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Abstract 

Cohen, G.D. and G. Zemor, Write-isolated memories (WIMs), Discrete Mathematics 114 (1993) 

105-113. 

A write-isolated memory (WIM) is a binary storage medium on which no change of two consecutive 

positions is allowed when updating the information stored. We prove that the optimal rate for 

writing on a WIM is log,(l +$);‘2 =0.69. We give asymptotic constructions achieving 0.6. 

1. Introduction 

A write-isolated memory (WIM) is a binary storage medium on which no change of 

two consecutive positions is allowed when updating the information stored. 

This constraint is dictated by the current technology for writing on some digital 

optical disks, as indicated by Vinck [14], who discovered the problem we consider 

here. We assume that we have a WIM with n positions, which we use for writing one 

message among the hil possible ones. We want to be able to continue the process 

indefinitely, under the above constraint. The problem is: What is asymptotically the 

maximum achievable rate R of the WIM, defined as (log to the base 2) 

R:=(l/n)logM ? 

A similar question was considered by Klove (which he refers to as Robinson’s 

problem, see [13]) in relation to coding for fluorescent ink bars. 

More generally, analogous problems dealing with writing on memories under 

constraints have been considered by many authors (see e.g. [S, 7,12,15]) for write- 

once memories, for [2,6, lo] write-unidirectional memories, [l] for a general model of 

write-efficient memories. 
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Four cases can be distinguished, arising when 

the encoder (writer) and/or the decoder (reader) are informed or uninformed 
about the previous state of the memory. 

2. General bounds 

Let us start with a simple example giving a lower bound on R, valid in all four cases 

of our problem. 

Example 2.1. Take a WIM of size n, with positions numbered 1,2, . . , n, and use only 

odd positions for writing. Then the nonadjacency constraint is clearly satisfied. This 

yields a construction with R = l/2 (asymptotically). 

Let us give now an upper bound, also valid in all four cases. Let V, be the set of 

binary n-tuples, V,(t) the set of possible states of the memory after t utilizations. 

Consider the following directed graph: 

G=(I/,E), with V= Vn(t)u V,(t+l) 

and 

E = {(i, j), where ie V,(t), Jo Vn(t + 1) and i+ j is allowed}. 

Now the following is clear: 

A4 < Max v(i), in V,(t), 

where u(i) is the valency of i (indeed any state i can be updated to at most v(i) states j). 

Set 

F,:={(Xl,X2 ,..., X,)EV,: XiXi+l=O for i=O,l,..., n-l}. 

F, will be written F for short, when no confusion on the length can occur. 

Then lF[ =fn (nth Fibbonacci number with f, = 1, fi =2) is easily checked by 

induction. Hence, v(i) =fn, since i+ j is allowed iff i+jEF, where the addition is bitwise 

mod 2. Hence, we get M d fn, and, using the well-known approximation of fn :fn r 2pn, 

where p:= (1 + $)/2) is the golden ratio, we get 

R<log((l+fi)/2). 

Let us summarize these results. 

Proposition 2.2. The optimal rate for writing on a WIM (in all four cases) satisjes 

1/2<R<log((l+&)/2)~0.69. 

From now on, we consider only the following case: 

Encoder knows the previous state of the memory (i.e. can read before writing), 
but decoder does not). 
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3. Coding with blocks 

We now present a coding strategy based on the notion of good blocks, which we 

define as follows. 

For XE I’,,, set F(x):= F + x:= { f+ x, ~EF >. Hence, F(0) = F. In words, F(x) is the set 

of states reachable from x. We call F(x) the F-set centered at x. 

A block Bc V,, is called good if 

bvB F(b)= K. (1) 

That is, V, is covered by F-sets centered on the elements of B. 

Proposition 3.1. Zf a block B is good, any translate B+ t, tE V,, of B is also good. 

Proof. u F(b!)=( u F(b))+t=Y.. 0 
b’eB+r beB 

With a different phrasing, the following result is already in [3]. 

Proposition 3.2. If B is good, then 

VXEV, 3bEB 3&F: x+f=b. 

In other words, starting from any state x of the memory, there exists an allowed 

transition f which transforms x into an element of B (say b). 

Proof. By (l), for all x, there is an i s.t. x is in F( bi), i.e. x = bi +ffor some f in F. 0 

Proposition 3.3. [f BO, B1, . . . . Bw_l are pairwise disjoint good blocks, they yield 

a WIM-code of size M. 

Proof. Put the M messages to be coded in l-l correspondence with the blocks. By 

Proposition 3.2, whatever the state of the WIM is, updating will be possible to any 

message. 0 

Example 3.4. n = 3. Set B0 = (000, 11 l}. Then B0 is good, since 

F(000)=F={000,001,010,100, lOl}, 

F(111)={111,110,101,011,010}=~ 

and FuF= V,; so, (1) holds. 

