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Abstract

Let ¥ (resp. D) be a valuation domain (resp. SFT Priifer domain), / a proper ideal, and V
(resp. D) be the [-adic completion of ¥ (resp. D). We show that (1) V is a valuation domain,
(2) Krull dimension of ¥ = dim ¥/l + 1 if I is not idempotent, ¥ = V/I if I is idempotent, (3)
dimD=dimD/I + 1, (4) D is an SFT Priifer ring, and (5) D is a catenarian ring. © 1999
Elsevier Science B.V. All rights reserved.

MSC: 13A15; 13C15; 13F05; 13F25; 13J10

Throughout this paper, all rings are assumed to be commutative rings with identity.
It is well known that for a Noetherian ring R and a proper ideal / of R, the Krull
dimension of the 7-adic completion R of R equals sup{ht M | M is a maximal ideal of
R containing I} [7, Proposition 7.3, p. 35]. In this paper, we will study the completion
of a valuation domain and a Priifer domain and get a similar equation for the Krull
dimension of the completion.

First we describe some properties of prime ideals of the power series ring V[X] of
a valuation domain V. In [4], Arnold gave a collection of principal prime ideals of
V[X], where V' is a finite-dimensional valuation domain with the SFT-property, i.c., a
finite-dimensional discrete valuation domain: Let O be a prime ideal of V[X] and let
ONV =P If PIX]#Q and Q#P+(X) (i.e., X €Q), then Q is a principal ideal (and
O CP + (X), where P, is the prime ideal just above P). In a nondiscrete valuation
domain or a non-SFT valuation domain, these conditions are not enough to guarantee
O to be a principal ideal (see the remark following Corollary 2). Under an additional
hypothesis that O contains a power series with unit content, we prove that Q is a
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principal ideal. This result will enable us to extend a part of [4, Proposition 5] to the
infinite-dimensional case. We will give a characterization of prime elements of V[X],
V an SFT valuation domain. For f € V[X], we denote by C; the ideal of V' generated
by the coefficients of /. When C; is a unit ideal, we usually write Cr = 1.

Lemma 1 (see Arnold [4, Proposition 5]). Let V be a valuation domain with the
maximal ideal M and Q a prime ideal of V[X] such that X £ Q. If O contains
an element f such that Cy =1, then Q is a principal ideal.

Proof. Let g= > a;X' € Q with G;=1. Let n(g) be the smallest integer such that
a, is a unit. Let f € Q be such that n( ) is the smallest in the set {n(g)|g € Q and
G,=1}. Let ay be the constant term of f. Note that ag# 0. For otherwise f =Xn,
heV[X]. Since X €0, he Q. However, n(h)=n( f) — 1, which contradicts the mini-
mality of n( ). Thus ag# 0. We claim that the value v(ag) of the constant term ay of
f is the minimum among the values of constant terms of elements in Q. Suppose not
and let g=bo+b X +---+b,X"+---€ QO be an element such that v(by)<v(ag). For a
cEM, ay=bhoc. Now f —cg=X(---+(u—ch,)X"" ' +---)€Q, where n=n(f) and
u is the unit coefficient of X" in f. Since X 0, h= -+ (u — cb,) X" ' +--- €0,
contrary to the fact that » is minimal. Thus v(ay) is the minimum as claimed. We show
that 0=(f). Letge Q. Forac, €V, X |(g—c1 f). Let g—c| f =Xyg1, g1 € O. Likewise
gi—cf =Xgp forco €V and g, € Q. Then g=c f+Xg1 =c1 f+X(crf +Xg2)=c1 f+

Xcy f+X?g,. Continuing in this way, we get g= >~ e X' f =2 aX™Hf. O

Corollary 2. If V is a valuation domain with the maximal ideal M, Q a prime ideal
of V such that QNV =(0) and Q & M[X], then Q is a principal ideal.

