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B.G. Kang∗, M.H. Park
Department of Mathematics, Pohang Institute of Science and Technology, Pohang 790-784,

South Korea
Communicated by C.A. Weibel; received 28 June 1997; received in revised form 10 October 1997

Abstract

Let V (resp. D) be a valuation domain (resp. SFT Pr�ufer domain), I a proper ideal, and V̂
(resp. D̂) be the I -adic completion of V (resp. D). We show that (1) V̂ is a valuation domain,
(2) Krull dimension of V̂ = dim V=I + 1 if I is not idempotent, V̂ ∼=V=I if I is idempotent, (3)
dim D̂=dimD=I + 1, (4) D̂ is an SFT Pr�ufer ring, and (5) D̂ is a catenarian ring. c© 1999
Elsevier Science B.V. All rights reserved.

MSC: 13A15; 13C15; 13F05; 13F25; 13J10

Throughout this paper, all rings are assumed to be commutative rings with identity.
It is well known that for a Noetherian ring R and a proper ideal I of R, the Krull
dimension of the I -adic completion R̂ of R equals sup{htM |M is a maximal ideal of
R containing I} [7, Proposition 7.3, p. 35]. In this paper, we will study the completion
of a valuation domain and a Pr�ufer domain and get a similar equation for the Krull
dimension of the completion.
First we describe some properties of prime ideals of the power series ring V <X = of

a valuation domain V . In [4], Arnold gave a collection of principal prime ideals of
V <X =, where V is a �nite-dimensional valuation domain with the SFT-property, i.e., a
�nite-dimensional discrete valuation domain: Let Q be a prime ideal of V <X = and let
Q∩V =P. If P<X = 6=Q and Q 6=P+(X ) (i.e., X 6∈Q), then Q is a principal ideal (and
Q⊂P1 + (X ), where P1 is the prime ideal just above P). In a nondiscrete valuation
domain or a non-SFT valuation domain, these conditions are not enough to guarantee
Q to be a principal ideal (see the remark following Corollary 2). Under an additional
hypothesis that Q contains a power series with unit content, we prove that Q is a

∗ Corresponding author.
E-mail address: bgkang@posmath.postech.ac.kr. (B.G. Kang)
1 This research was supported by BSRI Research Grant 97-1431.

0022-4049/99/$ - see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S0022 -4049(97)00212 -0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82073262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


126 B.G. Kang, M.H. Park / Journal of Pure and Applied Algebra 140 (1999) 125–135

principal ideal. This result will enable us to extend a part of [4, Proposition 5] to the
in�nite-dimensional case. We will give a characterization of prime elements of V <X =,
V an SFT valuation domain. For f∈V <X =, we denote by Cf the ideal of V generated
by the coe�cients of f. When Cf is a unit ideal, we usually write Cf =1.

Lemma 1 (see Arnold [4, Proposition 5]). Let V be a valuation domain with the
maximal ideal M and Q a prime ideal of V <X = such that X 6∈Q. If Q contains
an element f such that Cf =1, then Q is a principal ideal.

Proof. Let g=
∑∞

i=0 aiX
i ∈Q with Cg=1. Let n(g) be the smallest integer such that

an is a unit. Let f∈Q be such that n(f) is the smallest in the set {n(g) | g∈Q and
Cg=1}. Let a0 be the constant term of f. Note that a0 6=0. For otherwise f=Xh,
h∈V <X =. Since X 6∈Q, h∈Q. However, n(h)= n(f)− 1, which contradicts the mini-
mality of n(f). Thus a0 6=0. We claim that the value v(a0) of the constant term a0 of
f is the minimum among the values of constant terms of elements in Q. Suppose not
and let g= b0+b1X + · · ·+bnX n+ · · · ∈Q be an element such that v(b0)¡v(a0). For a
c∈M; a0 = b0c. Now f− cg=X (· · ·+(u− cbn)X n−1 + · · ·)∈Q, where n= n(f) and
u is the unit coe�cient of X n in f. Since X 6∈Q, h= · · ·+ (u− cbn)X n−1 + · · · ∈Q,
contrary to the fact that n is minimal. Thus v(a0) is the minimum as claimed. We show
that Q=(f). Let g∈Q. For a c1 ∈V , X | (g−c1f). Let g−c1f=Xg1, g1 ∈Q. Likewise
g1−c2f=Xg2 for c2 ∈V and g2 ∈Q. Then g= c1f+Xg1 = c1f+X (c2f+Xg2)= c1f+
Xc2f+X 2g2. Continuing in this way, we get g=

∑∞
i=1 ciX

i−1f=(
∑∞

i=1 ciX
i−1)f.

Corollary 2. If V is a valuation domain with the maximal ideal M , Q a prime ideal
of V such that Q∩V =(0) and Q *M <X =; then Q is a principal ideal.

