

Journal of Pure and Applied Algebra 140 (1999) 125-135

www.elsevier.com/locate/jpaa

prov

Completion of a Prüfer domain¹

B.G. Kang*, M.H. Park

Department of Mathematics, Pohang Institute of Science and Technology, Pohang 790-784, South Korea

Communicated by C.A. Weibel; received 28 June 1997; received in revised form 10 October 1997

Abstract

Let V (resp. D) be a valuation domain (resp. SFT Prüfer domain), I a proper ideal, and \hat{V} (resp. \hat{D}) be the *I*-adic completion of V (resp. D). We show that (1) \hat{V} is a valuation domain, (2) Krull dimension of $\hat{V} = \dim V/I + 1$ if I is not idempotent, $\hat{V} \cong V/I$ if I is idempotent, (3) $\dim \hat{D} = \dim D/I + 1$, (4) \hat{D} is an SFT Prüfer ring, and (5) \hat{D} is a catenarian ring. \bigcirc 1999 Elsevier Science B.V. All rights reserved.

MSC: 13A15; 13C15; 13F05; 13F25; 13J10

Throughout this paper, all rings are assumed to be commutative rings with identity. It is well known that for a Noetherian ring R and a proper ideal I of R, the Krull dimension of the *I*-adic completion \hat{R} of R equals $\sup\{\operatorname{ht} M \mid M \text{ is a maximal ideal of } R \text{ containing } I\}$ [7, Proposition 7.3, p. 35]. In this paper, we will study the completion of a valuation domain and a Prüfer domain and get a similar equation for the Krull dimension of the completion.

First we describe some properties of prime ideals of the power series ring V[X] of a valuation domain V. In [4], Arnold gave a collection of principal prime ideals of V[X], where V is a finite-dimensional valuation domain with the SFT-property, i.e., a finite-dimensional discrete valuation domain: Let Q be a prime ideal of V[X] and let $Q \cap V = P$. If $P[X] \neq Q$ and $Q \neq P + (X)$ (i.e., $X \notin Q$), then Q is a principal ideal (and $Q \subset P_1 + (X)$, where P_1 is the prime ideal just above P). In a nondiscrete valuation domain or a non-SFT valuation domain, these conditions are not enough to guarantee Q to be a principal ideal (see the remark following Corollary 2). Under an additional hypothesis that Q contains a power series with unit content, we prove that Q is a

^{*} Corresponding author.

E-mail address: bgkang@posmath.postech.ac.kr. (B.G. Kang)

¹ This research was supported by BSRI Research Grant 97-1431.

principal ideal. This result will enable us to extend a part of [4, Proposition 5] to the infinite-dimensional case. We will give a characterization of prime elements of V[X], V an SFT valuation domain. For $f \in V[X]$, we denote by C_f the ideal of V generated by the coefficients of f. When C_f is a unit ideal, we usually write $C_f = 1$.

Lemma 1 (see Arnold [4, Proposition 5]). Let V be a valuation domain with the maximal ideal M and Q a prime ideal of V[X] such that $X \notin Q$. If Q contains an element f such that $C_f = 1$, then Q is a principal ideal.

Proof. Let $g = \sum_{i=0}^{\infty} a_i X^i \in Q$ with $C_g = 1$. Let n(g) be the smallest integer such that a_n is a unit. Let $f \in Q$ be such that n(f) is the smallest in the set $\{n(g) \mid g \in Q \text{ and } C_g = 1\}$. Let a_0 be the constant term of f. Note that $a_0 \neq 0$. For otherwise f = Xh, $h \in V[X]$. Since $X \notin Q$, $h \in Q$. However, n(h) = n(f) - 1, which contradicts the minimality of n(f). Thus $a_0 \neq 0$. We claim that the value $v(a_0)$ of the constant term a_0 of f is the minimum among the values of constant terms of elements in Q. Suppose not and let $g = b_0 + b_1 X + \dots + b_n X^n + \dots \in Q$ be an element such that $v(b_0) < v(a_0)$. For a $c \in M$, $a_0 = b_0 c$. Now $f - cg = X(\dots + (u - cb_n)X^{n-1} + \dots) \in Q$, where n = n(f) and u is the unit coefficient of X^n in f. Since $X \notin Q$, $h = \dots + (u - cb_n)X^{n-1} + \dots \in Q$, contrary to the fact that n is minimal. Thus $v(a_0)$ is the minimum as claimed. We show that Q = (f). Let $g \in Q$. For a $c_1 \in V$, $X \mid (g-c_1f)$. Let $g-c_1f = Xg_1$, $g_1 \in Q$. Likewise $g_1-c_2f = Xg_2$ for $c_2 \in V$ and $g_2 \in Q$. Then $g = c_1f + Xg_1 = c_1f + X(c_2f + Xg_2) = c_1f + Xc_2f + X^2g_2$. Continuing in this way, we get $g = \sum_{i=1}^{\infty} c_i X^{i-1} f = (\sum_{i=1}^{\infty} c_i X^{i-1})f$. \Box

Corollary 2. If V is a valuation domain with the maximal ideal M, Q a prime ideal of V such that $Q \cap V = (0)$ and $Q \notin M[X]$, then Q is a principal ideal.

Remark. In Lemma 1, the assumption that Q contains an element f with $C_f = 1$ is necessary: for a one-dimensional nondiscrete valuation domain V with maximal ideal M, it is well known that the ideal $M \cdot V[X]$ is a nonprincipal prime ideal of V[X]. In Corollary 2, the condition that $Q \notin M[X]$ is essential. In [9], we constructed an infinite descending chain of prime ideals $\{P_n\}_{n=1}^{\infty}$ inside M[X] and such that $P_n \cap V = (0)$ for each $n \ge 1$. It is easy to see that these P_n are not principal ideals either by looking at the construction or by the observation that in a completely integrally closed domain, a nonzero principal prime ideal is necessarily a height 1 prime ideal.

