LINEAR ALGEBRA
AND ITS
APPLICATIONS

Leverrier-Chebyshev algorithm for the singular pencils

Guo-rong Wang *, ${ }^{*}$, Lin Qiu
School of Mathematical Sciences, Shanghai Normal University, Shanghai 200234, People's Republic of China

Received 18 November 1996; accepted 29 June 2001
Submitted by R.A. Brualdi

Abstract

The Leverrier-Chebyshev algorithm is presented. It is an extension of the Leverrier-Fadeev algorithm for simultaneous computation of the adjoint $B(\mu)$ and determinant $a(\mu)$ of the singular pencil $\mu E-A$, where E is singular, but $\operatorname{det}(\mu E-A) \not \equiv 0$. We express the $B(\mu)$ and $a(\mu)$ relative to a basis of orthogonal Chebyshev polynomial, and as such solve a problem of S. Barnett. © 2002 Elsevier Science Inc. All rights reserved.

AMS classification: 15A09; 15A22; 33C45
Keywords: Singular pencil; Adjoint; Determinant; Orthogonal polynomial

1. Introduction

It is clearly seen that the Leverrier-Fadeev algorithm can be applied to compute the matrix $\lambda I-A[1]$, where I denotes the $n \times n$ unit matrix, and $\operatorname{det}(\lambda I-A) \neq 0$. Let

$$
\begin{equation*}
(\lambda I-A)^{-1}=B(\lambda) / a(\lambda), \tag{1}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
B(\lambda)=\operatorname{adj}(\lambda I-A)=\lambda^{n-1} I+\lambda^{n-2} \tilde{B}_{1}+\cdots+\lambda \tilde{B}_{n-2}+\tilde{B}_{n-1} \tag{2}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
a(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{n}+\tilde{a}_{1} \lambda^{n-1}+\cdots+\tilde{a}_{n-1} \lambda+\tilde{a}_{n} . \tag{3}
\end{equation*}
$$

Then the coefficients a_{k} and the matrices B_{k} can be found alternatively from

$$
\begin{align*}
& \tilde{a}_{1}=-\operatorname{tr} A, \quad \tilde{a}_{k}=-\frac{1}{k} \operatorname{tr}\left(A \tilde{B}_{k-1}\right), \quad k=2,3, \ldots, n, \tag{4}\\
& \tilde{B}_{1}=A+\tilde{a}_{1} I, \quad \tilde{B}_{k}=\tilde{a}_{k} I+A \tilde{B}_{k-1}, \quad k=2,3, \ldots, n-1, \tag{5}
\end{align*}
$$

where tr denotes the trace.
In [2], the Leverrier-Fadeev algorithm is extended to the case when both $B(\lambda)$ and $a(\lambda)$ are expressed relative to a basis $\left\{P_{i}(\lambda)\right\}$ of orthogonal polynomials. These can be defined by the standard three-term recurrence relation [3]

$$
\begin{equation*}
P_{i}(\lambda)=\left(\alpha_{i} \lambda+\beta_{i}\right) P_{i-1}(\lambda)-\gamma_{i} P_{i-2}(\lambda), \quad i \geqslant 2, \tag{6}
\end{equation*}
$$

with $P_{0}(\lambda)=1, P_{1}(\lambda)=\alpha_{1} \lambda+\beta_{1}$.
Expressions (2) and (3) are replaced by the generalized polynomial forms

$$
\begin{align*}
& B(\lambda)=\operatorname{adj}(\lambda I-A)=\frac{P_{n-1}(\lambda) B_{0}+P_{n-2}(\lambda) B_{1}+\cdots+P_{0}(\lambda) B_{n-1}}{\alpha_{1} \cdots \alpha_{n-1}}, \tag{7}\\
& a(\lambda)=\operatorname{det}(\lambda I-A)=\frac{P_{n}(\lambda)+a_{1} P_{n-1}(\lambda)+\cdots+a_{n} P_{0}(\lambda)}{\alpha_{1} \cdots \alpha_{n}}, \tag{8}
\end{align*}
$$

where the scaling factors are necessary because the coefficient of λ^{n} in $P_{n}(\lambda)$ is $\alpha_{1} \alpha_{2} \cdots \alpha_{n}$,

$$
\begin{align*}
B_{0} & =I, \quad B_{1}=\alpha_{n-1}\left(\frac{a_{1}}{\alpha_{n}} I+\frac{\beta_{n}}{\alpha_{n}} B_{0}+A B_{0}\right), \tag{9}\\
B_{k} & =\alpha_{n-k}\left(\frac{a_{k}}{\alpha_{n}} I-\frac{\gamma_{n-k+2}}{\alpha_{n-k+2}} B_{k-2}+\frac{\beta_{n-k+1}}{\alpha_{n-k+1}} B_{k-1}+A B_{k-1}\right), \\
k & =2,3, \ldots, n-1 \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
a_{1}=-\alpha_{n}\left(\operatorname{tr} A+\sum_{i=1}^{n} \frac{\beta_{i}}{\alpha_{i}}\right) . \tag{11}
\end{equation*}
$$