Remark. In Lemma 1, the assumption that O contains an element f with Cr =1 is
necessary: for a one-dimensional nondiscrete valuation domain 7 with maximal ideal
M, it is well known that the ideal M-V[X] is a nonprincipal prime ideal of V[X]. In
Corollary 2, the condition that O & M[X] is essential. In [9], we constructed an infinite
descending chain of prime ideals {P,}5°, inside M[X] and such that P,NV =(0) for
each n>1. It is easy to see that these P, are not principal ideals either by looking at
the construction or by the observation that in a completely integrally closed domain, a
nonzero principal prime ideal is necessarily a height 1 prime ideal.

A ring R is called an SFT-ring (strong finite type ring) if for each ideal J of R,
there exists a finitely generated ideal / CJ and a natural number n such that ;" €7
for each je€J. This class of rings is extensively studied in [1, 3]. An SFT Priifer
domain (resp. SFT valuation domain) is a Priifer domain (resp. valuation domain) that
is also an SFT-ring. Recall that a valuation domain is said to be discrete if every
primary ideal is a power of its radical. For a finite-dimensional valuation domain V,
V' is discrete if and only if V' is an SFT-ring (see Lemma 2.7 and Proposition 3.1
of [1]). Although an SFT valuation domain is always a discrete valuation domain, the
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converse does not hold: see the example in [9]. In the proof of [4, Proposition 5], it
is implicitly assumed that 7 is finite-dimensional. Using Lemma 1, we will fill this
gap. In fact the prime ideals of V[X] satistfying the hypotheses of [4, Proposition 5]
always satisfy those hypotheses of Lemma 1 as the next result shows. We also give a
characterization of the prime elements of V[X|], which is an answer to a question posed
in [4].

Corollary 3 (see Arnold [4, Proposition 5]). Let V be an SFT valuation domain (not
necessarily finite-dimensional) and let Q be a prime ideal of V[X].

(1) If ONV =P, PIX]|% Q, and Q# P+ (X), then Q is a principal ideal. In fact,
Q is generated by an element f such that Cy =1.

(2) An element f of V[X] is a prime if and only if either f is irreducible and
Cr=1 or f is an associate of p, where (p) is the maximal ideal of V.

Proof. (1) Let M be the maximal ideal of V. In view of [1, Corollary 3.6], it is obvious
that O & M[X]. Moreover X ¢ Q. Now the conclusion follows from Lemma 1.

(2) Since M?+# M, M is a principal ideal, say M = (p). Let ( f) be a principal ideal
of V[X] which is not an associate of p. Then ( /) & M|X], for otherwise ( /') =P|X]
for a prime ideal P of V [, Corollary 3.6]. In this case, P is a principal ideal and
hence necessarily the maximal ideal M, a contradiction. So Cr=1. For the reverse
implication, let f € V[X] be an irreducible element such that Cy=1 and f is not
an associate of X. It is not difficult to see that X ¢ \/m So there exists a prime
ideal Q minimal over ( /'), which does not contain X. Lemma 1 implies that O is a
principal ideal, say Q =(g). Thus ( /) =(g) since f is irreducible, whence f is a prime
element. []

Let D be a domain, (@) a principal ideal of D, and D the (a)-adic completion of D.
Let 0:D — D be the canonical ring homomorphism and ¢ DX ]]HDA be the natural
ring epimorphism such that (3" a;:X")= > 0(a;)d'.

Lemma 4 (Greco and Salmon [7, Proposition 3.4]). ker o =(X — a) and thus D=
D [X/(X — a).

Proof. Let g=ag + a1 X + -+ aX¥ +--- € ker@. In D, ay + a1a + axa* + - - - =0.
If we regard D as lim D/(a"), then ag € (a), ag + aja € (a®), ap + a1a + axa® € (a®),

.... Let ag=aby, by €D. From ay + aja=aby + aia € (a*), we get a; =ab; — by for
by €D. From ay + a1a + axa® € (a), we get a*b, + ara® €(a®). So a, =ab, — by for
b,y € D. Proceeding this way, we get a,.1 =ab,.| — b, for by, by,...,b,,... in D. From
these, we deduce that ag + a1 X +--- =(X —a)(=by— b1 X —byX? — - — b, X" —--").