A ring *R* is called an SFT-ring (strong finite type ring) if for each ideal *J* of *R*, there exists a finitely generated ideal $I \subseteq J$ and a natural number *n* such that $j^n \in I$ for each $j \in J$. This class of rings is extensively studied in [1, 3]. An SFT Prüfer domain (resp. SFT valuation domain) is a Prüfer domain (resp. valuation domain) that is also an SFT-ring. Recall that a valuation domain is said to be discrete if every primary ideal is a power of its radical. For a finite-dimensional valuation domain *V*, *V* is discrete if and only if *V* is an SFT-ring (see Lemma 2.7 and Proposition 3.1 of [1]). Although an SFT valuation domain is always a discrete valuation domain, the

converse does not hold: see the example in [9]. In the proof of [4, Proposition 5], it is implicitly assumed that V is finite-dimensional. Using Lemma 1, we will fill this gap. In fact the prime ideals of V[X] satisfying the hypotheses of [4, Proposition 5] always satisfy those hypotheses of Lemma 1 as the next result shows. We also give a characterization of the prime elements of V[X], which is an answer to a question posed in [4].

Corollary 3 (see Arnold [4, Proposition 5]). Let V be an SFT valuation domain (not necessarily finite-dimensional) and let Q be a prime ideal of V[X].

(1) If $Q \cap V = P$, $P[X] \subseteq Q$, and $Q \neq P + (X)$, then Q is a principal ideal. In fact, Q is generated by an element f such that $C_f = 1$.

(2) An element f of V[X] is a prime if and only if either f is irreducible and $C_f = 1$ or f is an associate of p, where (p) is the maximal ideal of V.

Proof. (1) Let *M* be the maximal ideal of *V*. In view of [1, Corollary 3.6], it is obvious that $Q \notin M[X]$. Moreover $X \notin Q$. Now the conclusion follows from Lemma 1.

(2) Since $M^2 \neq M$, M is a principal ideal, say M = (p). Let (f) be a principal ideal of V[X] which is not an associate of p. Then $(f) \notin M[X]$, for otherwise (f) = P[X]for a prime ideal P of V [1, Corollary 3.6]. In this case, P is a principal ideal and hence necessarily the maximal ideal M, a contradiction. So $C_f = 1$. For the reverse implication, let $f \in V[X]$ be an irreducible element such that $C_f = 1$ and f is not an associate of X. It is not difficult to see that $X \notin \sqrt{(f)}$. So there exists a prime ideal Q minimal over (f), which does not contain X. Lemma 1 implies that Q is a principal ideal, say Q = (g). Thus (f) = (g) since f is irreducible, whence f is a prime element. \Box

Let *D* be a domain, (*a*) a principal ideal of *D*, and \hat{D} the (*a*)-adic completion of *D*. Let $\theta: D \to \hat{D}$ be the canonical ring homomorphism and $\varphi: D[X] \to \hat{D}$ be the natural ring epimorphism such that $\varphi(\sum_{i=0}^{\infty} a_i X^i) = \sum_{i=0}^{\infty} \theta(a_i) a^i$.

Lemma 4 (Greco and Salmon [7, Proposition 3.4]). ker $\varphi = (X - a)$ and thus $\hat{D} \cong D [X]/(X - a)$.

Proof. Let $g = a_0 + a_1X + \dots + a_kX^k + \dots \in \ker \varphi$. In \hat{D} , $a_0 + a_1a + a_2a^2 + \dots = 0$. If we regard \hat{D} as $\lim_{\leftarrow} D/(a^n)$, then $a_0 \in (a)$, $a_0 + a_1a \in (a^2)$, $a_0 + a_1a + a_2a^2 \in (a^3)$, Let $a_0 = ab_0$, $b_0 \in D$. From $a_0 + a_1a = ab_0 + a_1a \in (a^2)$, we get $a_1 = ab_1 - b_0$ for $b_1 \in D$. From $a_0 + a_1a + a_2a^2 \in (a^3)$, we get $a^2b_1 + a_2a^2 \in (a^3)$. So $a_2 = ab_2 - b_1$ for $b_2 \in D$. Proceeding this way, we get $a_{n+1} = ab_{n+1} - b_n$ for b_0 , b_1, \dots, b_n, \dots in D. From these, we deduce that $a_0 + a_1X + \dots = (X - a)(-b_0 - b_1X - b_2X^2 - \dots - b_nX^n - \dots)$.

Let $\theta: D \to \hat{D}$ be the canonical ring homomorphism. Recall that ker $\theta = \bigcap_{n=1}^{\infty} (a^n)$ [5].

Lemma 5. Let R be a ring and a an element of R. Then $(X-a)R[X] \cap R \subseteq \bigcap_{n=1}^{\infty} (a^n)$. If R is a domain, then the converse holds: $(X-a)R[X] \cap R = \bigcap_{n=1}^{\infty} (a^n)$.

Proof. Since the diagram

commutes, $(X - a)R[X] \cap R \subseteq \ker \theta = \bigcap_{n=1}^{\infty} (a^n)$. Suppose *R* is a domain. By Lemma 4, $\bigcap_{n=1}^{\infty} (a^n) \subseteq \ker \varphi = (X - a)R[X]$. \Box

Theorem 6. Let V be a valuation domain and a a nonunit element of V. Then X - a is a prime element of V[X].

Proof. We may assume that $a \neq 0$. Let $P = \bigcap_{n=1}^{\infty} (a^n)$, which is a prime ideal of V [6, Theorem 17.1]. P is contained in (X - a) by Lemma 5. It is easy to see that $P[X] \subseteq (X - a)$. By Lemma 5, $\sqrt{(X - a)} \cap V = P$ where $\sqrt{(X - a)}$ is the nil radical of (X - a). Passing to V/P, we may assume that $\bigcap_{n=1}^{\infty} (a^n) = (0)$, so that $\sqrt{(X - a)} \cap V = (0)$. Pick a prime ideal Q minimal over (X - a) such that $Q \cap V = (0)$. (Note that if $Q \cap V \neq (0)$ for every Q, then $Q \cap V \supseteq \sqrt{(a)}$, which is the height 1 prime ideal of V. This leads to $\sqrt{(X - a)} \cap V \supseteq \sqrt{(a)}$. Clearly, Q satisfies the hypotheses of Corollary 2. So Q is a principal ideal, say Q = (f). We claim that (f) = (X - a). Since $X - a \in Q$, X - a = fg for a $g \in V[X]$. Suppose g is not a unit. Then the coefficient of X in fg would not be a unit. So g is a unit and hence X - a is a prime. \Box

Theorem 7. Let V be a valuation domain, I a proper ideal of V, and \hat{V} the I-adic completion of V. Then \hat{V} is a valuation domain and the value group $v(\hat{V})$ of \hat{V} is isomorphic to $v(V/\bigcap_{n=1}^{\infty} I^n)$.