The other coeffients in (8) can be obtained by

$$
\begin{equation*}
\frac{\mathrm{d} a(\lambda)}{\mathrm{d} \lambda}=\operatorname{tr} B(\lambda) . \tag{12}
\end{equation*}
$$

In this paper, an algorithm for simultaneous computing the adjoint $B(\mu)$ and the determinant $a(\mu)$ of the singular pencil $\mu E-A$ is given, where E is singular, but
$\operatorname{det}(\mu E-A) \not \equiv 0$, which arises in singular linear control problem [6,7]. The adjoint $B(\mu)$ and the determinant $a(\mu)$ are expressed with respect to a basis of Chebyshev orthogonal polynomial.

2. General orthogonal basis

Identities (9)-(12) remain valid if A is replaced by a matrix $A(\mu)$, and likewise a_{k} by $a_{k}(\mu)$ and B_{k} by $B_{k}(\mu)$ for some indeterminate μ. i.e.,

$$
\begin{align*}
& \tilde{a}(\lambda)=\operatorname{det}(\lambda I-A(\mu))=\frac{P_{n}(\lambda)+a_{1}(\mu) P_{n-1}(\lambda)+\cdots+a_{n}(\mu) P_{0}(\lambda)}{\alpha_{1} \cdots \alpha_{n}}, \tag{13}\\
& \tilde{B}(\lambda)= \\
& =\frac{\operatorname{adj}(\lambda I-A(\mu))}{P_{n-1}(\lambda) B_{0}(\mu)+P_{n-2}(\lambda) B_{1}(\mu)+\cdots+P_{0}(\lambda) B_{n-1}(\mu)} \tag{14}\\
& \alpha_{1} \cdots \alpha_{n-1}
\end{aligned}, \quad \begin{aligned}
& B_{0}(\mu)=I, \quad B_{1}(\mu)=\alpha_{n-1}\left(\frac{a_{1}(\mu)}{\alpha_{n}} I+\frac{\beta_{n}}{\alpha_{n}} B_{0}(\mu)+A(\mu) B_{0}(\mu)\right), \tag{15}\\
& B_{k}(\mu)= \alpha_{n-k}\left(\frac{a_{k}(\mu)}{\alpha_{n}} I-\frac{\gamma_{n-k+2}}{\alpha_{n-k+2}} B_{k-2}(\mu)+\frac{\beta_{n-k+1}}{\alpha_{n-k+1}} B_{k-1}(\mu)\right. \\
&\left.\quad+A(\mu) B_{k-1}(\mu)\right), \quad k=2,3, \ldots, n-1, \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
& a_{1}(\mu)=-\alpha_{n}\left(\operatorname{tr} A(\mu)+\sum_{i=1}^{n} \frac{\beta_{i}}{\alpha_{i}}\right), \tag{17}\\
& \frac{\mathrm{d} \tilde{a}(\lambda)}{\mathrm{d} \lambda}=\operatorname{tr}(\tilde{B}(\lambda)) \tag{18}
\end{align*}
$$

The case of interest is $A(\mu)=-\mu E+A$, where E is singular but $\operatorname{det}(-\mu E+$ $A) \not \equiv 0$. It follows from (13) and (14), we have

$$
\begin{align*}
a(\mu) & =\operatorname{det}(\mu E-A) \\
& =\tilde{a}(0) \\
& =\frac{P_{n}(0)+a_{1}(\mu) P_{n-1}(0)+\cdots+a_{n}(\mu) P_{0}(0)}{\alpha_{1} \cdots \alpha_{n}}, \tag{19}\\
B(\mu) & =\operatorname{adj}(\mu E-A) \\
& =\tilde{B}(0) \\
& =\frac{P_{n-1}(0) B_{0}(\mu)+P_{n-2}(0) B_{1}(\mu)+\cdots+P_{0}(0) B_{n-1}(\mu)}{\alpha_{1} \cdots \alpha_{n-1}} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} a(\mu)}{\mathrm{d} \mu}=\operatorname{tr}(B(\mu)) . \tag{21}
\end{equation*}
$$

In principle, we can solve this problem, but in practice it is too complicated for the expressions which are obtained for a general basis of orthogonal polynomial.

