\right) \subset \cdots \subset P_{m}+\left(X_{1}, \ldots, X_{n}\right)$. By Lemma 11, $P_{0}+\left(X_{1}, \ldots, X_{n}\right)$ is not minimal over $\operatorname{ker} \varphi$. So $\operatorname{dim} \hat{D} \geq m+1=\operatorname{dim} D / I+1$. Therefore, $\operatorname{dim} \hat{D}=$ $\operatorname{dim} D / I+1$.

Lemma 13. Let R be a ring, I a finitely generated ideal of R such that $\bigcap_{n=1}^{\infty} I^{n}=(0)$, and \hat{R} the I-adic completion of R. Then
(1) $I^{n} \hat{R}=\widehat{\left(I^{n}\right)}$ and so $R / I^{n} \cong \hat{R} / I^{n} \hat{R}$ canonically,
(2) if M is a maximal ideal of R such that $I \subseteq M$, then $M \hat{R}$ is a maximal ideal of \hat{R} and $M \hat{R}=\hat{M}$, and
(3) $\operatorname{Max}(\hat{R})=\{\hat{M} \mid M \in \operatorname{Max}(R)$ and $M \supseteq I\}$.

Proof. (1) By [5, Proposition 10.13], $I^{n} \hat{R}=\widehat{\left(I^{n}\right)}$. By [5, Proposition 10.4], $R / I^{n} \cong$ $\hat{R} /\left(I^{n}\right)$. So $R / I^{n} \cong \hat{R} / I^{n} \hat{R}$. (2) Let $I=\left(a_{1}, \ldots, a_{l}\right)$. We identify \hat{R} with $R\left[X_{1}, \ldots, X_{l}\right] / \operatorname{ker} \varphi$ through the canonical ring epimorphism $\varphi: R\left[X_{1}, \ldots, X_{l} \rrbracket \rightarrow \hat{R}\right.$. Obviously ker $\varphi \supseteq\left(X_{1}-\right.$ $\left.a_{1}, \ldots, X_{l}-a_{l}\right)$. So $M+\left(X_{1}-a_{1}, \ldots, X_{l}-a_{l}\right)=M+\left(X_{1}, \ldots, X_{l}\right)$. Since $M \hat{R} \supseteq$ $\overline{M+\left(X_{1}-a_{1}, \ldots, X_{l}-a_{l}\right)}, \quad M \hat{R} \supseteq \overline{M+\left(X_{1}, \ldots, X_{l}\right)}$. Now $\overline{M+\left(X_{1}, \ldots, X_{l}\right)} \subseteq M \hat{R} \subseteq$ $\hat{M} \subsetneq \hat{R}$. Since $\overline{M+\left(X_{1}, \ldots, X_{l}\right)}$ is a maximal ideal of $R\left[X_{1}, \ldots, X_{l}\right] / \operatorname{ker} \varphi$, we conclude that $\overline{M+\left(X_{1}, \ldots, X_{l}\right)}=M \hat{R}=\hat{M}$. (3) Statement (2) implies $\operatorname{Max}(\hat{R}) \supseteq\{\hat{M} \mid M \in$ $\operatorname{Max}(R)$ and $M \supseteq I\}$. Every maximal ideal of $R\left[X_{1}, \ldots, X_{l}\right] / \operatorname{ker} \varphi$ is of the form
$\overline{M+\left(X_{1}, \ldots, X_{l}\right)}$, where M is a maximal ideal of R and $M+\left(X_{1}, \ldots, X_{l}\right) \supseteq \operatorname{ker} \varphi$. Since $X_{1}-a_{1}, \ldots, X_{l}-a_{l} \in \operatorname{ker} \varphi,\left(a_{1}, \ldots, a_{l}\right) \subseteq M$. Also note that $\overline{M+\left(X_{1}, \ldots, X_{l}\right)}=M$ $\left(R\left[X_{1}, \ldots, X_{l}\right] / \operatorname{ker} \varphi\right)=M \hat{R}$.

We present a partial converse of Theorem 7.

Lemma 14. Let R be a ring and I a finitely generated ideal of R such that $\bigcap_{n=1}^{\infty}$ $I^{n}=(0)$ and I is contained in the Jacobson radical $J(R)$ of R. If the I-adic completion \hat{R} of R is a valuation domain, then R is also a valuation domain.