Proof. If $I = I^2$, then *I* is a prime ideal by [6, Theorem 17.1]. So $\hat{V} \cong V/I$ is a valuation domain. Now let us assume that $I \neq I^2$. Choose *a* such that $a \in I \setminus I^2$. Since $I^2 \subseteq (a) \subseteq I$, the (*a*)-adic completion of *V* is isomorphic to the *I*-adic completion of *V* by the bounded difference. Thus, we may assume that *I* is a principal ideal, say I = (a). By Lemma 4 and Theorem 6, \hat{V} is a domain. We identify \hat{V} with V[X]/(X - a). To prove \hat{V} is a valuation domain, let $\overline{f(X)} \in \hat{V}$. Let *n* be such that $\overline{f(X)} = a^n \overline{g(X)}$ and $a \nmid \overline{g(X)}$ where $\overline{g(X)} \in \hat{V}$. Such an *n* exists since $\bigcap_{i=1}^{\infty} (a^i \hat{V}) = (0)$, which follows from the fact that \hat{V} is complete w.r.t. the $a\hat{V}$ topology and so $\hat{V} \cong \hat{V}$ canonically. (By [5, Lemma 10.1, Proposition 10.5], $\bigcap_{i=1}^{\infty} (\widehat{a^i V}) = (0)$. Since $\bigcap_{i=1}^{\infty} (a^i \hat{V}) \subseteq \bigcap_{i=1}^{\infty} (\widehat{a^i V})$, $\bigcap_{i=1}^{\infty} (a^i \hat{V}) = (0)$. Let $\overline{g(X)} = \overline{b_0 + b_1 X + \dots + b_n X^n + \dots} = \overline{b_0 + \overline{X}(b_1 + b_2 X + \dots)} = \overline{b_0 + \overline{a}}$, where $h = b_1 + b_2 X + \dots$. Since $a \dagger \overline{g(X)}$ in \hat{V} , $a \dagger b_0$ in

V. So $b_0 \mid a$ in V and $a = b_0 c$ for a nonunit c of V. Now $\overline{g(X)} = \overline{b}_0(1 + \overline{c}\overline{h})$ and $1 + \overline{c}\overline{h}$ is a unit since \bar{c} is a nonunit and \hat{V} is a local ring. Thus $\overline{f(X)} = a^n \overline{g(X)} = a^n b_0 u = c' u$ where $a^n b_0 = cc'$ and u is a unit of \hat{V} . This completes the proof of the first assertion. Recall that $\hat{V} \cong (V/\bigcap I^n)$. We assume that $\bigcap_{n=1}^{\infty} I^n = \{0\}$, and under this hypothesis, we show that $v(\hat{V}) \cong v(V)$. Then the general case easily follows: $v(\hat{V}) \cong v(V/\cap I^n) \cong v(V/\cap I^n)$. Let K (resp. F) be the quotient field of V (resp. \hat{V}), K^* (resp. F^*) the nonzero elements of K (resp. F), and \mathscr{U} (resp. \mathscr{V}) the group of the units of V (resp. \hat{V}). Since the natural ring homomorphism $\theta: V \to \hat{V}$ is an injection, K can be embedded into F. Clearly $\mathscr{U} \subseteq \mathscr{V}$. Next we show that $\mathscr{V} \cap V = \mathscr{U}$. Let $\alpha \in \mathscr{V} \cap V$. Then $\overline{\alpha}$ is a unit of $\hat{V} = V [X]/(X-a)$. So $\bar{\alpha} \notin \overline{M+(X)}$, which is the unique maximal ideal of \hat{V} , where M is the maximal ideal of V. Hence $\alpha \notin M$. So α is a unit of V, i.e., $\alpha \in \mathscr{U}$. From this, we obtain another embedding $\phi: K^*/\mathcal{U} \to F^*/\mathcal{V}$. It remains to show that ϕ is onto. Let $y = \overline{(a/b)} \in F^*/\mathscr{V}$; $a, b \in \widehat{V}$. As is shown previously, a = cu, b = dv for $c, d \in V$ and $u, v \in \mathcal{V}$. Now $\overline{a/b} = \overline{(c/d)uv^{-1}} = \phi(\overline{c/d})$. So ϕ is onto. \Box

Theorem 8. Let V be a finite-dimensional valuation domain, I a nonidempotent ideal of V, and \hat{V} the I-adic completion of V. Then:

- (1) dim $\hat{V} = \dim(V/\bigcap_{n=1}^{\infty} I^n) = \dim V/I + 1.$
- (2) Spec $(\hat{V}) = \{P\hat{V} \mid P \in \text{Spec}(V) \text{ and } P \supseteq \bigcap_{n=1}^{\infty} I^n\}.$ (3) For $P_1, P_2 \in \text{Spec}(V)$ with $P_1, P_2 \supseteq \bigcap_{n=1}^{\infty} I^n, P_1\hat{V} \supseteq P_2\hat{V} \Leftrightarrow P_1 \supseteq P_2$ and $P_1\hat{V} = P_2$ $\hat{V} \Leftrightarrow P_1 = P_2.$

