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a b s t r a c t

A mathematical model for the transmission of Toxoplasmosis disease in human and cat
populations is proposed and analyzed. We explore the dynamics of the Toxoplasmosis
disease at the population level using an epidemiological typemodel. Discussion of the basic
concepts of the Toxoplasmosis transmission dynamics on human and cat populations are
presented. The cats in this model plays a role of infectious agents and host of the protozoan
Toxoplasma Gondii parasite. Qualitative dynamics of the model is determined by the basic
reproduction number, R0. If the threshold parameter R0 < 1, then the solution converges
to the disease free equilibrium point. On the other hand if R0 > 1 the convergence is
to the endemic equilibrium point. Numerical simulations of the model illustrates several
different dynamics depending on the threshold parameter R0 and show the importance of
this parameter.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The protozoan Toxoplasma Gondii is a prevalent parasite in wild and domestic animals worldwide. The life cycle of
Toxoplasma is unusual in that the organism is capable of indefinite replication using either sexual or asexual subcycles. The
asexual cycle can occur in virtually any warm-blooded animal especially in cats [1], and humans. The cats are considered
immune to toxoplasma and it can cast more than 20million oocysts between 4 and 13 days after the infection and these can
infect humans [2]. The T. Gondii can be transmitted vertically by tachyzoites that are passed to the fetus via the placenta [3].
The asexual portion of its life cycle consists of just two stages, the rapidly dividing tachyzoites and the more slowly dividing
bradyzoites, which can encyst in the brain, heart and other tissues. Transmission occurs when an animal ingests bradyzoite-
infected tissue through carnivores or scavenging [4–6]. It can also occur accidentally through feed that is contaminated
with animal parts. Theoretically, this asexual portion of the life cycle could continue indefinitely, cycling around the food
chain [6].
Throughout history, humans have domesticated different animals, mainly the dogs and cats domesticated 12,000 years

and 4000 years ago, respectively. However, the cat is now on the verge of becoming the western world’s most popular pet;
current predictions are that cats will soon overtake dogs as themost commonly kept pet. According to the Pet Food Institute
in Washington, DC, cats already outnumber dogs in the United States, with 70.2 million, in Spain with 5.5 million cats [7]
and 10% of households in Colombia have a cat as pet [8].
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The cat is considered a transmission vector of the toxoplasmosis disease, as is considered the A. aegypti to dengue
disease [9] and in some small islands where there are different kind of animals but not cats, the prevalence of toxoplasmosis
is null [4]. The oocysts released in the feces of infected cats contaminate the environment, including vegetables and other
kind of food. Therefore, the ToxoplasmaGondii can be acquired through oral via. This type of contagious has been considered
the main route of infection in tropical countries [10]. The prevalence of the Toxoplasma Gondii antibody in some animals
ranges from 12% to 60% and in pigs is from 26% to 78%. This ranges show the variability in different Latin American countries,
such as Argentina, Brazil and Colombia [11,12]. Toxoplasma infection can be transmitted to humans either by ingestion of
tissue cysts in meat or by ingestion of oocysts in cat feces. Some researches have been reported a increasing prevalence of
infection with Toxoplasma Gondii in human population [13]. Therefore, based on all the aforementioned facts is important
to construct models to study and prevent toxoplasmosis disease.
Mathematical models, simpler than the reality, allow us to understand the global dynamical behavior of the

toxoplasmosis disease in the human and cat populations. An important issue that is addressed here is the impact of the
epidemics on the human population with the cat population as a vector transmission. In order to explore the dynamics of
the toxoplasmosis disease at both populations an epidemiological type model is used. A system of nonlinear differential
equations to study the dynamics of the human and cat infected populations is developed. This modeling approach is a
standard way to investigate the dynamics of diseases in populations from a epidemiological point of view [14–16]. The
proposed system consists on modeling the interactions among susceptible and infective individuals of the two species
assuming that the horizontal transmission of the disease to humans is only through the contact with infected cats and
vertical transmission in both cat and human populations. In the model, human population is divided in three classes or
subpopulations, susceptibles Sh(t), infectious Ih(t) and controlled Ch(t), and the cat population into two classes, susceptibles
Sc(t) and infectious Ic(t).
The model is described by a system of nonlinear ordinary differential equations with five equations, which allows to

discuss how the different epidemiological parameters influence the global behavior in the evolution of the toxoplasmosis
disease in the human and the cat populations. The model include the interactions among susceptible and infective
individuals of the two species assuming that the horizontal transmission of the disease to humans is through the contactwith
infected cats. This transmission ismodeledwith a classical incidence rate, howevermay bemodeled using another incidence
rate such a polynomial one [15,17]. Additionally, vertical transmission in both cat and human populations is considered. In
human population vertical transmission is assumed with probability 1. In the cat population it is assumed that a cat borne
from a infected one has a probability pc of not being infected. Furthermore, we assume that both populations of cats and
human are constant which is reasonable in some environments where births are approximately balanced by the natural
deaths and for short time horizons. In [18] a computer simulation of the transmission of Toxoplasma Gondii was developed
considering equilibrium in the cat population size.
In this paper we study the stability of the steady states of the system and we find that the basic reproductive number