By Proposition 3.1, the following blocks are also good: 

B,=B,+001={001,110}, B,=B,+010={010,101}, 

B,=B,+100={100,011}. 
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This yields, by Proposition 3.3, since BO, Bi, B2, B3 form a partition of V3, a WIM- 

code with 4 code words, i.e. rate 2/3. Unfortunately, we could not use this example for 

an infinite construction. 

Let us visualize how the coding works: suppose we are in state x = 010, representing 

message 2. The following are the allowed transitions for writing messages 0, 1,2,3, 

respectively: 

010-+000, OlO+ 110, 010+010, 010+011. 

4. R=logp 

We shall now close the gap between the two bounds in Proposition 2.2 by showing 

that the actual achievable rate is R =logpgO.69. 

This will a fortiori give the achievable rate in the more favorable case when writer 

and reader know the previous state. This result is not difficult to prove in a probabilis- 

tic (nonconstructive) way. We shall rather give here a ‘semi-constructive’ proof, which 

also helps in obtaining good codes. 

In view of Proposition 3.3, it is intuitive to look for ‘small’ good blocks, so as to be 

able to pack many of them (e.g. by translation) in V,,. 

In fact, we shall first prove the existence of small good subgroups of V, (i.e. good 

blocks which are groups). Then the second step, finding pairwise disjoint good 

blocks, becomes simple: if G is a good subgroup, 1 G I= 2k, then there are 2”-k pairwise 

disjoint good blocks, namely the cosets of G (see Example 3.4). To that end, we use 

Theorem 1 of [4], which is established for coverings of V, by Hamming spheres 

centered on the elements of a group (group coverings). Its extension to group covering 

by tiles other than spheres is easy and already mentioned in [4]; so, we shall not give 

its proof, which is based on a ‘group’ greedy algorithm: 

Proposition 4.1. There exists a group covering G of V, with 2k sets F(gi), giEG> with 

kdn-logf,+logn+O(l). 

This gives 

kdn(1 -p)+logn+O(l) 

and 

M=2”-k~2pn/n0(1). 

Corollary 4.2. R = log p. 

Dropping the group condition, one can obtain still smaller good blocks, but this 

will, of course, not improve the rate. We shall nevertheless give some details, since they 

shed more light on the possible constructions. 

Let B={bl,bz, . . . , b,} be a good block of minimal size (i.e., by (l), a minimal 

covering of V, by F-sets). Consider the hypergraph H =( V, E), where V= V, and 
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E = {F(x), XE Vn}. Then H is clearly f,-uniform and f,-regular (i.e. I{ x:y~F(x)} 1 =fn for 

all y). Thus, by a Theorem of Lo&z [l 11, there exists a covering with 

2”Kld~9(2”/xJ(1 +log.L), (4 

where the lower bound is the well-known covering bound. 

5. Explicit constructions 

5.1. Length n=6 

We have F6 = 21; So, by (2), a good block has size at least r 26/21 ]= 4. An exhaustive 

search for minimal good blocks of length 6 was done by Busson [3] with a computer; it 

turned out that exactly 64 minimal good blocks exist. One good subgroup is 

000000 

Be= 
100110 

011001 

111111. 

Now to get a WIM-code, just take the 16=24 cosets of this block. Its rate is 

R = 416 z 0.66. 

The next natural question (from a constructive point of view) is: How do we build 

WIM-codes of arbitrary length? One answer is to try and concatenate small WIMs. 

For instance, we can get a WIM-code of length n = 7k by dividing a memory of length 

7k into k blocks of size 6, and use the above length-6-WIM-code on every block; 

unfortunately, we need to sacrifice a position between each block to ensure the 

‘isolation’ condition. 

Still, with this somewhat unrefined approach, we achieve a rate of R = 417 = 0.57 for 

an explicitly constructed WIM-code of arbitrary length. 

5.2. A more eficient concatenation 

We will show here a method for concatenating the length-6 example to obtain an 

explicit code with rate 0.6. 

Let EF, (F,,E’; EF,E’) denote the set of elements of F,, starting with E (E=O or E= 1) 

(ending with E’; respectively, starting with E and ending with E’). If x and y are two 

words of lengths, say n and It’, we denote by x:y the concatenation of x and y (so 

that x:y~ V,,,,,). 

In a similar fashion if A and B are 2 subsets of V, and V,, , we denote by A: B the set 

of concatenated words x:y, where XEA and DEB. 

In the following proofs we shall have to bear in mind the obvious. 

Proposition 5.1. F,,,,, = (F,,O:F~)U(F,,~:OF~)=(F,:OF,~)~(F,O:~F~). 
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The purpose of the following construction is to obtain a good block in length 5k, 

with 4k elements. 

To do so, we start by stripping the above B, in length 6 of its first column to obtain 

a good subgroup B5 in length 5: 

00000 po 

B =00110 PI 
5 11001 := fl* 

From now on, elements in V, will be denoted by greek letters. 

