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Abstract

The Leverrier—Chebyshev algorithm is presented. Itis an extension of the Leverrier—Fadeev
algorithm for simultaneous computation of the adjoBw) and determinant () of the
singular penciluE — A, whereE is singular, but detuE — A) = 0. We express thé ()
anda(w) relative to a basis of orthogonal Chebyshev polynomial, and as such solve a problem
of S. Barnett. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

It is clearly seen that the Leverrier—Fadeev algorithm can be applied to compute
the matrixiI — A [1], wherel denotes the x n unit matrix, and dgi./ — A) # 0.
Let

O — A~ =B /a(), @
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where

BV =adiAl — A) = A" 4 A" 2By -+ ABu2 + Byt @)
and

a) =dethd — A) = A"+ @A T+ -+ Gy + dp. €)
Then the coefficients; and the matrice®; can be found alternatively from

1 -
ai = —1trA, sz:—%tr(ABk_l), k=23, ...,n, 4)
B1=A+Zzl[, ékZ&kI—i-Aékf]_, k=2,3,....,n—1, (5)

where tr denotes the trace.

In [2], the Leverrier—Fadeev algorithm is extended to the case whenAeth
anda(A) are expressed relative to a baghs(1)} of orthogonal polynomials. These
can be defined by the standard three-term recurrence relation [3]

Pi(2) = (aih + Bi) Pi—1(A) —yvi Pi2(b), 1 22, (6)
with Po(A) =1, P1(A) = a1k + B1.
Expressions (2) and (3) are replaced by the generalized polynomial forms
Py—1(A)Bo+ Pp—2(A)B1 + -+ -+ Po(A) By—1
Oll “ e an_l ’
Py(A) +a1Pp—1(A) + - - -+ a, Po())
al e an ’

B(\) = adjAl — A) =

@)

a(r) = deth] — A) =

8

where the scaling factors are necessary because the coefficieftinfP, (1) is
Q1002 - - Oy,

a
Bo=1, Bi=ay1 (—11+@Bo+ABo>, ©)
n (o 47]
a —k4+2 _
By = ay— <—k1 — Mkaz + Mkal -I-ABkl) ,
Op Opn—k+2 On—k+1
k=23, ....,n—1 (20)

and

a1 = —ay, (trA +y g) . (11)
i=1 "'

The other coeffients in (8) can be obtained by
da(X)
da

In this paper, an algorithm for simultaneous computing the ad@int) and the
determinantz(w) of the singular pencilkE — A is given, whereE is singular, but

=trB(\). (12)
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det(wE — A) # 0, which arises in singular linear control problem [6,7]. The adjoint
B(w) and the determinant(.) are expressed with respect to a basis of Chebyshev
orthogonal polynomial.

2. General orthogonal basis

Identities (9)—(12) remain valid i is replaced by a matrid (), and likewise
ay by ax () and By by B () for some indeterminatg. i.e.,

Py(A) +ar() Po—1(A) + - - - + a, (u) Po(A)

a(r) = detal — A(n)) =

al PR an
(13)
B() = adj(x ] — A(w))
 Puca)Bo() + Pu20)Ba() + - + Po() Bu-1(11) (1)
- al .« .. an_l ’
Bo(u) = 1. BNU=%4(%WI+%BWU+MW%WO7 (15)
Bkui)=:an_k(“k(“)1——’%‘k+23k_zut)+—fi:filBk_luw
oy Oy —k+42 Opn—k+1
+A(,u)Bk_1(,u)), k=23 ...,n—1, (16)
and
B n ﬂl
ar(u) = —oy (tr A(u) + -~ (17)
i=1 !
da(v) . -
—g = @Bo. (18)

The case of interest id(n) = —uE + A, whereE is singular but deét-y E +
A) # 0. It follows from (13) and (14), we have

a(p) = det(nE — A)

=a(0)
_ Py (0) + a1(u)Ppr—1(0) + - - - 4+ a, (u) Po(0) 7 (19)
10y
B(u) = adi(uE — A)
= B(0)
_ Py—1(0)Bo(i) + Py—2(0) B1(p) + - - - + Po(0) By—1(u) (20)

o] 0p—1
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and

da(w)

du

In principle, we can solve this problem, but in practice it is too complicated

for the expressions which are obtained for a general basis of orthogonal
polynomial.

= tr (B(p)). (21)

3. Leverrier—Chebyshev algorithm

We consider the second kind of Chebyshev polynomials defined by

S1(p) =, Si(u) = pSi—1(n) — Si—2(w). (22)
Sincea; =1, B; =0, y; =1 Vi, Eq. (16) reduces to
Br(p) = ar ()1 — Br—2(w) + A(p) B-1(n), k= 2. (23)

Taking the trace of both side of (23), and using the method in [2], we have

—kar () = tr (A(u)Br—1(n)) — 2(n — k + D(ar—2(p) + ag—a(n) + -+,
k> 2. (24)

Since the degree &, (1) isk, then itis seen from (23) and (24) that the degree of
the polynomial matrixB; (1), k =1,2,...,n — 1, and of the polynomial quantity

ar(n), k=1,2,...,n,is atmost equal te. HenceB; (i) anda; (1) can be written
as
i
Bi(uw) =) BuxSi(w). i=12..n-1 (25)
k=0
i
ai(w) =Y aixSk (), i=12...n (26)
k=0

Substituting (25) and (26) in the recursive relationgw), k=1,2,...,n, and
Br(w), k=1,2,...,n—1,in(24), and we use (22) to get

wSi—1(u) = S;(w) + Si—2(w), i =2, (27)
then we obtain the following general relations by equating the coefficients of
the orthogonal polynomials;(x), i =0,1,...,k, on the two sides of each
equation.