Remark. In Lemma 1, the assumption that Q contains an element f with Cf =1 is
necessary: for a one-dimensional nondiscrete valuation domain V with maximal ideal
M , it is well known that the ideal M ·V <X = is a nonprincipal prime ideal of V <X =. In
Corollary 2, the condition that Q*M <X = is essential. In [9], we constructed an in�nite
descending chain of prime ideals {Pn}∞n=1 inside M <X = and such that Pn ∩V =(0) for
each n¿1. It is easy to see that these Pn are not principal ideals either by looking at
the construction or by the observation that in a completely integrally closed domain, a
nonzero principal prime ideal is necessarily a height 1 prime ideal.

A ring R is called an SFT-ring (strong �nite type ring) if for each ideal J of R,
there exists a �nitely generated ideal I ⊆ J and a natural number n such that jn ∈ I
for each j∈ J . This class of rings is extensively studied in [1, 3]. An SFT Pr�ufer
domain (resp. SFT valuation domain) is a Pr�ufer domain (resp. valuation domain) that
is also an SFT-ring. Recall that a valuation domain is said to be discrete if every
primary ideal is a power of its radical. For a �nite-dimensional valuation domain V ,
V is discrete if and only if V is an SFT-ring (see Lemma 2.7 and Proposition 3.1
of [1]). Although an SFT valuation domain is always a discrete valuation domain, the
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converse does not hold: see the example in [9]. In the proof of [4, Proposition 5], it
is implicitly assumed that V is �nite-dimensional. Using Lemma 1, we will �ll this
gap. In fact the prime ideals of V <X = satisfying the hypotheses of [4, Proposition 5]
always satisfy those hypotheses of Lemma 1 as the next result shows. We also give a
characterization of the prime elements of V <X =, which is an answer to a question posed
in [4].

Corollary 3 (see Arnold [4, Proposition 5]). Let V be an SFT valuation domain (not
necessarily �nite-dimensional) and let Q be a prime ideal of V <X =.
(1) If Q∩V =P, P<X =8Q, and Q 6=P+(X ), then Q is a principal ideal. In fact,

Q is generated by an element f such that Cf =1.
(2) An element f of V <X = is a prime if and only if either f is irreducible and

Cf =1 or f is an associate of p, where (p) is the maximal ideal of V .

Proof. (1) Let M be the maximal ideal of V . In view of [1, Corollary 3.6], it is obvious
that Q*M <X =. Moreover X 6∈Q. Now the conclusion follows from Lemma 1.
(2) Since M 2 6=M , M is a principal ideal, say M =(p). Let (f) be a principal ideal

of V <X = which is not an associate of p. Then (f)*M <X =, for otherwise (f)=P<X =
for a prime ideal P of V [1, Corollary 3.6]. In this case, P is a principal ideal and
hence necessarily the maximal ideal M , a contradiction. So Cf =1. For the reverse
implication, let f∈V <X = be an irreducible element such that Cf =1 and f is not
an associate of X . It is not di�cult to see that X 6∈√

(f). So there exists a prime
ideal Q minimal over (f), which does not contain X . Lemma 1 implies that Q is a
principal ideal, say Q=(g). Thus (f)= (g) since f is irreducible, whence f is a prime
element.

Let D be a domain, (a) a principal ideal of D, and D̂ the (a)-adic completion of D.
Let � :D→ D̂ be the canonical ring homomorphism and ’ :D<X =→ D̂ be the natural
ring epimorphism such that ’(

∑∞
i=0 aiX

i)=
∑∞

i=0 �(ai)a
i.

Lemma 4 (Greco and Salmon [7, Proposition 3.4]). ker ’=(X − a) and thus D̂∼=
D <X ==(X − a).

Proof. Let g= a0 + a1X + · · ·+ akX k + · · · ∈ ker ’. In D̂, a0 + a1a+ a2a2 + · · · =0.
If we regard D̂ as lim← D=(an), then a0 ∈ (a), a0 + a1a∈ (a2), a0 + a1a + a2a2 ∈ (a3),
: : :. Let a0 = ab0, b0 ∈D. From a0 + a1a= ab0 + a1a∈ (a2), we get a1 = ab1 − b0 for
b1 ∈D. From a0 + a1a + a2a2 ∈ (a3), we get a2b1 + a2a2 ∈ (a3). So a2 = ab2 − b1 for
b2 ∈D. Proceeding this way, we get an+1 = abn+1−bn for b0, b1; : : : ; bn; : : : in D. From
these, we deduce that a0 + a1X + · · · =(X − a)(−b0− b1X − b2X 2−· · ·− bnX n−· · ·).

Let � :D→ D̂ be the canonical ring homomorphism. Recall that ker �=
⋂∞
n=1(a

n)
[5].
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Lemma 5. Let R be a ring and a an element of R. Then (X −a)R<X =∩R⊆ ⋂∞
n=1(a

n).
If R is a domain, then the converse holds: (X − a)R<X =∩R= ⋂∞

n=1(a
n).