[l

Let 0:D— D be the canonical ring homomorphism. Recall that ker 0 = N2, (@)
[5]-
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Lemma 5. Let R be a ring and a an element of R. Then (X —a)RIX|NRC (,2,(a").
If R is a domain, then the converse holds: (X — a)RIX]NR= 2 1(at”)

Proof. Since the diagram

0 R

R———R
|
RIX]

commutes, (X —a)R[X]NRC ker 0= (1,2 ,(a"). Suppose R is a domain. By Lemma 4,
N2 (@) C ker o =(X — a)R[X]. [

Theorem 6. Let V be a valuation domain and a a nonunit element of V. Then X —a
is a prime element of V[X]

Proof. We may assume that a#0. Let P= (1,2 (a"), which is a prime ideal of
V' [6, Theorem 17.1]. P is contained in (X — @) by Lemma 5. It is easy to see
that PIX]C (X — a). By Lemma 5, /(X —a)NV =P where /(X —a) is the nil
radical of (X — a). Passing to V/P, we may assume that (),°,(a")=(0), so that
V(X —a)NV =(0). Pick a prime ideal Q minimal over (X —a) such that 9NV =(0).
(Note that if 9NV #(0) for every O, then QNV 2 \/@, which is the height 1 prime
ideal of V. This leads to /(X —a)NV 2 \/(a_)). Clearly, Q satisfies the hypotheses
of Corollary 2. So Q is a principal ideal, say Q =( f). We claim that ( f)=(X — a).
Since X —ac€Q, X —a= fg for a g€ V[X]. Suppose g is not a unit. Then the co-
efficient of X in fg would not be a unit. So ¢ is a unit and hence X — a is a
prime. [

Theorem 7. Let V be a valuation domain, I a proper ideal of V, and V the I-adic
completion of V. Then I} is a valuation domain and the value group v(V) of V is
isomorphic to v(V/(;2

nl

Proof. If / =12, then [ is a prime ideal by [6, Theorem 17.1]. So ¥ = V/I is a valuation
domain. Now let us assume that 7 # /2. Choose a such that a € I\I?. Since 1> C (a) C 1,
the (a)-adic completion of ¥V is isomorphic to the /-adic completion of V' by the
bounded difference. Thus, we may assume that / is a principal ideal, say I =(a). By
Lemma 4 and Theorem 6, V is a domain. We identify V with VIX)/(X —a). To
prove V is a valuation domain, let /(X)€ V. Let n be such that /(X)=a"g(X) and
atg(X) where g(X)€ V. Such an n exists since ﬂ;’Ol(al’V)—(O) which follows from

the fact that ¥ is complete w.rt. the aV _topology and so 1427 canonlcally _(By
[5, Lemma 10.1, Proposition 10.5], (2,(a’¥V)=(0). Since ﬂl I(a V)c N=(@v),
N (d V)=(0).) Let g(X)=bo + b1X + -+ b, X"+ ---=bo+X(by + bX + )=
bo+a(by + boX + - --)=bo+ah, where h=b,+bX+---. Since a t g(X) in V, a t by in
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V.So by|ain ¥ and a = byc for a nonunit ¢ of V. Now g(X) = bo(1+¢h) and 14-¢h is a
unit since ¢ is a nonunit and ¥ is a local ring. Thus f(X)=a"g(X) = a"bou = ¢'u where
a"by=cc' and u is a unit of V. This completes the proof of the first assertion. Recall
that 7 = (V//ﬂ\ I"). We assume that (1,2, /" = {0}, and under this hypothesis, we show
that v(V) 22 v(V). Then the general case easily follows: u(V) 22 o( V//ﬂ\l” = p(V/NIM).
Let K (resp. F) be the quotient field of V' (resp. V), K* (resp. F*) the nonzero
elements of K (resp. F), and % (resp. ¥") the group of the units of V (resp. 7).
Since the natural ring homomorphism 6: 7 — ¥ is an injection, K can be embedded
into F. Clearly % C ". Next we show that ¥ NV =9%. Let e € ¥ " NV. Then & is a
unit of ¥ = V[X]/(X — a). So &¢M + (X), which is the unique maximal ideal of 7,
where M is the maximal ideal of V. Hence o € M. So « is a unit of V, ie., a €.
From this, we obtain another embedding ¢ : K*/% — F*/¥". It remains to show that
¢ is onto. Let y=(a/b)e F*/7"; a,bc V. As is shown previously, a =cu, b=dv for
c,deV and u,v€¥". Now a/b=(c/d)uv—' = ¢(c/d). So ¢ is onto. []