3. Leverrier-Chebyshev algorithm

We consider the second kind of Chebyshev polynomials defined by

$$
\begin{equation*}
S_{1}(\mu)=\mu, \quad S_{i}(\mu)=\mu S_{i-1}(\mu)-S_{i-2}(\mu) . \tag{22}
\end{equation*}
$$

Since $\alpha_{i}=1, \beta_{i}=0, \gamma_{i}=1 \forall i$, Eq. (16) reduces to

$$
\begin{equation*}
B_{k}(\mu)=a_{k}(\mu) I-B_{k-2}(\mu)+A(\mu) B_{k-1}(\mu), \quad k \geqslant 2 . \tag{23}
\end{equation*}
$$

Taking the trace of both side of (23), and using the method in [2], we have

$$
\begin{align*}
& -k a_{k}(\mu)=\operatorname{tr}\left(A(\mu) B_{k-1}(\mu)\right)-2(n-k+1)\left(a_{k-2}(\mu)+a_{k-4}(\mu)+\cdots\right), \\
& \quad k \geqslant 2 . \tag{24}
\end{align*}
$$

Since the degree of $S_{k}(\mu)$ is k, then it is seen from (23) and (24) that the degree of the polynomial matrix $B_{k}(\mu), k=1,2, \ldots, n-1$, and of the polynomial quantity $a_{k}(\mu), k=1,2, \ldots, n$, is at most equal to k. Hence $B_{i}(\mu)$ and $a_{i}(\mu)$ can be written as

$$
\begin{align*}
& B_{i}(\mu)=\sum_{k=0}^{i} B_{i, k} S_{k}(\mu), \quad i=1,2, \ldots, n-1, \tag{25}\\
& a_{i}(\mu)=\sum_{k=0}^{i} a_{i, k} S_{k}(\mu), \quad i=1,2, \ldots, n \tag{26}
\end{align*}
$$

Substituting (25) and (26) in the recursive relations $a_{k}(\mu), k=1,2, \ldots, n$, and $B_{k}(\mu), k=1,2, \ldots, n-1$, in (24), and we use (22) to get

$$
\begin{equation*}
\mu S_{i-1}(\mu)=S_{i}(\mu)+S_{i-2}(\mu), \quad i \geqslant 2, \tag{27}
\end{equation*}
$$

then we obtain the following general relations by equating the coefficients of the orthogonal polynomials $S_{i}(\mu), i=0,1, \ldots, k$, on the two sides of each equation.

Leverrier-Chebyshev algorithm. The coefficients $a_{i, k}$ in (26) and $B_{i, k}$ in (25), when the basis is the set of Chebyshev polynomials, are sequentially given by

$$
\begin{align*}
a_{1,0}= & -\operatorname{tr}(A), \\
a_{1,1}= & \operatorname{tr} E, \\
a_{i, 0}= & -\frac{1}{i} \operatorname{tr}\left[A B_{i-1,0}-E B_{i-1,1}\right]+\frac{2}{i}(n-i+1)\left[a_{i-2,0}+a_{i-4,0}+\cdots\right], \\
a_{i, k}= & -\frac{1}{i} \operatorname{tr}\left[A B_{i-1, k}-E B_{i-1, k-1}-E B_{i-1, k+1}\right] \tag{28}\\
& +\frac{2}{i}(n-i+1)\left[a_{i-2, k}+a_{i-4, k}+\cdots\right], \quad k=1,2, \ldots, i-2, \\
a_{i, i-1}= & -\frac{1}{i} \operatorname{tr}\left[A B_{i-1, i-1}-E B_{i-1, i-2}\right], \\
a_{i, i}= & \frac{1}{i} \operatorname{tr}\left[E B_{i-1, i-1}\right] \quad i \geqslant 2 . \\
B_{1,0}= & a_{1,0} I+A, \\
B_{1,1}= & a_{1,1} I-E, \\
B_{i, 0}= & a_{i, 0} I+B_{i-2,0}+A B_{i-1,0}-E B_{i-1,1}, \\
B_{i, k}= & a_{i, k}+B_{i-2, k}-E B_{i-1, k-1}-E B_{i-1, k+1}+A B_{i-1, k}, \tag{29}\\
k= & 1,2, \ldots, i-2, \\
B_{i, i-1} & =a_{i, i-1} I-E B_{i-1, i-2}+A B_{i-1, i-1}, \\
B_{i, i}= & a_{i, i} I-E B_{i-1, i-1}, \quad i \geqslant 2 .
\end{align*}
$$