Proof. Since the diagram

commutes, (X −a)R<X =∩R⊆ ker �=
⋂∞
n=1(a

n). Suppose R is a domain. By Lemma 4,⋂∞
n=1(a

n)⊆ ker ’=(X − a)R<X =.

Theorem 6. Let V be a valuation domain and a a nonunit element of V . Then X −a
is a prime element of V <X =.

Proof. We may assume that a 6=0. Let P= ⋂∞
n=1(a

n), which is a prime ideal of
V [6, Theorem 17.1]. P is contained in (X − a) by Lemma 5. It is easy to see
that P<X =⊆ (X − a). By Lemma 5,

√
(X − a)∩V =P where

√
(X − a) is the nil

radical of (X − a). Passing to V=P, we may assume that
⋂∞
n=1(a

n)= (0), so that√
(X − a)∩V =(0). Pick a prime ideal Q minimal over (X−a) such that Q∩V =(0).

(Note that if Q∩V 6=(0) for every Q, then Q∩V ⊇√
(a), which is the height 1 prime

ideal of V . This leads to
√
(X − a)∩V ⊇√

(a)). Clearly, Q satis�es the hypotheses
of Corollary 2. So Q is a principal ideal, say Q=(f). We claim that (f)= (X − a).
Since X − a∈Q, X − a=fg for a g∈V <X =. Suppose g is not a unit. Then the co-
e�cient of X in fg would not be a unit. So g is a unit and hence X − a is a
prime.

Theorem 7. Let V be a valuation domain, I a proper ideal of V; and V̂ the I -adic
completion of V . Then V̂ is a valuation domain and the value group v(V̂ ) of V̂ is
isomorphic to v(V=

⋂∞
n=1 I

n).

Proof. If I = I 2, then I is a prime ideal by [6, Theorem 17.1]. So V̂ ∼=V=I is a valuation
domain. Now let us assume that I 6= I 2. Choose a such that a∈ I\I 2. Since I 2⊆ (a)⊆ I ,
the (a)-adic completion of V is isomorphic to the I -adic completion of V by the
bounded di�erence. Thus, we may assume that I is a principal ideal, say I =(a). By
Lemma 4 and Theorem 6, V̂ is a domain. We identify V̂ with V <X ==(X − a). To
prove V̂ is a valuation domain, let f(X )∈ V̂ . Let n be such that f(X )= ang(X ) and
a - g(X ) where g(X )∈ V̂ . Such an n exists since ⋂∞

i=1(a
iV̂ )= (0), which follows from

the fact that V̂ is complete w.r.t. the aV̂ topology and so ˆ̂V ∼= V̂ canonically. (By
[5, Lemma 10.1, Proposition 10.5],

⋂∞
i=1(â

iV )= (0). Since
⋂∞
i=1(a

iV̂ )⊆ ⋂∞
i=1(â

iV ),⋂∞
i=1(a

iV̂ )= (0).) Let g(X )= b0 + b1X + · · ·+ bnX n + · · ·= �b0+ �X (b1 + b2X + · · ·)=
�b0+ �a(b1 + b2X + · · ·)= �b0+ �a �h, where h= b1+b2X+· · ·. Since a - g(X ) in V̂ , a - b0 in
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V . So b0 | a in V and a= b0c for a nonunit c of V . Now g(X )= �b0(1+ �c �h) and 1+ �c �h is a
unit since �c is a nonunit and V̂ is a local ring. Thus f(X )= ang(X )= anb0u= c′u where
anb0 = cc′ and u is a unit of V̂ . This completes the proof of the �rst assertion. Recall
that V̂ ∼= [(V=

⋂
I n). We assume that

⋂∞
n=1 I

n= {0}, and under this hypothesis, we show
that v(V̂ )∼= v(V ). Then the general case easily follows: v(V̂ )∼= v [(V=

⋂
I n)∼= v(V=⋂ I n).

Let K (resp. F) be the quotient �eld of V (resp. V̂ ), K∗ (resp. F∗) the nonzero
elements of K (resp. F), and U (resp. V) the group of the units of V (resp. V̂ ).
Since the natural ring homomorphism � :V → V̂ is an injection, K can be embedded
into F . Clearly U⊆V. Next we show that V∩V =U. Let �∈V∩V . Then �� is a
unit of V̂ =V <X ==(X − a). So �� 6∈M + (X ), which is the unique maximal ideal of V̂ ,
where M is the maximal ideal of V . Hence � 6∈M . So � is a unit of V , i.e., �∈U.
From this, we obtain another embedding � :K∗=U→F∗=V. It remains to show that
� is onto. Let y=(a=b)∈F∗=V; a; b∈ V̂ . As is shown previously, a= cu, b=dv for
c; d∈V and u; v∈V. Now a=b=(c=d)uv−1 =�(c=d). So � is onto.