Proof. Since $\bigcap_{n=1}^{\infty} I^{n}=(0), R$ can be embedded into \hat{R} through the canonical homomorphism $\theta: R \rightarrow \hat{R}$. So R is an integral domain. Let K be the quotient field of R. Since \hat{R} is a valuation domain, $\hat{R} \cap K$ is also a valuation domain. We claim that $\hat{R} \cap K=R$. It suffices to show that $a \hat{R} \cap R=a R$ for all $a \in R$. Let $0 \neq a \in R$. Since $\bigcap_{n=1}^{\infty} I^{n} \hat{R}=(0)$ and \hat{R} is a valuation domain, there exists an $n \geq 1$ such that $I^{n} \hat{R} \subseteq a \hat{R}$. So $I^{n} \subseteq a \hat{R} \cap R$. From this and the fact that $a \hat{R} \cap R \subseteq \bigcap_{k=1}^{\infty}\left(a R+I^{k}\right)$, it follows that $a R+I^{n}=a R+I^{n+1}=\cdots$. Let $\bar{R}=R / a R, \bar{I}=(I+a R) / a R$. Then \bar{I} is a finitely generated ideal of \bar{R} and $\bar{I} \subseteq J(\bar{R})$. Recall that $a R+I^{n}=a R+I^{n+1}$. From this, we get another observation that $(\bar{I})^{n}=\overline{\left(I^{n}\right)}=\overline{\left(I^{n+1}\right)}=(\bar{I})^{n+1}$. By Nakayama's Lemma, $(\bar{I})^{n}=0$, i.e., $I^{n}+a R \subseteq a R$. Thus, $a \hat{R} \cap R \subseteq I^{n}+a R=a R$, and hence $a \hat{R} \cap R=a R$.

Theorem 15. Let D be an $S F T$ Prüfer domain, I a proper ideal of D, and \hat{D} the I-adic completion of D. Then:
(1) \hat{D} is an $S F T$ Prüfer ring.
(2) \hat{D} is an $S F T$ Prüfer domain if and only if radical \sqrt{I} of I is a prime ideal.