R0 controls completely the dynamics of the infection. This basic reproductive number should be regarded as a measure of
the capacity of the cats to transmit toxoplasmosis. We proved that the basic reproduction numberR0 is a threshold value
that completely determines the global dynamics and the outcome of the disease. If the threshold parameter R0 < 1, then
the solution converges to the disease free equilibrium point. On the other hand if R0 > 1 the convergence is to the endemic
equilibrium point. Numerical simulations of the model illustrates several different dynamics depending on the threshold
parameter R0. Additionally, the importance of the vector vertical transmission to the dynamics of the infection is studied
through numerical simulations.
It is important to remark that some prevention and control strategies against the Toxoplasmosis can be modeled using

numerical simulations. In [19] a first approach for modeling the evolution of Toxoplasmosis disease in human population
has been proposed, but considering that cat population is constant and has a uniform behavior with respect to the disease.
However, in this work modeling of the evolution of toxoplasmosis in a human population take into account the cat as a
vector of transmission is proposed. This model is more complex since two populations with interactions are included.
The organization of this paper is as follows. In the next sectionwe formulate themathematicalmodel. Section 3 is devoted

to analyze the steady states and find the threshold valueR0 which determines the global dynamics and the outcome of the
disease. Section 4 contains numerical results and finally in Section 5 we present the conclusions.

2. Mathematical model

In this section, we present a continuous mathematical model for the transmission and evolution Toxoplasmosis disease
in human and cat populations. Following the basic ideas and structure of mathematical modeling in epidemiology, the
Toxoplasmosis disease model will be developed under the next basic hypotheses [14,16].
(1) The total population of human Nh(t) is divided in three subpopulations:
• Susceptible Sh(t): members of the human population who may become infected.
• Infected Ih(t): members of human population infected by the Toxoplasma Gondii parasite.
• Controlled Ch(t): members of the population who have been treated for the Toxoplasmosis.

(2) The total population of cats Nc(t) is divided in two subpopulations:
• Susceptible Sc(t): members of the cats population who may become infected.
• Infected Ic(t): members of cats population infected by the Toxoplasma Gondii parasite.
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Fig. 1. Flow diagram of the Toxoplasmosis disease model for human and cat populations as defined in system (1).

(3) A susceptible human can be infected through a effective direct or indirect contact with an infected cat and transit to the
infected subpopulation Ih(t). An infected human transits to the controlled subpopulation C(t) at a rate γ .

(4) A susceptible cat can be infected through a effective contactwith an infected cat and transit to the infected subpopulation
Ic(t). A cat never recover from infection.

(5) Both human and cat birth rate are assumed equal to the their natural death rates, therefore constant population size is
assumed.

(6) All members of the susceptible subpopulations Sh(t) and Sc(t) have the same probability to be infected.
(7) Vertical transmission is assumed in human population, but in cat population it is assumed that occurs with probability
[1− pc], where pc is the probability that a susceptible cat born from a infected one.

The total population of humans is denoted by

Nh(t) = Sh(t)+ Ih(t)+ Ch(t)

and the total population of cats is denoted by

Nc(t) = Sc(t)+ Ic(t).

Under the above assumptions the dynamic Toxoplasmosis disease model for human and cat population is depicted
graphically in Fig. 1 and is given analytically by the first order following nonlinear system of ordinary differential equation,

Ṡh(t) = µhCh − βhSh
Ic
Nc
,

İh(t) = βhSh
Ic
Nc
− γ Ih,

Ċh(t) = γ Ih − µhCh,

Ṡc(t) = µc Icpc − βcSc
Ic
Nc
,

İc(t) = βcSc
Ic
Nc
− µc Icpc .

(1)

3. Stability analysis of the model

In this section, the model (1) will be dynamically analyzed to investigate the existence and stability of its associated
equilibria. This analysis allows us to study different scenarios about the spread of the toxoplasmosis disease in the human
population caused by direct or indirect contact with infected cats.