Theorem 8. Let V be a �nite-dimensional valuation domain, I a nonidempotent ideal
of V , and V̂ the I -adic completion of V . Then:
(1) dim V̂ = dim(V=

⋂∞
n=1 I

n)= dim V=I + 1.
(2) Spec(V̂ )= {PV̂ |P ∈Spec(V ) and P⊇ ⋂∞

n=1 I
n}.

(3) For P1; P2 ∈Spec(V ) with P1; P2⊇
⋂∞
n=1 I

n, P1V̂ ⊇P2V̂ ⇔P1⊇P2 and P1V̂ =P2
V̂ ⇔P1 =P2.

Proof. (1) follows from Theorem 7. In proving (2), we give another proof of (1).
Choose a∈ I \I 2. As in the proof of Theorem 7, we may assume that I =(a). Since

V̂ ∼= [(V=
⋂∞
n=1(a

n)) and V=
⋂∞
n=1(a

n) is a valuation domain, we may also assume that⋂∞
n=1(a

n)= {0}. So a is contained in the minimal prime ideal P of V . Let Q be a prime
ideal of V <X = properly containing (X−a). By Corollary 2 and Theorem 6, Q∩V 6= {0}.
So P⊆Q∩V , which implies P + (X )⊆Q. So dim V̂ ≤ dim(V <X ==(P + (X )))
+1= dim(V=P)+1= dim(V=I)+1. Let 0( P1 ( · · · ( Pn be the chain of all the prime
ideals of V . The chain 0( P1 + (X )( P2 + (X )( · · · ( Pn + (X ) is a chain of prime
ideals of V <X = =(X − a). So dim V̂ ≥ n= dim V=I + 1. Hence dim V̂ =
dim V=I + 1= n and so 0( P1 + (X )( P2 + (X )( · · · ( Pn + (X ) is the chain of all
prime ideals of V̂ . Note that Pi + (X )=PiV̂ .
(3) It is routine to check this.

Now we consider the global case.

Lemma 9. Let D be a �nite-dimensional SFT Pr�ufer domain. Let (a1; : : : ; an)( D be
a proper ideal. Then any prime ideal Q of D<X1; : : : ; Xn= containing (X1−a1; : : : ; Xn−an)
has height ≥ n.

Proof. Let Q0 =Q∩D<X1; : : : ; Xn−1=. In [3], it is shown that dimD<X1; : : : ; Xn==
(dimD)n + 1¡∞. According to [1], the power series ring over a non-SFT-ring is
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in�nite-Krull-dimensional. From this, we deduce that D<X1; : : : ; Xn−1= is an SFT-ring.
Since Q0·D<Xn=⊆Q and D<X1; : : : ; Xn−1= is an SFT-ring, we have Q0<Xn==√
Q0·D<X1; · · · ; Xn−1=<Xn=⊆Q [2, Theorem 1]. Since 1 6∈Q, Xn−an 6∈Q0<Xn=. So Q0<Xn=

( Q. By induction on n, we get the inequality htQ0≥ n − 1, so that htQ0<Xn=
≥ n − 1 (note that (X1 − a1; : : : ; Xn−1 − an−1)⊆Q0). So htQ≥ n. For the case n=1,
note that any prime ideal containing X − a is nonzero, and thus htQ≥ 1.

Let D be a commutative ring, I an ideal of D, D̂ the I -adic completion of D, and
S = {i� | �∈A} a generating set of I . Let � :D→ D̂ be the canonical mapping and
’ :D<{X� | �∈A}=2→ D̂ the canonical epimorphism de�ned by ’(X�)= �(i�) for each
�∈A and ’(d)= �(d) for d∈D. For the de�nition of the second type power series
ring D<{X� | �∈A}=2, readers are referred to [6, p. 6].

Lemma 10. If Q is a prime ideal of D<{X� | �∈A}=2 containing ker ’, then the radical√
I of I and Q∩D are not coprime. If f∈ ker ’, then the constant term of f is in I .

Proof. Suppose
√
I +Q∩D=D. For an x∈√

I and a d∈Q∩D, x+ d=1. Choose l
so that xl ∈ I . For an e∈Q∩D, we have xl+e=1. Put y= xl. Since y∈ I , y=d1i1 +
· · ·+dkik for d1; : : : ; dk ∈D and i1; : : : ; ik ∈ S. Put h=−d1(X1−i1)−· · ·−dk(Xk−ik)+e.
Then h∈Q since (X1−i1; : : : ; Xk−ik)⊆ ker ’⊆Q and e∈Q∩D. Now h=(d1i1+· · ·+
dkik)+e−d1X1−d2X2−· · ·−dkXk =1−d1X1−· · ·−dkXk is a unit in D<{X� | �∈A}=2,
which contradicts that Q 6=(1). So √

I and Q∩D are not coprime. Let f= a0 + f1 +
f2+ · · · ∈ ker ’, where fi is homogeneous of degree i in D[{X� | �∈A}]. If we realize
D̂ as the inverse limit lim← D=In, then 0=’(f)= ( �a0; a0 + f1(X�= i� | �∈A); : : :). Since
�a0 = 0 in D=I , a0 ∈ I .