Theorem 8. Let V be a finite-dimensional valuation domain, I a nonidempotent ideal
of V, and V the I-adic completion of V. Then:
(1) dimV = dim(V/N, 2, I")= dim V/I + 1.
(2) Spec(V)={PV |P&Spec(V) and P2 N2, I"}.
(3) For P, Py € Spec(V) with P, P, (.2, I", AV 2P,V < P, D Py and PV =P,
I} & P =P,

Proof. (1) follows from Theorem 7. In proving (2), we give another proof of (1).
Choose a €1 \I*. As in the proof of Theorem 7, we may assume that / = (a). Since
V%(V/ﬂi\l(a")) and V/(,2,(a") is a valuation domain, we may also assume that
N,2,(a")={0}. So a is contained in the minimal prime ideal P of V. Let O be a prime
ideal of V| X| properly containing (X —a). By Corollary 2 and Theorem 6, O NV # {0}.
So PCONV, which implies P + (X)CQ. So dimV < dim(V[X]/(P + (X)))
+1=dim(V/P)+1=dim(V/[)+1. Let 0C P C --- C P, be the chain of all the prime
ideals of V. The chain 0CP +(X)CP,+(X)C --- TP, + (X) is a chain of prime
ideals of V[X]/(X —a). So dim V>n=dimV/ + 1. Hence dimV =
dimV/[+1=nand so 0CP +(X)CP,+(X)C --- CP,+ (X) is the chain of all
prime ideals of V. Note that P 4+ (X)=PV.

(3) It is routine to check this. [

Now we consider the global case.

Lemma 9. Let D be a finite-dimensional SFT Priifer domain. Let (ay,...,a,) CD be
a proper ideal. Then any prime ideal Q of D[X,,...,X,] containing (X;—ay,...,Xy,—ay)
has height > n.

Proof. Let Qy=0ND[X),...,X,—1]. In [3], it is shown that dimD[X;,...,X,]=
(dimD)n + 1 <oo. According to [1], the power series ring over a non-SFT-ring is
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infinite-Krull-dimensional. From this, we deduce that D[X),...,X,_] is an SFT-ring.
Since Qyp- [[ ﬂC QO and D[Xy,...,X,—1] is an SFT-ring, we have Qo[X,]=
/0o DX, X1 [X,] € O [2, Theorem 1]. Since 1 ¢ 0, X, —a, & QolXa]. So O[]
CQ. By 1nduct10n on n, we get the inequality ht Qo >n — 1, so that ht Qy[X,]
>n—1 (note that (X; — ay,...,Xp—1 — an—1) C Qo). So ht O > n. For the case n=1,
note that any prime ideal containing X — a is nonzero, and thus ht 9 > 1. [J

Let D be a commutative ring, / an ideal of D, D the I-adic completion of D, and
S={i,|acA} a generating set of /. Let 0:D— D be the canonical mapping and
@ :D[{X, |a € A}], — D the canonical epimorphism defined by ¢(X,)=0(i,) for each
a€A4 and ¢(d)=0(d) for d € D. For the definition of the second type power series
ring D[{X, |« € A}],, readers are referred to [6, p. 6].

Lemma 10. If Q is a prime ideal of D[{X, |« € A}], containing ker ¢, then the radical
VT of I and QN D are not coprime. If f € ker ¢, then the constant term of f is in I.