3.1. Scaling model

Following the ideas developed in [20,21] in regard to scaling population models, it is defined the next ratios (depending
of time),

X(t) =
Sh(t)
Nh(t)

, Y (t) =
Ih(t)
Nh(t)

, Z(t) =
Ch(t)
Nh(t)

, A(t) =
Sc(t)
Nc(t)

, B(t) =
Ic(t)
Nc(t)

. (2)
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Thus, using (1) and (2) one gets,

Ẋ(t) = µhZ(t)− βhX(t)B(t),

Ẏ (t) = βhX(t)B(t)− γ Y (t),

Ż(t) = γ Y (t)− µhZ(t),

Ȧ(t) = µcpcB(t)− βcA(t)B(t),

Ḃ(t) = βcA(t)B(t)− µcpcB(t).

(3)

Since human and cat total populations have been normalized to unity, the following equations are obtained:

Z(t) = 1− X(t)− Y (t) (4)

and

B(t) = 1− A(t). (5)

Thus, from (3), and using (4) and (5) one gets the following simplified equivalent system

Ẋ(t) = µh(1− X(t)− Y (t))− βhX(t)(1− A(t)),

Ẏ (t) = βhX(t)(1− A(t))− γ Y (t),

Ȧ(t) = µcpc(1− A(t))− βcA(t)(1− A(t)).

(6)

For the sake of clarity and without loss of generality, analysis of equilibrium points are performed using the reduced system
(6). Moreover, the dynamics of system (6) is restricted in the positive invariant subsetΩ ⊂ R3

+
defined by

Ω =
{
(X, Y , A)T ∈ R3

+
/0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ A ≤ 1

}
.

3.2. Equilibrium points of the model

We denote by (X∗, Y ∗, A∗) the equilibrium points of system (6), i.e., the steady state where Ẋ(t) = 0, Ẏ (t) = 0, Ȧ(t) = 0,
for all t > t0. Therefore, from the last equation of system (6) one gets that

(1− A∗)[µcpc − βcA∗] = 0. (7)

Therefore,

A∗1 = 1 (8)

or

A∗2 =
µcpc
βc

. (9)

Now, if (8) holds, then from second equation of system (6) one can obtain that Y ∗1 = 0, and from first equation of system
(6) one gets that X∗1 = 1. Hence, it obtains the disease free point as (X

∗

1 , Y
∗

1 , A
∗

1)= (1, 0, 1).
On the other hand, if (9) holds, then from second equation of system (6) it follows that

Y ∗2 =
βhX∗(1− A∗2)

γ
, (10)

and replacing in the first equation of system (6) it follows that

X∗2 =
µhγ

γµh + βh(1− A∗2)(µh + γ )
(11)

and that

Y ∗2 =
µhβh(1− A∗2)

γµh + βhµh(1− A∗2)+ βhγ (1− A
∗

2)
. (12)

Indeed, it has the endemic point of coordinates (X∗2 , Y
∗

2 , A
∗

2).



1696 G.C. González-Parra et al. / Computers and Mathematics with Applications 57 (2009) 1692–1700

3.3. Stability analysis

Computing the Jacobian of system (6) evaluated at (X∗, Y ∗, A∗), one gets the following matrix

J(X∗, I∗, A∗) =

(
−µh − βh(1− A∗) −µh βhX∗

βh(1− A∗) −γ −βhX∗

0 0 −µcpc − βc + 2βcA∗

)
.

Disease free point
In the absence of infection (Ih = 0) the model (6) has a disease free point F∗1 = (X

∗

1 , Y
∗

1 , A
∗

1) and evaluating the Jacobian
J(F∗1 ) it follows that

J(F∗1 ) =

(
−µh −µh βh
0 −γ −βh
0 0 βc − µcpc

)
.

The stability of the equilibrium point F∗1 is determined using the eigenvalues of J(F
∗

1 ). The disease free equilibrium point F
∗

1
is locally asymptotically stable if the real part of eigenvalues are all negative. Thus, computing the eigenvalues of J(F∗1 ) one
gets that all are negative if

βc < µcpc . (13)

Therefore, if we define

R0 =
βc

µcpc
< 1, (14)

the disease free point F∗1 is locally asymptotically stable forR0 < 1. Thus, we have established the following Lemma:

Lemma 1. The disease free point F∗1 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

In addition, it can be shown that the disease free point F∗1 is globally asymptotically stable for R0 6 1. The following
theorem can be established,

Theorem 1. If R0 < 1, then the disease free point F∗1 is globally asymptotically stable.