Let D be a �nite-dimensional SFT Pr�ufer domain, I =(a1; : : : ; an) a �nitely generated
proper ideal of D, D̂ the I -adic completion of D, and ’ the canonical ring epimorphism
from D<X1; : : : ; Xn= to D̂. For a nonzero prime ideal P of D, we denote by B(P) the
prime ideal of D just below P.

Lemma 11. Let D be a �nite-dimensional SFT Pr�ufer domain. Suppose the radi-
cal

√
I of I is a prime ideal P. Then (1) the prime ideal P + (X1; : : : ; Xn) is not

minimal over ker ’ and (2) if Q is a minimal prime ideal of ker ’; then Q∩D=
B(P).

Proof. (1) P*
√
ker ’. For otherwise some power of P is contained in ker ’∩D,

which is
⋂∞
m=1 I

m=B(P). This would lead to the contradiction P⊆B(P). Thus P*√
ker ’ and so there exists a prime ideal Q minimal over ker ’ such that P*Q. By

Lemma 10, Q∩D and P are not coprime. Since D is a Pr�ufer domain, this implies
that Q∩D and P are comparable. So either Q∩D⊆P or P⊆Q∩D. However P*Q.
So Q∩D( P. Since B(P)⊆Q∩D⊂P, Q∩D=B(P). Let Q1 be a prime ideal just
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above Q so that height (Q1=Q)= 1. By Lemma 9, height �Q≥ n in (D=B(P))<X1; : : : ; Xn=,
and so height Q1≥ n + 1, from which it follows that �P1 = �Q1 ∩ �D 6= {0} [3, Lemma
3.5]. By [4, Lemma 1], Q1⊆P1 + (X1; : : : ; Xn) and ht (P1=B(P))= 1. Since I ⊆P1,
P=

√
I ⊆P1 and so P=P1. Since ker ’⊆Q( Q1⊆P1 +(X1; : : : ; Xn)=P+(X1; : : : ; Xn),

P + (X1; : : : ; Xn) is not minimal over ker ’. (2) Let Q be a minimal prime ideal of
ker ’. By (1), P*Q. Then the proof of (1) validates the claim.

Theorem 12. Let D be a �nite-dimensional SFT Pr�ufer domain, I a proper ideal of
D, and D̂ the I -adic completion of D. Then dim D̂= dimD=I + 1.

Proof. Let P1; : : : ; Pm be the minimal primes of I [1, Corollary 2.6].
√
I =P1 ∩ · · · ∩Pm.

For any l≥ 0, (√I)l=Pl1 ∩ · · · ∩Plm=Pl1 · · ·Plm since Pl1 ; : : : ; Plm are pairwise coprime.
By the Chinese remainder theorem, D=(

√
I)l∼=D=Pl1 ⊕ · · ·⊕D=Plm. So D̂∼= D̂1⊕ · · ·

⊕ D̂m, where D̂i is the Pi-adic completion of D. Since dim D̂= maxi(dim D̂i), we will
assume that

√
I =P is a prime ideal and I =(a1; : : : ; an). Let ’ :D<X1; : : : ; Xn=→ D̂

be the canonical ring epimorphism. Since D̂∼= [(D=
⋂∞
m=1 I

m), we may assume that⋂∞
m=1 I

m= {0}. Since B(P)=
⋂∞
m=1 P

m=
⋂∞
m=1 I

m= {0}, ht P=1. Let l= dim D̂ and
ker ’⊆Q0⊂ · · · ⊂Ql be a chain of prime ideals which gives the dimension l. By
Lemma 9, htQ0≥ n. By [3, Lemma 3.5], Q1 ∩D 6= {0}. By Lemma 10, P and Q1 ∩D
are comparable. Since Q1 ∩D 6= {0} and ht P=1, P⊆Q1 ∩D. So (X1; : : : ; Xn)⊆
Q1 and hence P + (X1; : : : ; Xn)⊆Q1. From this, we deduce that l − 1≤ dimD=P.
So l≤ dimD=P + 1= dimD=I + 1. For the reverse inequality, let m= dimD=I
and let I ⊆P0⊂ · · · ⊂Pm be a chain of prime ideals of D which gives the
dimension of D=I . By Lemma 10, ker ’⊆ I + (X1; : : : ; Xn)⊆P0 + (X1; : : : ; Xn). Now
ker ’⊂P0 + (X1; : : : ; Xn)⊂ · · · ⊂Pm + (X1; : : : ; Xn). By Lemma 11, P0 + (X1; : : : ; Xn)
is not minimal over ker ’. So dim D̂≥m + 1= dimD=I + 1. Therefore, dim D̂=
dimD=I + 1.