4. Example

Consider

$$
A=\left(\begin{array}{rrrr}
1 & -4 & -1 & -4 \\
2 & 0 & 5 & -4 \\
-1 & 1 & -2 & 3 \\
-1 & 4 & -1 & 6
\end{array}\right), \quad E=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

By definition, we know

$$
a(\mu)=\operatorname{det}(\mu E-A)=19 \mu^{2}-15 \mu+2
$$

and

$$
\begin{aligned}
& B(\mu)=\operatorname{adj}(\mu E-A) \\
& \quad=\left(\begin{array}{cccc}
11 \mu-2 & -4 \mu^{2}-\mu+2 & -20 \mu+8 & 16 \mu-4 \\
2 \mu^{2}-9 \mu+1 & \mu^{3}-5 \mu^{2}-10 \mu+8 & 5 \mu^{2}-33 \mu+22 & -4 \mu^{2}+3 \mu-5 \\
2 \mu & \mu^{2}+9 \mu-6 & 24 \mu-16 & -4 \mu+4 \\
8 \mu-1 & 4 \mu^{2}+7 \mu-6 & 20 \mu-16 & 3 \mu+3
\end{array}\right) .
\end{aligned}
$$

Now we apply Leverrier-Chebyshev Algorithm in Section 3. From (28) and (29),

$$
a_{1,0}=-\operatorname{tr} A=-5, \quad a_{1,1}=\operatorname{tr} E=3,
$$

which give

$$
\begin{aligned}
& B_{1,0}=a_{1,0} I+A=\left(\begin{array}{cccc}
-4 & -4 & -1 & -4 \\
2 & -5 & 5 & -4 \\
1 & 1 & -7 & 3 \\
1 & 4 & -1 & 1
\end{array}\right), \\
& B_{1,1}=a_{1,1} I-E=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right) .
\end{aligned}
$$

From (28),

$$
\begin{aligned}
& a_{2,0}=-\frac{1}{2} \operatorname{tr}\left(A B_{1,0}-E B_{1,1}\right)+3 a_{0,0}=15, \\
& a_{2,1}=-\frac{1}{2} \operatorname{tr}\left(A B_{1,1}-E B_{1,0}\right)=-10, \\
& a_{2,2}=\frac{1}{2} \operatorname{tr}\left(E B_{1,1}\right)=3,
\end{aligned}
$$

and hence from (29) we have

$$
\begin{aligned}
& B_{2,0}=a_{2,0} I-B_{0,0}+A B_{1,0}-E B_{1,1}=\left(\begin{array}{rrrr}
5 & -1 & -10 & 5 \\
-9 & -5 & -33 & 3 \\
5 & 9 & 29 & -3 \\
7 & 7 & 22 & 3
\end{array}\right), \\
& B_{2,1}=a_{2,1} I-E B_{1,0}+A B_{1,1}=\left(\begin{array}{rrrr}
-4 & -8 & -1 & -4 \\
4 & -10 & 10 & -8 \\
-1 & 2 & -7 & 3 \\
1 & 8 & -1 & 1
\end{array}\right), \\
& B_{2,2}=a_{2,2} I-E B_{1,1}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Applying (28), this leads to

$$
\begin{aligned}
& a_{3,0}=-\frac{1}{3} \operatorname{tr}\left(A B_{2,0}-E B_{2,1}\right)+\frac{4}{3} a_{1,0}=-22, \\
& a_{3,1}=-\frac{1}{3} \operatorname{tr}\left(A B_{2,1}-E B_{2,0}-E B_{2,2}\right)+\frac{4}{3} a_{1,1}=36, \\
& a_{3,2}=-\frac{1}{3} \operatorname{tr}\left(A B_{2,2}-E B_{2,1}\right)=-5, \\
& a_{3,3}=\frac{1}{3} \operatorname{tr}\left(E B_{2,2}\right)=1 .
\end{aligned}
$$