Proof. Suppose /I +QND=D. For an xc+/I and a dc€ QND, x+d=1. Choose [
so that x’ € 1. For an e€ QN D, we have x' +e=1. Put y=x'. Since y€1, y=d,i; +

cetdiiy for dy,...,dyeD and iy,...,iy €S. Put h=—d (X1 —i;)— - - —dp(Xx —ix ) +e.
Then h € Q since (X|—iy,..., Xy —i)C keropCQ and ec QND. Now h=(di;+-- -+
diig)+e—d\ X1 —dryXo— - —dp Xy =1—d | X] —- - - —di X is a unit in D[[{X“ | OCEAH]Q,

which contradicts that Q # (1). So v/I and QN D are not coprime. Let f =ag + f +
f2+4--+ € ker ¢, where f; is homogeneous of degree i in D[{X, |« € A}]. If we realize
D as the inverse limit lim D/I", then 0= @( /)= (do,a0 + f1(Xsy =i, | € A),...). Since
ay=0in D/I, agel. O

Let D be a finite-dimensional SFT Priifer domain, / =(ay,...,a,) a finitely generated
proper ideal of D, D the I-adic completion of D, and ¢ the canonical ring epimorphism
from D[X),...,X,] to D. For a nonzero prime ideal P of D, we denote by %(P) the
prime ideal of D just below P.

Lemma 11. Let D be a finite-dimensional SFT Priifer domain. Suppose the radi-
cal T of I is a prime ideal P. Then (1) the prime ideal P + (X,,...,X,) is not
minimal over ker ¢ and (2) if Q is a minimal prime ideal of ker ¢, then QND=
B(P).

Proof. (1) P & \/ker ¢. For otherwise some power of P is contained in ker ¢ N D,
which is ()~ 1" = %(P). This would lead to the contradiction P C #(P). Thus P &
Vker ¢ and so there exists a prime ideal Q minimal over ker ¢ such that P & Q. By
Lemma 10, QN D and P are not coprime. Since D is a Priifer domain, this implies
that QN D and P are comparable. So either QND C P or PC QN D. However P £ Q.
So ONDCP. Since #(P)CONDCP, QND=2%(P). Let O, be a prime ideal just
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above Q so that height (Q;/Q)=1. By Lemma 9, height O >n in (D/B(PYX1,. ... X],
and so height Q; ># + 1, from which it follows that P, =Q, "D # {0} [3, Lemma
3.5]. By [4, Lemma 1], O, CP + (Xi,...,X,) and ht(P/%(P))=1. Since I C P,
P=+VICP andso P=P,. Since kerg COQC Q| CP +(X1,....X,)=P+(Xy,....X,),
P+ (Xi,...,X,) is not minimal over ker ¢. (2) Let O be a minimal prime ideal of
ker ¢. By (1), P £ Q. Then the proof of (1) validates the claim. [

Theorem 12. Let D be a finite-dimensional SFT Priifer domain, I a proper ideal of
D, and D the I-adic completion of D. Then dim D= dim D/I + 1.

Proof. Let P,,..., P, be the minimal primes of 7 [1, Corollary 2.6]. VIi=PN---NP,.
For any >0, (VI)'=P/Nn--- NP, =P!-..P! since P/,...,P. are pairwise coprime.
By the Chinese remainder theorem, D/(v/1)'=D/P/@---®D/P.. So D=D,&---
@ D,,, where D; is the P-adic completion of D. Since dimD= max;(dim ﬁi), we will
assume that v//=P is a prime ideal and /= (ai,...,a,). Let (p:D[[Xl,...,X,,]]—>DA
be the canonical ring epimorphism. Since ﬁ%(D/ﬂ/mil I'™), we may assume that
Moo, 1™ ={0}. Since B(P)= (o, P"= 1, I"={0}, htP=1. Let /= dim D and
kerop CQyC --- CQ; be a chain of prime ideals which gives the dimension /. By
Lemma 9, ht Oy > n. By [3, Lemma 3.5], Oy "D #{0}. By Lemma 10, P and Q; N D
are comparable. Since O, ND#{0} and htP=1, PCO;ND. So (Xi,...,X;)C
0; and hence P + (Xi,...,X,)C Q;. From this, we deduce that / — 1< dim D/P.
So /< dimD/P + 1=dimD/I + 1. For the reverse inequality, let m= dim D/l
and let /CPyC --- CB, be a chain of prime ideals of D which gives the
dimension of D/I. By Lemma 10, ker o CI + (X1,...,X,) C Py + (X1,...,X,). Now
kerp C Py + (X1,...,X,)C -+ CP, + (X1,-..,X,). By Lemma 11, Py + (X1,..., X))
is not minimal over ker . So dimD>m + 1= dimD/I + 1. Therefore, dimD=
dimD/I + 1. O