Lemma 13. Let R be a ring, I a �nitely generated ideal of R such that
⋂∞
n=1 I

n=(0),
and R̂ the I -adic completion of R. Then
(1) I nR̂= (̂I n) and so R=In∼= R̂=I nR̂ canonically,
(2) if M is a maximal ideal of R such that I ⊆M , then MR̂ is a maximal ideal

of R̂ and MR̂= M̂ , and
(3) Max(R̂)= {M̂ |M ∈Max(R) and M ⊇ I}.

Proof. (1) By [5, Proposition 10.13], I nR̂=(̂I n). By [5, Proposition 10.4], R=In∼=
R̂=(̂I n). So R=In∼= R̂=I nR̂. (2) Let I =(a1; : : : ; al). We identify R̂ with R<X1; : : : ; Xl==ker ’
through the canonical ring epimorphism ’ :R<X1; : : : ; Xl=→ R̂. Obviously ker ’⊇ (X1 −
a1; : : : ; Xl − al). So M + (X1 − a1; : : : ; Xl − al)=M + (X1; : : : ; Xl). Since MR̂⊇
M + (X1 − a1; : : : ; Xl − al), MR̂⊇M + (X1; : : : ; Xl). Now M + (X1; : : : ; Xl)⊆MR̂⊆
M̂ ( R̂. Since M + (X1; : : : ; Xl) is a maximal ideal of R<X1; : : : ; Xl==ker ’, we conclude
that M + (X1; : : : ; Xl)=MR̂= M̂ . (3) Statement (2) implies Max(R̂)⊇{M̂ |M ∈
Max(R) and M ⊇ I}. Every maximal ideal of R<X1; : : : ; Xl==ker ’ is of the form
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M + (X1; : : : ; Xl), where M is a maximal ideal of R and M + (X1; : : : ; Xl)⊇ ker ’.
Since X1−a1; : : : ; Xl−al ∈ ker ’, (a1; : : : ; al)⊆M . Also note that M + (X1; : : : ; Xl)=M
(R<X1; : : : ; Xl==ker ’)=MR̂.

We present a partial converse of Theorem 7.

Lemma 14. Let R be a ring and I a �nitely generated ideal of R such that
⋂∞
n=1

I n=(0) and I is contained in the Jacobson radical J (R) of R. If the I -adic completion
R̂ of R is a valuation domain, then R is also a valuation domain.

Proof. Since
⋂∞
n=1 I

n=(0), R can be embedded into R̂ through the canonical ho-
momorphism � :R→ R̂. So R is an integral domain. Let K be the quotient �eld of
R. Since R̂ is a valuation domain, R̂∩K is also a valuation domain. We claim that
R̂∩K =R. It su�ces to show that aR̂∩R= aR for all a∈R. Let 0 6= a∈R. Since⋂∞
n=1 I

nR̂=(0) and R̂ is a valuation domain, there exists an n≥ 1 such that InR̂⊆ aR̂.
So I n⊆ aR̂∩R. From this and the fact that aR̂∩R⊆ ⋂∞

k=1(aR + I
k), it follows that

aR+I n= aR+I n+1 = · · ·. Let �R=R=aR, �I =(I + aR)=aR. Then �I is a �nitely generated
ideal of �R and �I ⊆ J ( �R). Recall that aR + I n= aR + I n+1. From this, we get another
observation that ( �I)n=(I n)= (I n+1)= ( �I)n+1. By Nakayama’s Lemma, ( �I)n=0, i.e.,
I n + aR⊆ aR. Thus, aR̂∩R⊆ I n + aR= aR, and hence aR̂∩R= aR:

Theorem 15. Let D be an SFT Pr�ufer domain, I a proper ideal of D, and D̂ the
I -adic completion of D. Then:
(1) D̂ is an SFT Pr�ufer ring.
(2) D̂ is an SFT Pr�ufer domain if and only if radical

√
I of I is a prime ideal.

Proof. Let {P1; : : : ; Pr} be the set of minimal prime ideals of I . As is shown in the
proof of Theorem 12, D̂∼= D̂1⊕ · · ·⊕ D̂r , where D̂i is the Pi-adic completion of D
for i=1; : : : ; r. Now, let P be a prime ideal of D and D̂ the P-adic completion of
D. We will show that D̂ is a Pr�ufer domain. Put Q=

⋂∞
n=1 P

n. Then Q is a prime
ideal of D [6, Theorem 23.3(b) and (d)] and D=Q is an SFT Pr�ufer domain [3]. Since
D̂∼= [(D=Q), we may assume that Q=(0), i.e.,