Proof. (1) follows from Theorem 7. In proving (2), we give another proof of (1). Choose $a \in I \setminus I^2$. As in the proof of Theorem 7, we may assume that I = (a). Since $\hat{V} \cong (V/\bigcap_{n=1}^{\infty}(a^n))$ and $V/\bigcap_{n=1}^{\infty}(a^n)$ is a valuation domain, we may also assume that $\bigcap_{n=1}^{\infty} (a^n) = \{0\}$. So a is contained in the minimal prime ideal P of V. Let Q be a prime ideal of V[X] properly containing (X-a). By Corollary 2 and Theorem 6, $Q \cap V \neq \{0\}$. So $P \subseteq Q \cap V$, which implies $P + (X) \subseteq Q$. So dim $\hat{V} \leq \dim(V[X]/(P + (X)))$ $+1 = \dim(V/P) + 1 = \dim(V/I) + 1$. Let $0 \subsetneq P_1 \subsetneq \cdots \subsetneq P_n$ be the chain of all the prime ideals of V. The chain $0 \subseteq \overline{P_1 + (X)} \subseteq \overline{P_2 + (X)} \subseteq \cdots \subseteq \overline{P_n + (X)}$ is a chain of prime of V[X]/(X-a). So dim $\hat{V} \ge n = \dim V/I + 1$. Hence dim $\hat{V} =$ ideals dim V/I + 1 = n and so $0 \subseteq \overline{P_1 + (X)} \subseteq \overline{P_2 + (X)} \subseteq \cdots \subseteq \overline{P_n + (X)}$ is the chain of all prime ideals of \hat{V} . Note that $\overline{P_i + (X)} = P_i \hat{V}$. (3) It is routine to check this. \Box

Now we consider the global case.

Lemma 9. Let D be a finite-dimensional SFT Prüfer domain. Let $(a_1, \ldots, a_n) \subsetneq D$ be a proper ideal. Then any prime ideal Q of $D[X_1, \ldots, X_n]$ containing $(X_1 - a_1, \ldots, X_n - a_n)$ has height $\geq n$.

Proof. Let $Q_0 = Q \cap D[X_1, \ldots, X_{n-1}]$. In [3], it is shown that dim $D[X_1, \ldots, X_n] =$ $(\dim D)n + 1 < \infty$. According to [1], the power series ring over a non-SFT-ring is infinite-Krull-dimensional. From this, we deduce that $D[X_1, \ldots, X_{n-1}]$ is an SFT-ring. Since $Q_0 \cdot D[X_n] \subseteq Q$ and $D[X_1, \ldots, X_{n-1}]$ is an SFT-ring, we have $Q_0[X_n] = \sqrt{Q_0 \cdot D[X_1, \cdots, X_{n-1}]} \subseteq Q$ [2, Theorem 1]. Since $1 \notin Q, X_n - a_n \notin Q_0[X_n]$. So $Q_0[X_n] \subseteq Q$. By induction on n, we get the inequality ht $Q_0 \ge n - 1$, so that ht $Q_0[X_n] \ge n - 1$ (note that $(X_1 - a_1, \ldots, X_{n-1} - a_{n-1}) \subseteq Q_0$). So ht $Q \ge n$. For the case n = 1, note that any prime ideal containing X - a is nonzero, and thus ht $Q \ge 1$. \Box

Let *D* be a commutative ring, *I* an ideal of *D*, \hat{D} the *I*-adic completion of *D*, and $S = \{i_{\alpha} \mid \alpha \in A\}$ a generating set of *I*. Let $\theta: D \to \hat{D}$ be the canonical mapping and $\varphi: D[\![\{X_{\alpha} \mid \alpha \in A\}]\!]_2 \to \hat{D}$ the canonical epimorphism defined by $\varphi(X_{\alpha}) = \theta(i_{\alpha})$ for each $\alpha \in A$ and $\varphi(d) = \theta(d)$ for $d \in D$. For the definition of the second type power series ring $D[\![\{X_{\alpha} \mid \alpha \in A\}]\!]_2$, readers are referred to [6, p. 6].

Lemma 10. If Q is a prime ideal of $D[[{X_{\alpha} | \alpha \in A}]]_2$ containing ker φ , then the radical \sqrt{I} of I and $Q \cap D$ are not coprime. If $f \in \ker \varphi$, then the constant term of f is in I.

Proof. Suppose $\sqrt{I} + Q \cap D = D$. For an $x \in \sqrt{I}$ and a $d \in Q \cap D$, x + d = 1. Choose l so that $x^l \in I$. For an $e \in Q \cap D$, we have $x^l + e = 1$. Put $y = x^l$. Since $y \in I$, $y = d_1i_1 + \cdots + d_ki_k$ for $d_1, \ldots, d_k \in D$ and $i_1, \ldots, i_k \in S$. Put $h = -d_1(X_1 - i_1) - \cdots - d_k(X_k - i_k) + e$. Then $h \in Q$ since $(X_1 - i_1, \ldots, X_k - i_k) \subseteq \ker \varphi \subseteq Q$ and $e \in Q \cap D$. Now $h = (d_1i_1 + \cdots + d_ki_k) + e - d_1X_1 - d_2X_2 - \cdots - d_kX_k = 1 - d_1X_1 - \cdots - d_kX_k$ is a unit in $D[[\{X_\alpha \mid \alpha \in A\}]]_2$, which contradicts that $Q \neq (1)$. So \sqrt{I} and $Q \cap D$ are not coprime. Let $f = a_0 + f_1 + f_2 + \cdots \in \ker \varphi$, where f_i is homogeneous of degree i in $D[[\{X_\alpha \mid \alpha \in A\}]]$. If we realize \hat{D} as the inverse limit $\lim_{i \to \infty} D/I^n$, then $0 = \varphi(f) = (\bar{a}_0, \overline{a_0} + f_1(X_\alpha = i_\alpha \mid \alpha \in A), \ldots)$. Since $\bar{a}_0 = 0$ in D/I, $a_0 \in I$. \Box

Let *D* be a finite-dimensional SFT Prüfer domain, $I = (a_1, ..., a_n)$ a finitely generated proper ideal of *D*, \hat{D} the *I*-adic completion of *D*, and φ the canonical ring epimorphism from $D[X_1,...,X_n]$ to \hat{D} . For a nonzero prime ideal *P* of *D*, we denote by $\mathscr{B}(P)$ the prime ideal of *D* just below *P*.

Lemma 11. Let *D* be a finite-dimensional SFT Prüfer domain. Suppose the radical \sqrt{I} of *I* is a prime ideal *P*. Then (1) the prime ideal $P + (X_1, ..., X_n)$ is not minimal over ker φ and (2) if *Q* is a minimal prime ideal of ker φ , then $Q \cap D = \mathscr{B}(P)$.