Lemma 13. Let R be a ring, I a finitely generated ideal of R such that (2, 1" =(0),
and R the I-adic completion of R. Then
(1) I”Iéz(l/"\) and so R/I"=R/I"R canonically,
(2) if M is a maximal ideal of R such that I CM, then MR is a maximal ideal
of R and MR=M, and
(3) Max(R)={M | M € Max(R) and M D1}.

Proof. (1) By [5, Proposition 10.13], I”ﬁ:U/”\). By [5, Proposition 10.4], R/I" =
1@/(1/"\) So R/I"=R/I"R. (2) Let [ =(ay,...,a;). We identify R with R[X),...,X;]/ker ¢
through the canonical ring epimorphism ¢ : R[X,...,X]] — R. Obviously ker ¢ D (X; —
ay,....X; —a). So M + (X — ay,....X; — a))=M + (X,,...,X;). Since MRD
M+X —an,.... X —a;), MRDOM + (X1,...,X;). Now M+ (X,,...,X;)CMRC
M g}%. Since M + (X,...,X;) is a maximal ideal of R[X,...,X,]/ker ¢, we conclude
that M + (X1,...,X;)=MR=M. (3) Statement (2) implies Max(R)D{M |M e
Max(R) and M D7}. Every maximal ideal of R[Xj,...,X;J/ker¢ is of the form
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M + (Xi,...,X;), where M is a maximal ideal of R and M + (Xi,...,X)) 2 ker ¢.
Since X —ay,...,X;—a; € ker @, (ai,...,a;) CM. Also note that M + (X1,..., X)) =M
(R[X,, ..., Xi]/ker ) =MR. []

We present a partial converse of Theorem 7.

Lemma 14. Let R be a ring and I a finitely generated ideal of R such that ()2,
=(0) and I is contained in the Jacobson radical J(R) of R. If the I-adic completion
R of R is a valuation domain, then R is also a valuation domain.

Proof. Since (2, /"=(0), R can be embedded into R through the canonical ho-
momorphism 6:R—R. So R is an integral domain. Let K be the quotient field of
R. Since R is a valuation domain, RNK is also a valuation domain. We claim that
RNK =R. Tt suffices to show that tRNR=aR for all a€R. Let 0#acR. Since
ﬂ;’i i nR = (0) and R is a valuation domain, there exists an n>1 such that I"R - ak.
So " gaR N R. From this and the fact that a]éﬂRQ ﬂ,fil(aR + [k), it follows that
aR+1"=aR+1""' = -... Let R=R/aR, I = (I + aR)/aR. Then I is a finitely generated
ideal of R and 7 CJ(R). Recall that aR + I" =aR + I"*'. From this, we get another
observation that (/)" =(I")=(I""')=(I)"*'. By Nakayama’s Lemma, (/)" =0, i.c.,
I" +aR C aR. Thus, aRNR CI" + aR = aR, and hence aRNR=aR. [

Theorem 15. Let D be an SFT Priifer domain, I a proper ideal of D, and D the
I-adic completion of D. Then:

(1) D is an SFT Priifer ring.

(2) D is an SFT Priifer domain if and only if radical /I of 1 is a prime ideal.