⋂∞
n=1 P

n=(0). Since D is an SFT-ring,
there exists a �nitely generated ideal J of D contained in P and l≥ 1 such that
Pl⊆ J . Then, by the bounded di�erence, the P-adic completion of D is isomorphic to
the J -adic completion of D. Now we replace P by J . Let M ∈Max(D) be such that
M ⊇ J . The natural mapping D̂ �→ [(DM ) is an injection: let x=(�x1; �x2; · · ·)∈ lim← D=J n

be such that �(x)= (�x1; �x2; · · ·)= 0 in lim← DM=J nDM . For an arbitrary integer k ≥ 1,
xlk ∈ J lkM ∩D⊆PlkM ∩D=Plk ⊆ J k . Since �xk = �xlk in D=J k , �xk =0 in D=J k for all k ≥ 1,
which implies that x=0 and so � is an injection. Since DM is a valuation domain,
[(DM ) is also a valuation domain by Theorem 7. So the subring D̂ is an integral domain.
Note that [(D̂MD̂)= lim← (D̂MD̂=J

nD̂MD̂)∼= lim← (D̂=J nD̂)MD̂=J nD̂∼= lim← (D̂= [(J n))
M̂ =(̂J n)

∼=
lim← (D=J n)M=Jn ∼= lim← DM=J nM = [(DM ), where [6, Proposition 5.8] is used for the �rst



B.G. Kang, M.H. Park / Journal of Pure and Applied Algebra 140 (1999) 125–135 133

isomorphism and the fourth, the second isomorphism follows from Lemma 13, and the

third isomorphism follows from Lemma 13 and [5, Corollary 10.4]. Thus [(D̂MD̂)
�∼= [(DM )

is a valuation domain. We observed that D̂ �→ [(DM ) is an injection. We claim that
D̂\MD̂⊆ the set of units of [(DM ), so that � induces an embedding D̂MD̂

�→ [(DM ):
Since MD̂M ∩ D̂⊇MD̂, MD̂ is a maximal ideal of D̂ (Lemma 13), and 1 6∈MD̂M , we
have MD̂M ∩ D̂=MD̂. So D̂\MD̂⊆ D̂M\MD̂M . By Theorem 7, MD̂M is a maximal ideal
of the valuation domain [(DM ), i.e., the unique maximal ideal of [(DM ). Thus D̂\MD̂
is a set of units of [(DM ). Let � be the natural isomorphism [(DM )

�∼→ [(D̂MD̂) obtained

earlier. Consider the composition D̂MD̂
�
,→ [(DM )

�∼→ [(D̂MD̂), which is identical with the
natural ring homomorphism � : D̂MD̂→ [(D̂MD̂), i.e., �=� ◦ �. Since � an injection and �
is an isomorphism, �=� ◦ � is an injection and hence ⋂∞n=1(J nD̂MD̂)= ker �=(0). By
Lemma 14, D̂MD̂ is also a valuation domain. In view of Lemma 13, Max(D̂)= {MD̂ |
M ∈Max(D) and M ⊇ J}. Hence D̂ is a Pr�ufer domain. This completes the ‘if’ half
of (2). In the general case, D̂∼= D̂1⊕ · · ·⊕ D̂r , where each D̂i is a Pr�ufer domain. So D̂
is a Pr�ufer domain if and only if r=1, i.e.,

√
I =P is a prime ideal. Thus (2) is done.

We are ready to prove (1). Put Qi= D̂1⊕ · · ·⊕ D̂i−1⊕{0}⊕ D̂i+1⊕ · · ·⊕ D̂r . Then the
set of minimal prime ideals of D̂ is {Q1; : : : ; Qr} and Q1 ∩ · · · ∩Qr = {0}. So D̂ is a
reduced ring. Note that D̂=Qi∼= D̂i. Let Ki be the quotient �eld of D̂i. By [8, Lemma
8.14], the total quotient ring T (D̂) of D̂ is given by T (D̂)∼=K1⊕ · · ·⊕Kr . Let S be
an overring of D̂. Then, S ∼= �1(S)⊕ · · ·⊕�r(S), where �i:T (D̂)→Ki is the natural
projection. Since D̂i is a Pr�ufer domain and �i(S) is an overring of D̂i, we have �i(S)
is integrally closed [6, Theorem 26.2] and therefore S is also integrally closed in T (D̂).
Thus each overring of the ring D̂ is integrally closed and hence D̂ is a Pr�ufer ring [8,
Theorem 6.2].

In [4], Arnold showed that for an SFT Pr�ufer domain D, D<X1; : : : ; Xn= is not cate-
narian if and only if dimD≥ 2 and n≥ 2. However, the completion D̂, which is a
quotient ring of some power series ring D<X1; : : : ; Xn=, turns out to be catenarian as is
shown in the following corollary.

Corollary 16. If D is a �nite-dimensional SFT Pr�ufer domain, then D̂ is a catenarian
ring.