Now we want a procedure that will give us a good block of length n + 5, starting 

from a good one of length n. We will not do it for any good block, but for blocks 

B, satisfying the following 3 properties: 

(i) B, is a group, 

(ii) the last 5 coordinates of all the elements of B, coincide with a word fii of Bg, 

(iii) for every Pi~B,, the set of words of B, ending with Bi is, when restricted to its 

n - 5 first coordinates, a good block in length n - 5. 

Given a block B,, let B,+ 5 be defined by 

B 
._@+Bn)% 

n+5’-B,:pz 

where t :=(OO..O: 11000) is in V,. 

Now the point of all this is to obtain the following result. 

Proposition 5.2. Zf B, is good, in length n, and verifies (i))(iii), then B,, 5 is also good and 

verijies (i)-(iii). 

Proof. B, + 5 verifies (i)-(iii) (easy). 

We must now prove that B, + 5 is good, that is, B,, 5 + F,, + 5 = V, + 5. 

Point 1: Check that B5 +OF5 = V,\A, where A= {0, cc, & 6), with 

8= 10010, 

c[= 10100, 

e=o1101, 

c(=01011. 

Point 2: All elements of the form x:g, where XE V, and gE V, \A, are in 

B n+5+Fn+5. To check that, recall that B, and t+ B, are good, and that 

F,,:OF5cF,,+5. We can, therefore, write, for gE V,\A, 

Yzbi+L5j with Bi in B5 and A5 in OFS. 
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Set 

&g=&z=O, &1=&3=1 

Then write x + tit = b +,f for some b in B, and f in F, (remember B, is good). Then 

x:Y=((Eit+b):Pi)+(f:~5), with (Eit+b):PiEB,+S andf:AJEF,+5. 

Point 3: The last case to study is XE V, and yeA, for which we prove that 

X:YE&+5+Fn+5 

Let us do it first for y = 8 and y = CI. Note that 

&flo+FS and &P1+FS, 

ae/&,+F5 and aEbl +F5. 
(3) 

Since B, is good, XEB, + F,,. 
The problem is that concatenating an element of F, with an element of F5 will not 

necessarily yield an element of F,,+5. To avoid this, we prove that 

xgB,+F,,O or x~(t+B,+F,o). 

The only x’s for which this is not obvious are the elements of B, + F, 1 (the others are in 

B, + F,,O). Since B, is a group, we need only show that any element of F, 1 belongs to 

B, + F,O or to t + B, + F,O. Now the last 5 coordinates of every element of F, 1 must be 

in F5 1, where 

F5 1 = {00001,10001,0001,00101, lOlOl}. 

Since B, verifies (iii) and since F, _ 5:OF50 c F,,O, we will be finished when we show that 

any element of F, 1 can be written as an element of B5 +OF50 or z + B5 +OF50, where 

t=(llOOO) (the last 5 coordinates of t). 

That is checked easily: 

00001=r+b2 

10001=b2+01000 

01001=z+b2+01000 

00101=z+b2+O0100 

10101=b3+01010. 

Summarizing, we have proved using properties (i)-(iii), that the troublesome ele- 

ments of F,, 1 can be expressed as elements of B, + F,O or oft + B, + F,O. Therefore, any 

element of V, is in B, + F,O or t + B, + F,,O, so that with property (iii) of 8 and CI we get 

or 

x:dE(t+B,+F,0):(~1+F5). 

This means x:~EB,+~ + F,+ 5, and the same holds for x: a. 
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The cases of x:8 and x:E are easily deducible from the above by noting that 

{e,a}={e$}+(11111) 

and 

which concludes the proof that B, + 5 is good. 0 

We can, therefore, use this theorem to construct inductively, starting from 

B5 ~ check that it verifies (i)-(iii) - a good subgroup of length 5k and size 4k. It has 

23k cosets, which gives by Proposition 3.3, a WIM-code of rate 

R = 3k/5k = 0.6. 

6. Nonlinear WIM-coding and perspectives for further research 

Until now we considered only WIM-codes obtained by taking the cosets of a good 

subgroup of V,,. 
Now suppose that we have a good block B, which is not a group (obtained, say, with 

the help of a computer). To construct a WIM-code, we need disjoint good blocks, and 

the only systematic way we see of getting those from B is to search for a set of pairwise 

disjoint translates B + t of B. 
In other words, we see easily that a WIM-code can be constructed with: 

(1) a good block B, 
(2) a set of translations Tc V, such that B + B and T+ T are disjoint. 

Note that looking for such a set T can be thought of as a classical coding problem: 

indeed, T is a code correcting a set B of parasite noise elements. 

This general coding problem was considered by Deza [8], where he proved that the 

sets B of noises (of a given cardinality), for which the largest B-correcting codes T exist 

are either the most ‘scattered’, or the most ‘dense’ sets, that is, they are either included 

in a subgroup of V,, or in a Hamming sphere. 

In fact, one can easily convince oneself that B must have diameter at least L421, 

since F has diameter at most [n/21. In conclusion, small good blocks should 

‘resemble’ subgroups. 
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