Proof. Let {P,...,P.} be the set of minimal prlme ideals of 7. As is shown in the
proof of Theorem 12, D D1 - EBDr, where D is the P-adic completion of D
for i=1,...,r. Now, let P be a prime ideal of D and D the P-adic completion of
D. We will show that D is a Priifer domain. Put Q= N2, P". Then Q is a prime
ideal of D [6, Theorem 23.3(b) and (d)] and D/Q is an SFT Priifer domain [3]. Since
D%(@), we may assume that O =(0), i.e., ()2, P"=(0). Since D is an SFT-ring,
there exists a finitely generated ideal J of D contained in P and />1 such that
P! CJ. Then, by the bounded difference, the P-adic completion of D is isomorphic to
the J-adic completion of D. Now we replace P by J. Let M € Max(D) be such that
M DJ. The natural mapping DA—1>(5A;) is an injection: let x = (¥,%;,---) € lim D/J"
be such that i(x)=(X,X2,---)=0 in lim Dy/J"Dy. For an arbitrary integer k > 1,
xi €JIENDCPkND=P* CJ*. Since X =%y in D/J*, % =0 in D/J* for all k> 1,
which implies that x=0 and so : is an injection. Since D), is a valuation domain,
(5;) is also a/v\aluation domain by Theorem 7. So the subring D is an integral domain.

Note that (Dy,5)=1im (D,;5/J"Dy5)=1im (D/J"D),p,up =lim (D/(J") o =

lim (D/J" )pyn = 1im Dy /T3y :(5]‘;), where [6, Proposition 5.8] is used for the first
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isomorphism and the fourth, the second isomorphism follows from Lemma 13, and the

third isomorphism follows from Lemma 13 and [5, Corollary 10.4]. Thus (ﬁMﬁ) g (l/)];)
is a valuation domain. We observed that ﬁ#(m) is an injection. We claim that
D\MDC the set of units of (DM) so that 1 induces an embedding DMD—>(DM)
Since MDM NnD DMD MD is a max1mal ideal of D (Lemma 13) and 1§ZMDM, we
have MDM ND=MD. So D\MD C DM \MDM. By Theorem 7, MDM is a maximal ideal
of the valuation domain (5; ), i.e., the unique maximal ideal of (l/)j; ). Thus D\Mﬁ

is a set of units of (Dy). Let ¢ be the natural isomorphism (Dys)— (D,,s) obtained

earlier. Consider the composition D, Q(DM)H(DMD), which is identical with the

natural ring homomorphism 0 : ﬁMﬁ — (DM 5)s 1.6, 0=¢ o1 Since 1 an injection and ¢
is an isomorphism, 0 = ¢ o1 is an injection and hence ﬂ,?il(J”ﬁMﬁ) = ker 6 =(0). By
Lemma 14, DAMﬁ is also a valuation domain. In view of Lemma 13, Max(D) = {MD |
M eMax(D) and M DJ}. Hence D is a Priifer domain. This completes the ‘if* half
of (2). In the general case, DD, @---@®D,, where each D; is a Priifer domain. So D
is a Priifer domain if and only if » =1, i.e., v// =P is a prime ideal. Thus (2) is done.
We are ready to prove (1). Put Q; =D& - ®Di_ D {0} ®Dii1@®---@®D,. Then the
set of minimal prime ideals of D is {01,-..,0,} and 01 N---NQO,={0}. So Dis a
reduced ring. Note that D/Q; 2 D;. Let K; be the quotient field of D;. By [8, Lemma
8.14], the total quotient ring T (D) of D is given by T (D)2K, @®---®K,. Let S be
an overring of D. Then, S=mn(S)® - -- ® 7n.(S), where m;: T(D)—>K is the natural
projection. Since D; is a Priifer domain and 7;(S) is an overring of D;, we have n,(S )
is integrally closed [6, Theorem 26.2] and therefore S is also integrally closed in T(D).
Thus each overring of the ring D is integrally closed and hence D is a Priifer ring [8,
Theorem 6.2]. [J

In [4], Arnold showed that for an SFT Priifer domain D, D[X;,...,X,] is not cate-
narian if and only if dimD >2 and n>2. However, the completion D, which is a
quotient ring of some power series ring D[X,...,X,], turns out to be catenarian as is
shown in the following corollary.

Corollary 16. If D is a finite-dimensional SFT Priifer domain, then D is a catenarian
ring.