Proof. Let
√
I =P1 ∩ · · · ∩Pm, where P1; : : : ; Pm are the minimal primes of I . As is

shown in the proof of Theorem 12, D̂∼= ⊕m
i=1 D̂i, where D̂i is the Pi-adic completion

of D. It su�ces to show that each D̂i is catenarian, which is the case since D̂i is a
Pr�ufer domain by Theorem 15.

De�nition. A partially ordered set S is called a tree if every incomparable two ele-
ments do not have an upper bound in S. Two trees are said to be isomorphic if there
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exists between them a bijection which preserves partial orders. For a Pr�ufer domain D,
Spec(D) is a tree w.r.t. the set-theoretic inclusion.

De�nition. For a commutative ring R, X i(R)= {P |P ∈Spec(R) and ht(P)= i} and
Spec+(R)= {P |P ∈Spec(R) and ht(P)¿0}.

Corollary 17. Let D be a �nite-dimensional SFT Pr�ufer domain and let m be the
number of minimal prime ideals of I .
(1) Both X 0(D̂) and X 1(D̂) are m-point sets.
(2) Spec+(D̂)= {QD̂ |Q∈Spec(D) and Q⊇ I}.
(3) For Q1 and Q2 ∈Spec+(D̂), Q1 =Q2⇔ �−1(Q1)= �−1(Q2), and Q1⊇Q2⇔

�−1(Q1)⊇ �−1(Q2), where � :D→ D̂ is the canonical ring homomorphism.
(4) Spec+(D̂)∼=Spec(D=I) as trees.

Proof. (1) and (2) First we prove the corollary for the case when I is a prime ideal
P. Since D is an SFT-ring, there exists a �nitely generated ideal J =(a1; : : : ; an) such
that

√
J =P. The J -adic completion of D is isomorphic to the P-adic completion of

D. Let ’ :D<X1; : : : ; Xn=→ D̂ be the canonical epimorphism. We will give a complete
description of Spec(D̂): (0) is the minimal prime ideal, the prime ideal P + (X1; : : : ; Xn)
is the unique height 1 prime ideal of D̂, and the other prime ideals are precisely the set
{P′ + (X1; : : : ; Xn) |P′ is a prime ideal of D such that P′⊃P}. Let Q0⊂Q1 be prime
ideals in D<X1; : : : ; Xn= such that ker ’=Q0 (see Theorem 15.). As in the proof of
Lemma 11(1), one can easily show that Q1 ∩D)B(P). By Lemma 10, P and Q1 ∩D
are comparable. Hence, P⊆Q1 ∩D. For otherwise B(P)( Q1 ∩D( P, a contradiction.
So P + (X1; : : : ; Xn)⊆Q1 and hence Q1 =P1 + (X1; : : : ; Xn) for a prime ideal P1 of D
such that P1⊇P.
Back to the general case, let

√
I =P1 ∩ · · · ∩Pm, where P1; : : : ; Pm are minimal prime

ideals of I . As in the proof of Theorem 12, D̂∼= D̂1⊕ · · ·⊕ D̂m. A nonminimal prime
ideal of D̂ is of the form D̂1⊕ · · ·⊕Q′i ⊕ · · ·⊕ D̂m, where Q′i is a nonzero
prime ideal of D̂i. By the special case, we have Q′i =QiD̂i, where Qi ∈Spec(D) and
Qi⊇Pi. Now D̂1⊕ · · ·⊕Q′i ⊕ · · ·⊕ D̂m= D̂1⊕ · · ·⊕QiD̂i⊕ · · ·⊕ D̂m=Qi(D̂1⊕ · · ·⊕
D̂i⊕ · · ·⊕ D̂m)=QiD̂. (Note that if a prime ideal Q of D contains Pi, then Q+Pj for
any j 6= i since Pi and Pj, i 6= j, are incomparable. So QD̂j =(1). Moreover, if a prime
ideal Q of D contains

√
I =P1 ∩ · · · ∩Pm, then Q contains exactly one Pi since D is a

Pr�ufer domain.) Statements (1) and (2) are completed. It is routine to check (3) and
(4).

Remark. In the local case, Spec(V̂ )∼=Spec(V=⋂∞n=1 I n) (see Theorems 7 or 8). How-
ever, Spec(D̂)� Spec(D=

⋂∞
n=1 I

n) if there are prime ideals of D (other than P1; : : : ; Pm)
that are just above B(P1); : : : ;B(Pm). Moreover, Spec(D̂) 6,→Spec(D=

⋂∞
n=1 I

n) if it hap-
pens that B(Pi)=B(Pj) for distinct i 6= j, which would force |X 0(D=⋂∞n=1 I n)|¡m=
|X 0(D̂)|.
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We give a pictogram of the spectrum of D̂ in terms of prime ideals in the power
series, where D̂ is the completion of D w.r.t. the prime ideal P:
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