Proof. (1) $P \not\subseteq \sqrt{\ker \varphi}$. For otherwise some power of *P* is contained in $\ker \varphi \cap D$, which is $\bigcap_{m=1}^{\infty} I^m = \mathscr{B}(P)$. This would lead to the contradiction $P \subseteq \mathscr{B}(P)$. Thus $P \not\subseteq \sqrt{\ker \varphi}$ and so there exists a prime ideal *Q* minimal over $\ker \varphi$ such that $P \not\subseteq Q$. By Lemma 10, $Q \cap D$ and *P* are not coprime. Since *D* is a Prüfer domain, this implies that $Q \cap D$ and *P* are comparable. So either $Q \cap D \subseteq P$ or $P \subseteq Q \cap D$. However $P \not\subseteq Q$. So $Q \cap D \subsetneq P$. Since $\mathscr{B}(P) \subseteq Q \cap D \subset P$, $Q \cap D = \mathscr{B}(P)$. Let Q_1 be a prime ideal just

above Q so that height $(Q_1/Q) = 1$. By Lemma 9, height $\overline{Q} \ge n$ in $(D/\mathscr{B}(P))[X_1, \ldots, X_n]$, and so height $Q_1 \ge n + 1$, from which it follows that $\overline{P}_1 = \overline{Q}_1 \cap \overline{D} \ne \{0\}$ [3, Lemma 3.5]. By [4, Lemma 1], $Q_1 \subseteq P_1 + (X_1, \ldots, X_n)$ and ht $(P_1/\mathscr{B}(P)) = 1$. Since $I \subseteq P_1$, $P = \sqrt{I} \subseteq P_1$ and so $P = P_1$. Since ker $\varphi \subseteq Q \subsetneq Q_1 \subseteq P_1 + (X_1, \ldots, X_n) = P + (X_1, \ldots, X_n)$, $P + (X_1, \ldots, X_n)$ is not minimal over ker φ . (2) Let Q be a minimal prime ideal of ker φ . By (1), $P \not\subseteq Q$. Then the proof of (1) validates the claim. \Box

Theorem 12. Let *D* be a finite-dimensional SFT Prüfer domain, I a proper ideal of *D*, and \hat{D} the I-adic completion of *D*. Then dim $\hat{D} = \dim D/I + 1$.

Proof. Let P_1, \ldots, P_m be the minimal primes of I [1, Corollary 2.6]. $\sqrt{I} = P_1 \cap \cdots \cap P_m$. For any $l \ge 0$, $(\sqrt{I})^l = P_1^l \cap \cdots \cap P_m^l = P_1^l \cdots P_m^l$ since P_1^l, \dots, P_m^l are pairwise coprime. By the Chinese remainder theorem, $D/(\sqrt{I})^l \cong D/P_1^l \oplus \cdots \oplus D/P_m^l$. So $\hat{D} \cong \hat{D_1} \oplus \cdots$ $\oplus \hat{D}_m$, where \hat{D}_i is the P_i -adic completion of D. Since dim $\hat{D} = \max_i (\dim \hat{D}_i)$, we will assume that $\sqrt{I} = P$ is a prime ideal and $I = (a_1, \dots, a_n)$. Let $\varphi : D[X_1, \dots, X_n] \to \hat{D}$ be the canonical ring epimorphism. Since $\hat{D} \cong (D/\bigcap_{m=1}^{\infty} I^m)$, we may assume that $\bigcap_{m=1}^{\infty} I^m = \{0\}$. Since $\mathscr{B}(P) = \bigcap_{m=1}^{\infty} P^m = \bigcap_{m=1}^{\infty} I^m = \{0\}$, ht P = 1. Let $l = \dim \hat{D}$ and ker $\varphi \subseteq Q_0 \subset \cdots \subset Q_l$ be a chain of prime ideals which gives the dimension *l*. By Lemma 9, ht $Q_0 \ge n$. By [3, Lemma 3.5], $Q_1 \cap D \ne \{0\}$. By Lemma 10, P and $Q_1 \cap D$ are comparable. Since $Q_1 \cap D \neq \{0\}$ and ht P = 1, $P \subseteq Q_1 \cap D$. So $(X_1, \dots, X_n) \subseteq$ Q_1 and hence $P + (X_1, \ldots, X_n) \subseteq Q_1$. From this, we deduce that $l - 1 \leq \dim D/P$. So $l \leq \dim D/P + 1 = \dim D/I + 1$. For the reverse inequality, let $m = \dim D/I$ and let $I \subseteq P_0 \subset \cdots \subset P_m$ be a chain of prime ideals of D which gives the dimension of D/I. By Lemma 10, ker $\varphi \subseteq I + (X_1, \dots, X_n) \subseteq P_0 + (X_1, \dots, X_n)$. Now ker $\varphi \subset P_0 + (X_1, ..., X_n) \subset \cdots \subset P_m + (X_1, ..., X_n)$. By Lemma 11, $P_0 + (X_1, ..., X_n)$ is not minimal over ker φ . So dim $\hat{D} \ge m + 1 = \dim D/I + 1$. Therefore, dim $\hat{D} =$ $\dim D/I + 1$.

Lemma 13. Let R be a ring, I a finitely generated ideal of R such that $\bigcap_{n=1}^{\infty} I^n = (0)$, and \hat{R} the I-adic completion of R. Then

- (1) $I^n \hat{R} = (I^n)$ and so $R/I^n \cong \hat{R}/I^n \hat{R}$ canonically,
- (2) if M is a maximal ideal of R such that $I \subseteq M$, then $M\hat{R}$ is a maximal ideal of \hat{R} and $M\hat{R} = \hat{M}$, and
- (3) $\operatorname{Max}(\hat{R}) = \{ \hat{M} \mid M \in \operatorname{Max}(R) \text{ and } M \supseteq I \}.$