Proof. Let $\left\{P_{1}, \ldots, P_{r}\right\}$ be the set of minimal prime ideals of I. As is shown in the proof of Theorem 12, $\hat{D} \cong \hat{D}_{1} \oplus \cdots \oplus \hat{D}_{r}$, where \hat{D}_{i} is the P_{i}-adic completion of D for $i=1, \ldots, r$. Now, let P be a prime ideal of D and \hat{D} the P-adic completion of D. We will show that \hat{D} is a Prüfer domain. Put $Q=\bigcap_{n=1}^{\infty} P^{n}$. Then Q is a prime ideal of D [6, Theorem 23.3(b) and (d)] and D / Q is an SFT Prüfer domain [3]. Since $\hat{D} \cong(\widehat{D / Q})$, we may assume that $Q=(0)$, i.e., $\bigcap_{n=1}^{\infty} P^{n}=(0)$. Since D is an SFT-ring, there exists a finitely generated ideal J of D contained in P and $l \geq 1$ such that $P^{l} \subseteq J$. Then, by the bounded difference, the P-adic completion of D is isomorphic to the J-adic completion of D. Now we replace P by J. Let $M \in \operatorname{Max}(D)$ be such that $M \supseteq J$. The natural mapping $\hat{D} \xrightarrow{l}\left(\widehat{D_{M}}\right)$ is an injection: let $x=\left(\bar{x}_{1}, \bar{x}_{2}, \cdots\right) \in \lim D / J^{n}$ be such that $l(x)=\left(\bar{x}_{1}, \bar{x}_{2}, \cdots\right)=0$ in $\lim _{\leftarrow} D_{M} / J^{n} D_{M}$. For an arbitrary integer $k \geq 1$, $x_{l k} \in J_{M}^{l k} \cap D \subseteq P_{M}^{l k} \cap D=P^{l k} \subseteq J^{k}$. Since $\bar{x}_{k}=\bar{x}_{l k}$ in $D / J^{k}, \bar{x}_{k}=0$ in D / J^{k} for all $k \geq 1$, which implies that $x=0$ and so l is an injection. Since D_{M} is a valuation domain, $\left(\widehat{D_{M}}\right)$ is also a valuation domain by Theorem 7. So the subring \hat{D} is an integral domain. Note that $\left(\widehat{\hat{D}_{M \hat{D}}}\right)=\lim \left(\hat{D}_{M \hat{D}} / J^{n} \hat{D}_{M \hat{D}}\right) \cong \lim _{\leftarrow}\left(\hat{D} / J^{n} \hat{D}\right)_{M \hat{D} / J^{n} \hat{D}} \cong \lim _{\leftarrow}\left(\hat{D} /\left(\widehat{\left.J^{n}\right)}\right)_{\hat{M} /\left(\widehat{\left.J^{n}\right)}\right.} \cong\right.$ $\underset{\leftarrow}{\lim }\left(D / J^{n}\right)_{M / J^{n}} \cong \lim _{\leftarrow} D_{M} / J_{M}^{n}=\left(\widehat{D_{M}}\right)$, where [6, Proposition 5.8] is used for the first
isomorphism and the fourth, the second isomorphism follows from Lemma 13, and the third isomorphism follows from Lemma 13 and [5, Corollary 10.4]. Thus $\left(\widehat{\hat{D}_{M \hat{D}}}\right) \stackrel{\phi}{\cong}\left(\widehat{D_{M}}\right)$ is a valuation domain. We observed that $\hat{D} \xrightarrow{l}\left(\widehat{D_{M}}\right)$ is an injection. We claim that $\hat{D} \backslash M \hat{D} \subseteq$ the set of units of $\left(\widehat{D_{M}}\right)$, so that l induces an embedding $\hat{D}_{M \hat{D}} \xrightarrow{l}\left(\widehat{D_{M}}\right)$: Since $M \widehat{D_{M}} \cap \hat{D} \supseteq M \hat{D}, M \hat{D}$ is a maximal ideal of \hat{D} (Lemma 13), and $1 \notin M \widehat{D_{M}}$, we have $M \widehat{D_{M}} \cap \hat{D}=M \hat{D}$. So $\hat{D} \backslash M \hat{D} \subseteq \widehat{D_{M}} \backslash M \widehat{D_{M}}$. By Theorem 7, $M \widehat{D_{M}}$ is a maximal ideal of the valuation domain ($\widehat{D_{M}}$), i.e., the unique maximal ideal of ($\widehat{D_{M}}$). Thus $\hat{D} \backslash M \hat{D}$ is a set of units of $\left(\widehat{D_{M}}\right)$. Let ϕ be the natural isomorphism $\left(\widehat{D_{M}}\right) \xrightarrow{\phi}\left(\widehat{\hat{D}_{M \hat{D}}}\right)$ obtained earlier. Consider the composition $\hat{D}_{M \hat{D}} \stackrel{\iota}{\hookrightarrow}\left(\widehat{D_{M}}\right) \stackrel{\phi}{\rightarrow}\left(\widehat{\hat{D}_{M \hat{D}}}\right)$, which is identical with the natural ring homomorphism $\theta: \hat{D}_{M \hat{D}} \rightarrow\left(\widehat{\hat{D}_{M \hat{D}}}\right)$, i.e., $\theta=\phi \circ l$. Since l an injection and ϕ is an isomorphism, $\theta=\phi \circ \imath$ is an injection and hence $\bigcap_{n=1}^{\infty}\left(J^{n} \hat{D}_{M \hat{D}}\right)=\operatorname{ker} \theta=(0)$. By Lemma 14, $\hat{D}_{M \hat{D}}$ is also a valuation domain. In view of Lemma $13, \operatorname{Max}(\hat{D})=\{M \hat{D} \mid$ $M \in \operatorname{Max}(D)$ and $M \supseteq J\}$. Hence \hat{D} is a Prüfer domain. This completes the 'if' half of (2). In the general case, $\hat{D} \cong \hat{D}_{1} \oplus \cdots \oplus \hat{D}_{r}$, where each \hat{D}_{i} is a Prüfer domain. So \hat{D} is a Prüfer domain if and only if $r=1$, i.e., $\sqrt{I}=P$ is a prime ideal. Thus (2) is done. We are ready to prove (1). Put $Q_{i}=\hat{D}_{1} \oplus \cdots \oplus \hat{D}_{i-1} \oplus\{0\} \oplus \hat{D}_{i+1} \oplus \cdots \oplus \hat{D}_{r}$. Then the set of minimal prime ideals of \hat{D} is $\left\{Q_{1}, \ldots, Q_{r}\right\}$ and $Q_{1} \cap \cdots \cap Q_{r}=\{0\}$. So \hat{D} is a reduced ring. Note that $\hat{D} / Q_{i} \cong \hat{D}_{i}$. Let K_{i} be the quotient field of \hat{D}_{i}. By [8, Lemma 8.14], the total quotient ring $T(\hat{D})$ of \hat{D} is given by $T(\hat{D}) \cong K_{1} \oplus \cdots \oplus K_{r}$. Let S be an overring of \hat{D}. Then, $S \cong \pi_{1}(S) \oplus \cdots \oplus \pi_{r}(S)$, where $\pi_{i}: T(\hat{D}) \rightarrow K_{i}$ is the natural projection. Since \hat{D}_{i} is a Prüfer domain and $\pi_{i}(S)$ is an overring of \hat{D}_{i}, we have $\pi_{i}(S)$ is integrally closed [6, Theorem 26.2] and therefore S is also integrally closed in $T(\hat{D})$. Thus each overring of the ring \hat{D} is integrally closed and hence \hat{D} is a Prüfer ring [8, Theorem 6.2].