Leverrier—Chebyshev algorithm. The coefficientss; x in (26) andB; x in (25),
when the basis is the set of Chebyshev polynomials, are sequentially given by
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a0 = —1r(A),
a1 =1E,
1 ) . 2 : . .
a0 =—3tr[ABi_10—EBi_11] 4+ (n —i + D[aji—20+ai—a0+ -],
aix = —tr[ABi_1x — EBi_14-1 — EBi_1441] (28)
—i—%(n —i+1)[ai72,k+ai74,k+~'], k=212...,i—=2,

aii—1=—*tr[ABi_1;-1 — EBi_1,_2],
ai; = l—:!'tl' [EB,',]_,,',]_] i>2

Bio=aiol + A,

Bii1=a11l - E,

Bio=ai0l + Bi—20+ABi_10—EB_11,

Bix=aix+Bi 2k —EBi_14-1—EB_1441+AB 14, (29)
k=12,...,i —2,

Biji1=a;; 1] —EB_1; 2+ AB_1; 1,

Bii=a;;l —EB_1,_1, i>2

4., Example
Consider
1 -4 -1 -4 10 0
2 0 5 -4 0 0 0O
A=1_1 1 -2 3" £=|o o 1 ol
-1 4 -1 6 0 0 0 1
By definition, we know
a(p) = det(pE — A) = 19u° — 154 + 2
and
B(n) = adj(uE — A)
1y — 2 —4u® — 42 —20u + 8 164 — 4
|2t -9 +1 uP 547 —10u+8 5u® —33u+22 —4u+3u -5
B 2u u?2+9u—6 241 — 16 —4p+ 4

8u—1 42+ Tu—6 20u — 16 3u+3
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Now we apply Leverrier—Chebyshev Algorithm in Section 3. From (28) and (29),
ayo = —trA = -5, a1 = trE =3,
which give

—4 -4 -1 -4
2 -5 5 -4
1 1 -7 3|
1 4 -1 1

Big=aiol + A=

Bii1=a11] — E =

QO OoON
OO wo
O N OO
N OO

From (28),

az 0= —3tr (AByo — EBy 1) + 3ag0 = 15,
az1= —%U (AB11 — EB10) = —10,
az2= Str(EBy1) =3,

and hence from (29) we have

5 -1 -10

-9 -5 -33 3
5 9 29 -3\’
7 7 22 3

Bzo=az0l — Boo+ AByog—EB 1 =

—4 -8 -1 -4
4  -10 10 -8

Bo1=az1l —EB1o+AB11 = _1 2 _7 3]

1 8 -1 1
1 0 O
0 3 0 O
Byo=uap2l —EB11 = 00 1 0
0 0 0 1

Applying (28), this leads to

aso= —3tr (ABzo — EBz1) + 3a10 = —22
az1= —3tr (ABy1 — EBy0 — EB2) + 3a11 = 36,
az2= —3tr (ABy2 — EBp1) = —5,

azz= 3tr (EBy) = 1.
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From (29) we obtain

-6 -6 7 -8
5 -2 32 -13
B3og=a3o0l — B1o+AByo—EBy1 = 1 4 _23 7 |
2 2 17 4

13 -1 -20 1
-9 -5 -33 3
9 26 -4 |’

Bz =a31] — B11 —EByo—EBy2+ABy1 = >
8 7 20 5

0 -4 O 0
B3p =az2l —EBp1+ ABpp = (2) —i g _1(1),
0 4 0 0
0 0 O
B33z =az3l —EBp, = 8 é 8 8
0 0 0 O

Finally,

as,0 = —3tr (AB3 0 — EBg 1) + 3(az,0 + a0,0) = 35,

as1= —3tr (ABg1 — EBgo — EBg2) + 2a21 = —25,

as = —7tr (AB3 2 —EBg1 — EBg3) + 3a22 = 22

as3= —3tr (ABzz — EB32) = 0,

ag4= Str(EBg3) =0,
Thus, the adjoinB(r) and the determinant(ut) of wE — A is given by (20) and
(19) as

a(p) = S$4(0) + a1(n)S3(0) + az(u) $2(0) + az()$1(0) + aa(i)So(0)

=1—ax(n) + as(w)
= 21So(p) — 15S1(1) + 19S2(1).

B(n) = $3(0) Bo(n) + S2(0) B1(i) + S1(0) B2(w) + So(0) B3(1)
= —B1(u) + B3(u)
= (B30 — B1,0)So(nt) + (B31 — B1,1)S1(u) + B3 282(1) + B3 353(1).

Note. Both B(u) anda () can be expressed relative to a basis of Hermite, Legendre
or Laguerre polynomials too, it is omitted here.
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