From (29) we obtain

$$
\begin{aligned}
& B_{3,0}=a_{3,0} I-B_{1,0}+A B_{2,0}-E B_{2,1}=\left(\begin{array}{rrrc}
-6 & -6 & 7 & -8 \\
5 & -2 & 32 & -13 \\
-1 & -4 & -23 & 7 \\
2 & 2 & -17 & 4
\end{array}\right), \\
& B_{3,1}=a_{3,1} I-B_{1,1}-E B_{2,0}-E B_{2,2}+A B_{2,1}=\left(\begin{array}{rrrr}
13 & -1 & -20 & 16 \\
-9 & -5 & -33 & 3 \\
2 & 9 & 26 & -4 \\
8 & 7 & 20 & 5
\end{array}\right), \\
& B_{3,2}=a_{3,2} I-E B_{2,1}+A B_{2,2}=\left(\begin{array}{rrrr}
0 & -4 & 0 & 0 \\
2 & -5 & 5 & -4 \\
0 & 1 & 0 & 0 \\
0 & 4 & 0 & 0
\end{array}\right), \\
& B_{3,3}=a_{3,3} I-E B_{2,2}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
& a_{4,0}=-\frac{1}{4} \operatorname{tr}\left(A B_{3,0}-E B_{3,1}\right)+\frac{1}{2}\left(a_{2,0}+a_{0,0}\right)=35, \\
& a_{4,1}=-\frac{1}{4} \operatorname{tr}\left(A B_{3,1}-E B_{3,0}-E B_{3,2}\right)+\frac{1}{2} a_{2,1}=-25, \\
& a_{4,2}=-\frac{1}{4} \operatorname{tr}\left(A B_{3,2}-E B_{3,1}-E B_{3,3}\right)+\frac{1}{2} a_{2,2}=22, \\
& a_{4,3}=-\frac{1}{4} \operatorname{tr}\left(A B_{3,3}-E B_{3,2}\right)=0, \\
& a_{4,4}=\frac{1}{4} \operatorname{tr}\left(E B_{3,3}\right)=0,
\end{aligned}
$$

Thus, the adjoint $B(\mu)$ and the determinant $a(\mu)$ of $\mu E-A$ is given by (20) and (19) as

$$
\begin{aligned}
a(\mu) & =S_{4}(0)+a_{1}(\mu) S_{3}(0)+a_{2}(\mu) S_{2}(0)+a_{3}(\mu) S_{1}(0)+a_{4}(\mu) S_{0}(0) \\
& =1-a_{2}(\mu)+a_{4}(\mu) \\
& =21 S_{0}(\mu)-15 S_{1}(\mu)+19 S_{2}(\mu) . \\
B(\mu) & =S_{3}(0) B_{0}(\mu)+S_{2}(0) B_{1}(\mu)+S_{1}(0) B_{2}(\mu)+S_{0}(0) B_{3}(\mu) \\
& =-B_{1}(\mu)+B_{3}(\mu) \\
& =\left(B_{3,0}-B_{1,0}\right) S_{0}(\mu)+\left(B_{3,1}-B_{1,1}\right) S_{1}(\mu)+B_{3,2} S_{2}(\mu)+B_{3,3} S_{3}(\mu) .
\end{aligned}
$$

Note. Both $B(\mu)$ and $a(\mu)$ can be expressed relative to a basis of Hermite, Legendre or Laguerre polynomials too, it is omitted here.

Acknowledgement

The authors wish to express their hearty gratitude to the referee for pointing out certain errors, and making valuable suggestions on the previous versions of the paper.

References

[1] F.R. Gantmacher, The Theory of Matrices, vol. 1, Chelsea, New York, 1960, pp. 87-88.
[2] S. Barnett, Leverrier's algorithm for orthogonal polynomial bases, Linear Algebra Appl. 236 (1996) 245-263.
[3] G. Szego, Orthogonal Polynomials, third ed., AMS, Provindence, RI, 1967.
[4] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions, Dover, New York, 1965.
[5] I.N. Sneddon, Special Function of Mathmatical Physics and Chemistry, second ed., Oliver and Boyd, Edinburgh, 1961.
[6] F.L. Lewis, Further remarks on the Cayley-Hamilton theorem and Leverrier's method for the matrix pencil ($s E-A$), IEEE Trans. Automat. Control AC-31 (1986) 869-870.
[7] B.G. Mertzios, Leverrier's algorithm for singular systems, IEEE Trans. Automat. Control AC-29 (1984) 652-653.
[8] G. Wang, Y. Lin, A new extention of Leverrier algorithm, Linear Algebra Appl. 180 (1993) 227-238.

[^0]: * Corresponding author.

 E-mail address: grwang@online.sh.cn (G. Wang).
 1 The research was supported by NSFC Project 19971057 and Science and Technology Foundation of Shanghai and Shanghai Higher Education Project 00JC14057.