Proof. (1) By [5, Proposition 10.13], $I^n \hat{R} = (\widehat{I^n})$. By [5, Proposition 10.4], $R/I^n \cong \hat{R}/(\widehat{I^n})$. So $R/I^n \cong \hat{R}/I^n \hat{R}$. (2) Let $I = (a_1, \ldots, a_l)$. We identify \hat{R} with $R[X_1, \ldots, X_l]/\ker \varphi$ through the canonical ring epimorphism $\varphi : R[X_1, \ldots, X_l] \to \hat{R}$. Obviously $\ker \varphi \supseteq (X_1 - a_1, \ldots, X_l - a_l)$. So $M + (X_1 - a_1, \ldots, X_l - a_l) = M + (X_1, \ldots, X_l)$. Since $M\hat{R} \supseteq \overline{M} + (X_1 - a_1, \ldots, X_l - a_l)$, $M\hat{R} \supseteq \overline{M} + (X_1, \ldots, X_l)$. Now $\overline{M + (X_1, \ldots, X_l)} \subseteq M\hat{R} \subseteq \hat{M} \subseteq \hat{R}$. Since $\overline{M + (X_1, \ldots, X_l)}$ is a maximal ideal of $R[X_1, \ldots, X_l]/\ker \varphi$, we conclude that $\overline{M + (X_1, \ldots, X_l)} = M\hat{R} = \hat{M}$. (3) Statement (2) implies $Max(\hat{R}) \supseteq \{\hat{M} \mid M \in Max(R) \text{ and } M \supseteq I\}$. Every maximal ideal of $R[X_1, \ldots, X_l]/\ker \varphi$ is of the form

 $\overline{M + (X_1, ..., X_l)}$, where M is a maximal ideal of R and $M + (X_1, ..., X_l) \supseteq \ker \varphi$. Since $X_1 - a_1, ..., X_l - a_l \in \ker \varphi$, $(a_1, ..., a_l) \subseteq M$. Also note that $\overline{M + (X_1, ..., X_l)} = M$ $(R[X_1, ..., X_l]/\ker \varphi) = M\hat{R}$. \Box

We present a partial converse of Theorem 7.

Lemma 14. Let R be a ring and I a finitely generated ideal of R such that $\bigcap_{n=1}^{\infty} I^n = (0)$ and I is contained in the Jacobson radical J(R) of R. If the I-adic completion \hat{R} of R is a valuation domain, then R is also a valuation domain.

Proof. Since $\bigcap_{n=1}^{\infty} I^n = (0)$, R can be embedded into \hat{R} through the canonical homomorphism $\theta: R \to \hat{R}$. So R is an integral domain. Let K be the quotient field of R. Since \hat{R} is a valuation domain, $\hat{R} \cap K$ is also a valuation domain. We claim that $\hat{R} \cap K = R$. It suffices to show that $a\hat{R} \cap R = aR$ for all $a \in R$. Let $0 \neq a \in R$. Since $\bigcap_{n=1}^{\infty} I^n \hat{R} = (0)$ and \hat{R} is a valuation domain, there exists an $n \ge 1$ such that $I^n \hat{R} \subseteq a\hat{R}$. So $I^n \subseteq a\hat{R} \cap R$. From this and the fact that $a\hat{R} \cap R \subseteq \bigcap_{k=1}^{\infty} (aR + I^k)$, it follows that $aR + I^n = aR + I^{n+1} = \cdots$. Let $\bar{R} = R/aR$, $\bar{I} = (I + aR)/aR$. Then \bar{I} is a finitely generated ideal of \bar{R} and $\bar{I} \subseteq J(\bar{R})$. Recall that $aR + I^n = aR + I^{n+1}$. From this, we get another observation that $(\bar{I})^n = (\bar{I}^{n+1}) = (\bar{I})^{n+1}$. By Nakayama's Lemma, $(\bar{I})^n = 0$, i.e., $I^n + aR \subseteq aR$. Thus, $a\hat{R} \cap R \subseteq I^n + aR = aR$, and hence $a\hat{R} \cap R = aR$.

Theorem 15. Let D be an SFT Prüfer domain, I a proper ideal of D, and \hat{D} the *I*-adic completion of D. Then:

- (1) D is an SFT Prüfer ring.
- (2) \hat{D} is an SFT Prüfer domain if and only if radical \sqrt{I} of I is a prime ideal.

Proof. Let $\{P_1, \ldots, P_r\}$ be the set of minimal prime ideals of I. As is shown in the proof of Theorem 12, $\hat{D} \cong \hat{D}_1 \oplus \cdots \oplus \hat{D}_r$, where \hat{D}_i is the P_i -adic completion of Dfor i = 1, ..., r. Now, let P be a prime ideal of D and \hat{D} the P-adic completion of D. We will show that \hat{D} is a Prüfer domain. Put $Q = \bigcap_{n=1}^{\infty} P^n$. Then Q is a prime ideal of D [6, Theorem 23.3(b) and (d)] and D/Q is an SFT Prüfer domain [3]. Since $\hat{D} \cong (\widehat{D/Q})$, we may assume that Q = (0), i.e., $\bigcap_{n=1}^{\infty} P^n = (0)$. Since D is an SFT-ring, there exists a finitely generated ideal J of D contained in P and $l \ge 1$ such that $P^{I} \subseteq J$. Then, by the bounded difference, the *P*-adic completion of *D* is isomorphic to the J-adic completion of D. Now we replace P by J. Let $M \in Max(D)$ be such that $M \supseteq J$. The natural mapping $\hat{D} \xrightarrow{i} (\widehat{D_M})$ is an injection: let $x = (\bar{x}_1, \bar{x}_2, \cdots) \in \lim D/J^n$ be such that $\iota(x) = (\bar{x}_1, \bar{x}_2, \dots) = 0$ in $\lim_{k \to \infty} D_M / J^n D_M$. For an arbitrary integer $k \ge 1$, $x_{lk} \in J_M^{lk} \cap D \subseteq P_M^{lk} \cap D = P^{lk} \subseteq J^k$. Since $\bar{x}_k = \bar{x}_{lk}$ in D/J^k , $\bar{x}_k = 0$ in D/J^k for all $k \ge 1$, which implies that x = 0 and so i is an injection. Since D_M is a valuation domain, $(\widehat{D_M})$ is also a valuation domain by Theorem 7. So the subring \hat{D} is an integral domain. Note that $(\widehat{\hat{D}_{M\hat{D}}}) = \lim_{\leftarrow} (\widehat{D}_{M\hat{D}}/J^n \widehat{D}_{M\hat{D}}) \cong \lim_{\leftarrow} (\widehat{D}/J^n \widehat{D})_{M\hat{D}/J^n\hat{D}} \cong \lim_{\leftarrow} (\widehat{D}/(\widehat{J^n}))_{\hat{M}/(\widehat{J^n})} \cong$ $\lim_{L \to \infty} (D/J^n)_{M/J^n} \cong \lim_{L \to \infty} D_M/J^n_M = (\widehat{D_M}), \text{ where [6, Proposition 5.8] is used for the first}$