In [4], Arnold showed that for an SFT Prüfer domain $D, D \llbracket X_{1}, \ldots, X_{n} \rrbracket$ is not catenarian if and only if $\operatorname{dim} D \geq 2$ and $n \geq 2$. However, the completion \hat{D}, which is a quotient ring of some power series ring $D\left[X_{1}, \ldots, X_{n} \rrbracket\right.$, turns out to be catenarian as is shown in the following corollary.

Corollary 16. If D is a finite-dimensional SFT Prüfer domain, then \hat{D} is a catenarian ring.

Proof. Let $\sqrt{I}=P_{1} \cap \cdots \cap P_{m}$, where P_{1}, \ldots, P_{m} are the minimal primes of I. As is shown in the proof of Theorem 12, $\hat{D} \cong \bigoplus_{i=1}^{m} \hat{D}_{i}$, where \hat{D}_{i} is the P_{i}-adic completion of D. It suffices to show that each \hat{D}_{i} is catenarian, which is the case since \hat{D}_{i} is a Prüfer domain by Theorem 15 .

Definition. A partially ordered set S is called a tree if every incomparable two elements do not have an upper bound in S. Two trees are said to be isomorphic if there
exists between them a bijection which preserves partial orders. For a Prüfer domain D, $\operatorname{Spec}(D)$ is a tree w.r.t. the set-theoretic inclusion.

Definition. For a commutative ring $R, X^{i}(R)=\{P \mid P \in \operatorname{Spec}(R)$ and $\mathrm{ht}(P)=i\}$ and $\operatorname{Spec}^{+}(R)=\{P \mid P \in \operatorname{Spec}(R)$ and $\operatorname{ht}(P)>0\}$.

Corollary 17. Let D be a finite-dimensional SFT Prüfer domain and let m be the number of minimal prime ideals of I.
(1) Both $X^{0}(\hat{D})$ and $X^{1}(\hat{D})$ are m-point sets.
(2) $\operatorname{Spec}^{+}(\hat{D})=\{Q \hat{D} \mid Q \in \operatorname{Spec}(D)$ and $Q \supseteq I\}$.
(3) For Q_{1} and $Q_{2} \in \operatorname{Spec}^{+}(\hat{D}), Q_{1}=Q_{2} \Leftrightarrow \theta^{-1}\left(Q_{1}\right)=\theta^{-1}\left(Q_{2}\right)$, and $Q_{1} \supseteq Q_{2} \Leftrightarrow$ $\theta^{-1}\left(Q_{1}\right) \supseteq \theta^{-1}\left(Q_{2}\right)$, where $\theta: D \rightarrow \hat{D}$ is the canonical ring homomorphism.
(4) $\operatorname{Spec}^{+}(\hat{D}) \cong \operatorname{Spec}(D / I)$ as trees.

Proof. (1) and (2) First we prove the corollary for the case when I is a prime ideal P. Since D is an SFT-ring, there exists a finitely generated ideal $J=\left(a_{1}, \ldots, a_{n}\right)$ such that $\sqrt{J}=P$. The J-adic completion of D is isomorphic to the P-adic completion of D. Let $\varphi: D\left[X_{1}, \ldots, X_{n} \rrbracket \rightarrow \hat{D}\right.$ be the canonical epimorphism. We will give a complete description of $\operatorname{Spec}(\hat{D}):(0)$ is the minimal prime ideal, the prime ideal $\overline{P+\left(X_{1}, \ldots, X_{n}\right)}$ is the unique height 1 prime ideal of \hat{D}, and the other prime ideals are precisely the set $\left\{\overline{P^{\prime}+\left(X_{1}, \ldots, X_{n}\right)} \mid P^{\prime}\right.$ is a prime ideal of D such that $\left.P^{\prime} \supset P\right\}$. Let $Q_{0} \subset Q_{1}$ be prime ideals in $D \llbracket X_{1}, \ldots, X_{n} \rrbracket$ such that $\operatorname{ker} \varphi=Q_{0}$ (see Theorem 15.). As in the proof of Lemma 11(1), one can easily show that $Q_{1} \cap D \supsetneq \mathscr{B}(P)$. By Lemma 10, P and $Q_{1} \cap D$ are comparable. Hence, $P \subseteq Q_{1} \cap D$. For otherwise $\mathscr{B}(P) \subsetneq Q_{1} \cap D \subsetneq P$, a contradiction. So $P+\left(X_{1}, \ldots, X_{n}\right) \subseteq Q_{1}$ and hence $Q_{1}=P_{1}+\left(X_{1}, \ldots, X_{n}\right)$ for a prime ideal P_{1} of D such that $P_{1} \supseteq P$.