Proof. Let /I=P N --- NP, where P,,...,P, are the minimal primes of /. As is
shown in the proof of Theorem 12, D @l 1D,, where D; is the P-adic completlon
of D. It suffices to show that each D; is catenarian, which is the case since D; is a
Priifer domain by Theorem 15. [

Definition. A partially ordered set S is called a tree if every incomparable two ele-
ments do not have an upper bound in S. Two trees are said to be isomorphic if there
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exists between them a bijection which preserves partial orders. For a Priifer domain D,
Spec(D) is a tree w.r.t. the set-theoretic inclusion.

Definition. For a commutative ring R, X'(R)={P|P € Spec(R) and ht(P)=i} and
Spect(R)={P | P € Spec(R) and ht(P)>0}.

Corollary 17. Let D be a finite-dimensional SFT Priifer domain and let m be the
number of minimal prime ideals of 1.
(1) Both X°(D) and X (D) are m-point sets.
(2) Spec™(D)={0D|Q € Spec(D) and Q DI}.
(3) For Q) and Q,€Spec™ (D), Q1=0,<07'(01)=0""(Q2), and 0,20,
0=1(0,)2071(0Q,), where 0:D — D is the canonical ring homomorphism.
(4) Spec™(D)=Spec(D/I) as trees.

Proof. (1) and (2) First we prove the corollary for the case when / is a prime ideal
P. Since D is an SFT-ring, there exists a finitely generated ideal J = (a,...,a,) such
that v/J = P. The J-adic completion of D is isomorphic to the P-adic completion of
D. Let (p:D[[Xl,...,Xn}]HDA be the canonical epimorphism. We will give a complete
description of Spec(D): (0) is the minimal prime ideal, the prime ideal P + (X1,...,X,)
is the unique height 1 prime ideal of D, and the other prime ideals are precisely the set
{P"+ (Xi,...,X,) | P’ is a prime ideal of D such that P’ D P}. Let Oy C Q; be prime
ideals in D[Xj,...,X,] such that ker ¢ =y (see Theorem 15.). As in the proof of
Lemma 11(1), one can easily show that O, "D 2 #(P). By Lemma 10, P and Q; N D
are comparable. Hence, P C O; N D. For otherwise Z(P)C 01 ND C P, a contradiction.
So P+ (X1,...,X,) C O; and hence O, =P + (Xi,...,X,) for a prime ideal P, of D
such that P, D P.

Back to the general case, let VI=PN---NP,, where P,,...,P,, are minimal prime
ideals of 1. As in the proof of Theorem 12, 15%51 D--- @ﬁm. A nonminimal prime
ideal of D is of the form D, &@--- a0 d--- @ D,,, where Q! is a nonzero
prime ideal of D;. By the special case, we have Qf = 0:D;, where O, € Spec(D) and
0;2P. Now D@ @Q/®- ®Dy=D1®- - ®OD; & ®Dp=0i(D1®--- D
D;i@---® D,,)=Q:D. (Note that if a prime ideal Q of D contains P, then Q 2 P; for
any j#i since P and P, i # j, are incomparable. So Qﬁj =(1). Moreover, if a prime
ideal O of D contains /7=P, N---NP,, then O contains exactly one P, since D is a
Priifer domain.) Statements (1) and (2) are completed. It is routine to check (3) and
4). O

Remark. In the local case, Spec(I})% Spec(V/N), 2, 1") (see Theorems 7 or 8). How-
ever, Spec(ﬁ) 2 Spec(D/N), 2, I") if there are prime ideals of D (other than P,...,P,)
that are just above #(P,),. .., B(Py). Moreover, Spec(D) < Spec(D/(,=, I") if it hap-
pens that #(P,)=#(P;) for distinct i #j, which would force |X°(D/N2, I")|<m=

n=1
IX°(D).
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We give a pictogram of the spectrum of D in terms of prime ideals in the power
series, where D is the completion of D w.r.t. the prime ideal P:

o <P31+(X%,...,Xn)<

Py +(X,... :
P+ (X ,...,Xn)<
P22+(X1,...,X,,)< :
ker @ -P+ (Xla‘ . -an)
P3k+(X1,...,X,,)<
P2k+(X1,...,Xn)< :
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