Proof. In order to prove this, we consider the following Lyapunov function V : Ω −→ R+, defined by

V (t) = V (X(t), Y (t), A(t)) =
1− A(t)
µcpc

. (15)

It is clear that V ∈ C1(Ω) and V (X(t), Y (t), A(t)) ≥ 0 for all (X(t), Y (t), A(t))T ∈ Ω . Next, taking the derivative of (15)
with respect to time along of the solutions of system (6) and using the third equation of (6), one gets that

V̇ (t) = −(1− A(t))−R0A(t)(1− A(t)) = −(1−R0A(t))(1− A(t)). (16)

Since that 1 − A(t) ≥ 0 and 1 −R0A(t) > 0, from (16) it follows that V̇ (t) ≤ 0. Therefore, the Liapunov–Lasalle theorem
guarantees the global stability of the disease free point (X∗1 , Y

∗

1 , A
∗

1), ifR0 < 1. �

Endemic point
In presence of infection (Ih 6= 0), from (9), (11) and (12) themodel (6) has an endemic point E∗2 = (X

∗

2 , Y
∗

2 , A
∗

2). Evaluating
the Jacobian J(E∗2 ) one gets that

J(E∗2 ) =


L −µh

βhγ

H
−µh− L −γ −

βhγ

H
0 0 M,

 ,
where

H = γµh + (µh + γ )βh

(
1−

1
R0

)
,

K = µhβh

(
1−

1
R0

)
,

L = −µh − βh

(
1−

1
R0

)
,

M = −µcpc − βc +
2βc
R0

.

(17)
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Table 1
Parameters of the model

Parameter Values

µh 0.233
βh 0.0206
µc 0.066
pc 0.01
γ 0.000232

The eigenvalues of J(E∗2 ) are calculated using Det(J(E
∗

2 )− λI3) = 0, i.e.,

Det


L− λ −µh

βhγ

H
µh− L −γ − λ −

βhγ

H
0 0 M − λ

 = 0.
It follows that an eigenvalue is λ1 = M and the other two eigenvalues are λ2, λ3 the roots of the polynomial

λ2 − λ(L− γ )+ µh(µh − L)− Lγ = 0. (18)

Now, the Eq. (18) has negative solutions if L− γ < 0 and µh(µh − L)− Lγ > 0. Indeed

−γ + L = −γ − µh − βh

(
1−

1
R0

)
< 0,

sinceR0 > 1, and

µh

[
µh + µh + βh

(
1−

1
R0

)]
+

[
µ+ βh

(
1−

1
R0

)]
γ > 0.

Therefore, if R0 =
βc
µcpc

> 1, then the endemic point is locally asymptotically stable. The following Lemma has been
established.

Lemma 2. The endemic point E∗2 is locally asymptotically stable if R0 > 1 and unstable if R0 < 1.

Based on the previous analysis we can resume and say that there are two realistic equilibrium points: One is the disease
free point and the other is the unique endemic equilibrium. R0 is a unique threshold parameter which determines the
behavior of the Toxoplasmosis spread model. Assuming that the stability result for the endemic equilibrium is also global
and assuming that initially there is at least one infectious cat, then ifR0 < 1, we expect the disease to die out, whereas if
R0 > 1, then we expect the Toxoplasmosis disease to tend to the unique endemic equilibrium, thereby establishing itself
in the region.

4. Numerical simulations

In this section, we simulate different possible scenarios in order to observe the effect that some relevant parameters has
over the dynamics of the toxoplasmosis disease in human and cat populations. This is important from an epidemiological
point of view, since it is possible to obtain the best strategies to tackle the disease. The first two scenarios are computed to
check dynamic consistency between the theoretical results obtained in the previous section and the numerical simulations
of the model. One scenario is the disease free withR0 < 1 and other is the endemic withR0 > 1.
Another scenario is simulated varying the cats vertical transmission parameter pc . This numerical simulation allows

to observe the effect of this parameter on the transmission dynamics of the toxoplasmosis disease in human and cat
populations.
In order to perform the numerical simulations we take into account that in Chile approximately 55% of the cat population

have antibodies against the Toxoplasma Gondii and that in Colombia approximately 47, 74% of the population have
antibodies against the Toxoplasma and only the 1% is controlled [19,22]. Parameter values of human birth rate µh, βh and
transition to controlled population rate γ were taken from [19]. The cats birth rateµc was obtained by sources specialists in
zootechnic [23,24]. Thus, for numerical simulations it is assumed as initial condition in the simulated scenarios the following
values,

X(0) = 0.5253 Y (0) = 0.47 and Ac(0) = 0.45. (19)

The time invariant parameters of the model (6) are showed in Table 1.
Disease free point
Here, it is assumed a value for the parameter βc such that R0 < 1. As it can be observed in Fig. 2 and as expected from the

theoretical results of previous section, the system approach to the disease free equilibrium point (X∗1 , Y
∗

1 , A
∗

1) = (1, 0, 1).
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Fig. 2. Dynamics of the different subpopulations when βc = 0.00066, γ = 0.000232 andR0 = 0.909. (X∗1 = 1, Y
∗

1 = 0 and A
∗

1 = 1).