Back to the general case, let $\sqrt{I}=P_{1} \cap \cdots \cap P_{m}$, where P_{1}, \ldots, P_{m} are minimal prime ideals of I. As in the proof of Theorem $12, \hat{D} \cong \hat{D}_{1} \oplus \cdots \oplus \hat{D}_{m}$. A nonminimal prime ideal of \hat{D} is of the form $\hat{D}_{1} \oplus \cdots \oplus Q_{i}^{\prime} \oplus \cdots \oplus \hat{D}_{m}$, where Q_{i}^{\prime} is a nonzero prime ideal of \hat{D}_{i}. By the special case, we have $Q_{i}^{\prime}=Q_{i} \hat{D}_{i}$, where $Q_{i} \in \operatorname{Spec}(D)$ and $Q_{i} \supseteq P_{i}$. Now $\quad \hat{D}_{1} \oplus \cdots \oplus Q_{i}^{\prime} \oplus \cdots \oplus \hat{D}_{m}=\hat{D}_{1} \oplus \cdots \oplus Q_{i} \hat{D}_{i} \oplus \cdots \oplus \hat{D}_{m}=Q_{i}\left(\hat{D}_{1} \oplus \cdots \oplus\right.$ $\hat{D}_{i} \oplus \cdots \oplus \hat{D}_{m}$) $=Q_{i} \hat{D}$. (Note that if a prime ideal Q of D contains P_{i}, then $Q \nsupseteq P_{j}$ for any $j \neq i$ since P_{i} and $P_{j}, i \neq j$, are incomparable. So $Q \hat{D}_{j}=(1)$. Moreover, if a prime ideal Q of D contains $\sqrt{I}=P_{1} \cap \cdots \cap P_{m}$, then Q contains exactly one P_{i} since D is a Prüfer domain.) Statements (1) and (2) are completed. It is routine to check (3) and (4).

Remark. In the local case, $\operatorname{Spec}(\hat{V}) \cong \operatorname{Spec}\left(V / \bigcap_{n=1}^{\infty} I^{n}\right)$ (see Theorems 7 or 8). However, $\operatorname{Spec}(\hat{D}) \not \not 二 \operatorname{Spec}\left(D / \bigcap_{n=1}^{\infty} I^{n}\right)$ if there are prime ideals of D (other than P_{1}, \ldots, P_{m}) that are just above $\mathscr{B}\left(P_{1}\right), \ldots, \mathscr{B}\left(P_{m}\right)$. Moreover, $\operatorname{Spec}(\hat{D}) \nprec \operatorname{Spec}\left(D / \bigcap_{n=1}^{\infty} I^{n}\right)$ if it happens that $\mathscr{B}\left(P_{i}\right)=\mathscr{B}\left(P_{j}\right)$ for distinct $i \neq j$, which would force $\left|X^{0}\left(D / \bigcap_{n=1}^{\infty} I^{n}\right)\right|<m=$ $\left|X^{0}(\hat{D})\right|$.

We give a pictogram of the spectrum of \hat{D} in terms of prime ideals in the power series, where \hat{D} is the completion of D w.r.t. the prime ideal P :

References

[1] J.T. Arnold, Power series rings over Prüfer domains, Pacific J. Math 44 (1973) 1-11.
[2] J.T. Arnold, Krull dimension in power series rings, Trans. Amer. Math. Soc. 177 (1973) 299-304.
[3] J.T. Arnold, Power series rings with finite Krull dimension, Indiana Univ. Math. J. 31 (1982) 897-911.
[4] J.T. Arnold, The catenarian property of power series rings over a Prüfer domain, Proc. Amer. Math. Soc. 94 (1985) 577-580.
[5] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
[6] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[7] S. Greco, P. Salmon, Topics in m-adic Topologies, Springer, Berlin, 1971.
[8] J. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
[9] B.G. Kang, M.H. Park, A localization of a power series ring over a valuation domain, J. Pure appl. algebra 140 (1999) 107-124, this issue.

[^0]: * Corresponding author.

 E-mail address: bgkang@posmath.postech.ac.kr. (B.G. Kang)
 ${ }^{1}$ This research was supported by BSRI Research Grant 97-1431.