isomorphism and the fourth, the second isomorphism follows from Lemma 13, and the third isomorphism follows from Lemma 13 and [5, Corollary 10.4]. Thus $(\widehat{\hat{D}_{M\hat{D}}}) \stackrel{\phi}{\cong} (\widehat{D_M})$ is a valuation domain. We observed that $\hat{D} \xrightarrow{i} (\widehat{D_M})$ is an injection. We claim that $\hat{D} \setminus M\hat{D} \subseteq$ the set of units of $(\widehat{D_M})$, so that ι induces an embedding $\hat{D}_{M\hat{D}} \stackrel{\iota}{\to} (\widehat{D_M})$: Since $\widehat{MD_M} \cap \hat{D} \supseteq M\hat{D}$, \widehat{MD} is a maximal ideal of \hat{D} (Lemma 13), and $1 \notin \widehat{MD_M}$, we have $M\widehat{D_M} \cap \widehat{D} = M\widehat{D}$. So $\widehat{D} \setminus M\widehat{D} \subseteq \widehat{D_M} \setminus M\widehat{D_M}$. By Theorem 7, $M\widehat{D_M}$ is a maximal ideal of the valuation domain $(\widehat{D_M})$, i.e., the unique maximal ideal of $(\widehat{D_M})$. Thus $\hat{D} \setminus M\hat{D}$ is a set of units of $(\widehat{D_M})$. Let ϕ be the natural isomorphism $(\widehat{D_M}) \xrightarrow{\phi}{\sim} (\widehat{D_{M\hat{D}}})$ obtained earlier. Consider the composition $\hat{D}_{M\hat{D}} \stackrel{i}{\hookrightarrow} (\widehat{D}_M) \stackrel{\circ}{\to} (\widehat{D}_{M\hat{D}})$, which is identical with the natural ring homomorphism $\theta: \hat{D}_{M\hat{D}} \to (\hat{\hat{D}}_{M\hat{D}})$, i.e., $\theta = \phi \circ \iota$. Since ι an injection and ϕ is an isomorphism, $\theta = \phi \circ \iota$ is an injection and hence $\bigcap_{n=1}^{\infty} (J^n \hat{D}_{M\hat{D}}) = \ker \theta = (0)$. By Lemma 14, $\hat{D}_{M\hat{D}}$ is also a valuation domain. In view of Lemma 13, $Max(\hat{D}) = \{M\hat{D} \mid$ $M \in Max(D)$ and $M \supseteq J$. Hence \hat{D} is a Prüfer domain. This completes the 'if' half of (2). In the general case, $\hat{D} \cong \hat{D}_1 \oplus \cdots \oplus \hat{D}_r$, where each \hat{D}_i is a Prüfer domain. So \hat{D} is a Prüfer domain if and only if r = 1, i.e., $\sqrt{I} = P$ is a prime ideal. Thus (2) is done. We are ready to prove (1). Put $Q_i = \hat{D}_1 \oplus \cdots \oplus \hat{D}_{i-1} \oplus \{0\} \oplus \hat{D}_{i+1} \oplus \cdots \oplus \hat{D}_r$. Then the set of minimal prime ideals of \hat{D} is $\{Q_1, \ldots, Q_r\}$ and $Q_1 \cap \cdots \cap Q_r = \{0\}$. So \hat{D} is a reduced ring. Note that $\hat{D}/Q_i \cong \hat{D}_i$. Let K_i be the quotient field of \hat{D}_i . By [8, Lemma 8.14], the total quotient ring $T(\hat{D})$ of \hat{D} is given by $T(\hat{D}) \cong K_1 \oplus \cdots \oplus K_r$. Let S be an overring of \hat{D} . Then, $S \cong \pi_1(S) \oplus \cdots \oplus \pi_r(S)$, where $\pi_i: T(\hat{D}) \to K_i$ is the natural projection. Since \hat{D}_i is a Prüfer domain and $\pi_i(S)$ is an overring of \hat{D}_i , we have $\pi_i(S)$ is integrally closed [6, Theorem 26.2] and therefore S is also integrally closed in $T(\hat{D})$. Thus each overring of the ring \hat{D} is integrally closed and hence \hat{D} is a Prüfer ring [8, Theorem 6.2].

In [4], Arnold showed that for an SFT Prüfer domain D, $D[X_1,...,X_n]$ is not catenarian if and only if dim $D \ge 2$ and $n \ge 2$. However, the completion \hat{D} , which is a quotient ring of some power series ring $D[X_1,...,X_n]$, turns out to be catenarian as is shown in the following corollary.

Corollary 16. If D is a finite-dimensional SFT Prüfer domain, then \hat{D} is a catenarian ring.

Proof. Let $\sqrt{I} = P_1 \cap \cdots \cap P_m$, where P_1, \ldots, P_m are the minimal primes of *I*. As is shown in the proof of Theorem 12, $\hat{D} \cong \bigoplus_{i=1}^m \hat{D}_i$, where \hat{D}_i is the P_i -adic completion of *D*. It suffices to show that each \hat{D}_i is catenarian, which is the case since \hat{D}_i is a Prüfer domain by Theorem 15. \Box

Definition. A partially ordered set S is called a *tree* if every incomparable two elements do not have an upper bound in S. Two trees are said to be *isomorphic* if there

exists between them a bijection which preserves partial orders. For a Prüfer domain D, Spec(D) is a tree w.r.t. the set-theoretic inclusion.

Definition. For a commutative ring R, $X^i(R) = \{P \mid P \in \text{Spec}(R) \text{ and } ht(P) = i\}$ and $\text{Spec}^+(R) = \{P \mid P \in \text{Spec}(R) \text{ and } ht(P) > 0\}.$

Corollary 17. Let D be a finite-dimensional SFT Prüfer domain and let m be the number of minimal prime ideals of I.