Fig. 3. Dynamics of the different subpopulations when βc = 0.0008, γ = 0.000232 andR0 = 1.2121. (X∗ = 0.0603, Y ∗ = 0.9386 and A∗ = 0.825).

Endemic point
Here, it is assumed a value for the parameter βc such that R0 > 1. As it can be observed in Fig. 3 and as expected from the

theoretical results of previous section, the system approach to the endemic equilibrium point (X∗ = 0.0602, Y ∗ = 0.9388
and A∗ = 0.8246).

High vertical transmission in cat population
Here, it is assumed a value for the parameter βc = 0.0008 and pc = 0.0001. As it can be observed in Fig. 4, the system

approach to the endemic equilibrium point (X∗ = 0.0112, Y ∗ = 0.9878 and A∗ = 0.00825). Notice that this equilibrium
point has more infected cats and infected humans at the steady state than the previous case. This fact is expected from
a logical point of view, since high vertical transmission implies easily transmission from one generation of cats to other.
Furthermore, since there are more infected cats, transmission to humans is also enhanced.

5. Discussion and conclusions

In this paper one proposes a mathematical model to study the dynamics of Toxoplasmosis disease in the human and
cat populations. The model consists on modeling the interactions among susceptible and infective individuals of the two
species assuming that the horizontal transmission of the disease to humans is only throughout the contact with infected
cats. Human population is divided in three classes or subpopulations, susceptibles Sh(t), infectious Ih(t) and controlled Ch(t),
and the cat population into two classes or subpopulations, susceptibles Sc(t) and infectious Ic(t). We assume that both
populations of cats and human are constant. Vertical and horizontal transmission in the cat population was considered.
Transmission is assumed in the human population through an effective direct or indirect contact with an infected cat and
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Fig. 4. Dynamics of the different subpopulations when βc = 0.0008, γ = 0.000232, pc = 0.0001 and R0 = 121.21. (X∗ = 0.0112, Y ∗ = 0.9878 and
A∗ = 0.00825).

vertical transmission is assumed with probability 1. However, vertical transmission in cat population it is assumed that
occurs with probability [1− pc].
We proved that the basic reproduction numberR0 is a threshold value that completely determines the global dynamics

and the outcome of the disease. If the threshold parameter R0 < 1, then the solution converges to the disease free
equilibrium point. On the other hand if R0 > 1 the convergence is to the endemic equilibrium point. Additionally, the
importance of cats vertical transmission to the dynamics of the infection is studied through numerical simulations. When a
high vertical transmission is assumed in cat population, the endemic equilibrium point has a higher proportion of infected
cats and infected humans at the steady state. This fact is expected from an intuitive point of view, since high vertical
transmission implies easily transmission from one generation of cats to other. Furthermore, since there are more infected
cats, transmission to humans is also enhanced. Therefore, the dynamics of toxoplasmosis disease is strongly influenced by
vertical transmission in cat population. The numerical simulations show that this transmission favors the establishment of
a constant endemic level in both populations. Also, they show an important increase in the endemic level of the cat and
human population. This last result reinforces the idea that vertical transmission can be an important mechanism that favors
the maintenance of the virus areas with low human densities.
It is important to remark that the threshold numberR0 is directly proportional to the probability of effective infectious

contact among cats and does not depends on direct or indirect effective infectious contacts between humans and cats.
Therefore, a control strategy to reduce toxoplasmosis prevalence, should focus on reducing this probability. One way
of control is a vaccine program for cats population. However, prevalence in human population may be reduced, but
not eradicated with hygienic actions and educations programs. In addition, probability of vertical transmission in cat
population is an intrinsic value that seems invariable to control strategies. Therefore, this mechanism of transmission may
be responsible for the permanence of the toxoplasmosis infection as has been suggested in [25] for dengue virus.
Finally, it is important to mention that our mathematical model considers the evolution of Toxoplasmosis in the human

and cat populations with interaction among them, but it is necessary to have further knowledge of the parameters values
involved in order to havemore accurate estimates about future health scenarios in the humanand cat populations.Moreover,
the parameters values of the model vary depending on the environment, therefore these parameters should be adjusted for
different cities or regions for different real world applications. Future work should include a model with vaccination and
variable population size, and more variables such seasonal birth rate or oocyst survival time.
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