- (1) Both $X^0(\hat{D})$ and $X^1(\hat{D})$ are m-point sets.
- (2) Spec⁺ $(\hat{D}) = \{Q\hat{D} \mid Q \in \text{Spec}(D) \text{ and } Q \supseteq I\}.$
- (3) For Q_1 and $Q_2 \in \text{Spec}^+(\hat{D})$, $Q_1 = Q_2 \Leftrightarrow \theta^{-1}(Q_1) = \theta^{-1}(Q_2)$, and $Q_1 \supseteq Q_2 \Leftrightarrow \theta^{-1}(Q_1) \supseteq \theta^{-1}(Q_2)$, where $\theta: D \to \hat{D}$ is the canonical ring homomorphism.
- (4) $\operatorname{Spec}^+(\hat{D}) \cong \operatorname{Spec}(D/I)$ as trees.

Proof. (1) and (2) First we prove the corollary for the case when *I* is a prime ideal *P*. Since *D* is an SFT-ring, there exists a finitely generated ideal $J = (a_1, ..., a_n)$ such that $\sqrt{J} = P$. The *J*-adic completion of *D* is isomorphic to the *P*-adic completion of *D*. Let $\varphi: D[X_1, ..., X_n] \rightarrow \hat{D}$ be the canonical epimorphism. We will give a complete description of Spec (\hat{D}) : (0) is the minimal prime ideal, the prime ideal $\overline{P + (X_1, ..., X_n)}$ is the unique height 1 prime ideal of \hat{D} , and the other prime ideals are precisely the set $\{\overline{P' + (X_1, ..., X_n)} \mid P' \text{ is a prime ideal of } D \text{ such that } P' \supset P\}$. Let $Q_0 \subset Q_1$ be prime ideals in $D[X_1, ..., X_n]$ such that ker $\varphi = Q_0$ (see Theorem 15.). As in the proof of Lemma 11(1), one can easily show that $Q_1 \cap D \supseteq \mathscr{B}(P)$. By Lemma 10, *P* and $Q_1 \cap D$ are comparable. Hence, $P \subseteq Q_1 \cap D$. For otherwise $\mathscr{B}(P) \subseteq Q_1 \cap D \subseteq P$, a contradiction. So $P + (X_1, ..., X_n) \subseteq Q_1$ and hence $Q_1 = P_1 + (X_1, ..., X_n)$ for a prime ideal P_1 of *D* such that $P_1 \supseteq P$.

Back to the general case, let $\sqrt{I} = P_1 \cap \cdots \cap P_m$, where P_1, \ldots, P_m are minimal prime ideals of *I*. As in the proof of Theorem 12, $\hat{D} \cong \hat{D}_1 \oplus \cdots \oplus \hat{D}_m$. A nonminimal prime ideal of \hat{D} is of the form $\hat{D}_1 \oplus \cdots \oplus Q'_i \oplus \cdots \oplus \hat{D}_m$, where Q'_i is a nonzero prime ideal of \hat{D}_i . By the special case, we have $Q'_i = Q_i \hat{D}_i$, where $Q_i \in \text{Spec}(D)$ and $Q_i \supseteq P_i$. Now $\hat{D}_1 \oplus \cdots \oplus Q'_i \oplus \cdots \oplus \hat{D}_m = \hat{D}_1 \oplus \cdots \oplus Q_i \hat{D}_i \oplus \cdots \oplus \hat{D}_m = Q_i (\hat{D}_1 \oplus \cdots \oplus \hat{D}_i \oplus \cdots \oplus \hat{D}_m) = Q_i \hat{D}$. (Note that if a prime ideal *Q* of *D* contains P_i , then $Q \not\cong P_j$ for any $j \neq i$ since P_i and P_j , $i \neq j$, are incomparable. So $Q\hat{D}_j = (1)$. Moreover, if a prime ideal *Q* of *D* contains $\sqrt{I} = P_1 \cap \cdots \cap P_m$, then *Q* contains exactly one P_i since *D* is a Prüfer domain.) Statements (1) and (2) are completed. It is routine to check (3) and (4). \Box

Remark. In the local case, $\operatorname{Spec}(\hat{V}) \cong \operatorname{Spec}(V/\bigcap_{n=1}^{\infty} I^n)$ (see Theorems 7 or 8). However, $\operatorname{Spec}(\hat{D}) \ncong \operatorname{Spec}(D/\bigcap_{n=1}^{\infty} I^n)$ if there are prime ideals of D (other than P_1, \ldots, P_m) that are just above $\mathscr{B}(P_1), \ldots, \mathscr{B}(P_m)$. Moreover, $\operatorname{Spec}(\hat{D}) \nleftrightarrow \operatorname{Spec}(D/\bigcap_{n=1}^{\infty} I^n)$ if it happens that $\mathscr{B}(P_i) = \mathscr{B}(P_j)$ for distinct $i \neq j$, which would force $|X^0(D/\bigcap_{n=1}^{\infty} I^n)| < m = |X^0(\hat{D})|$. We give a pictogram of the spectrum of \hat{D} in terms of prime ideals in the power series, where \hat{D} is the completion of D w.r.t. the prime ideal P:

References

- [1] J.T. Arnold, Power series rings over Prüfer domains, Pacific J. Math 44 (1973) 1–11.
- [2] J.T. Arnold, Krull dimension in power series rings, Trans. Amer. Math. Soc. 177 (1973) 299-304.
- [3] J.T. Arnold, Power series rings with finite Krull dimension, Indiana Univ. Math. J. 31 (1982) 897-911.
- [4] J.T. Arnold, The catenarian property of power series rings over a Prüfer domain, Proc. Amer. Math. Soc. 94 (1985) 577-580.
- [5] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.
- [6] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [7] S. Greco, P. Salmon, Topics in m-adic Topologies, Springer, Berlin, 1971.
- [8] J. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, 1988.
- [9] B.G. Kang, M.H. Park, A localization of a power series ring over a valuation domain, J. Pure appl. algebra 140 (1999) 107–124, this issue.