Write-isolated memories (WIMs)*

Gérard D. Cohen and G. Zemor
ENST and CNRS URA 251, 46, rue Barrault - 75634 Paris. Cedex 13, France

Received 18 December 1988
Revised 13 June 1989

Abstract

Cohen, G.D. and G. Zemor, Write-isolated memories (WIMs), Discrete Mathematics 114 (1993) 105-113. A write-isolated memory (WIM) is a binary storage medium on which no change of two consecutive positions is allowed when updating the information stored. We prove that the optimal rate for writing on a WIM is $\log _{2}(1+\sqrt{5}) / 2=0.69$. We give asymptotic constructions achieving 0.6 .

1. Introduction

A write-isolated memory (WIM) is a binary storage medium on which no change of two consecutive positions is allowed when updating the information stored.

This constraint is dictated by the current technology for writing on some digital optical disks, as indicated by Vinck [14], who discovered the problem we consider here. We assume that we have a WIM with n positions, which we use for writing one message among the M possible ones. We want to be able to continue the process indefinitely, under the above constraint. The problem is: What is asymptotically the maximum achievable rate R of the WIM, defined as (log to the base 2)

$$
R:=(1 / n) \log M ?
$$

A similar question was considered by Kløve (which he refers to as Robinson's problem, see [13]) in relation to coding for fluorescent ink bars.

More generally, analogous problems dealing with writing on memories under constraints have been considered by many authors (see e.g. [5, 7, 12, 15]) for writeonce memories, for $[2,6,10]$ write-unidirectional memories, $[1]$ for a general model of write-efficient memories.

[^0]Four cases can be distinguished, arising when
the encoder (writer) and/or the decoder (reader) are informed or uninformed about the previous state of the memory.

2. General bounds

Let us start with a simple example giving a lower bound on R, valid in all four cases of our problem.

Example 2.1. Take a WIM of size n, with positions numbered $1,2, \ldots, n$, and use only odd positions for writing. Then the nonadjacency constraint is clearly satisfied. This yields a construction with $R=1 / 2$ (asymptotically).

Let us give now an upper bound, also valid in all four cases. Let V_{n} be the set of binary n-tuples, $V_{n}(t)$ the set of possible states of the memory after t utilizations. Consider the following directed graph:

$$
G=(V, E), \quad \text { with } V=V_{n}(t) \cup V_{n}(t+1)
$$

and

$$
E=\left\{(i, j) \text {, where } i \in V_{n}(t), j \in V_{n}(t+1) \text { and } i \rightarrow j \text { is allowed }\right\} .
$$

Now the following is clear:

$$
M \leqslant \underset{i}{\operatorname{Max}_{i} v(i), \quad i \in V_{n}(t), ~}
$$

where $v(i)$ is the valency of i (indeed any state i can be updated to at most $v(i)$ states j).
Set

$$
F_{n}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in V_{n}: x_{i} x_{i+1}=0 \text { for } i=0,1, \ldots, n-1\right\} .
$$

F_{n} will be written F for short, when no confusion on the length can occur.
Then $|F|=f_{n}$ (nth Fibbonacci number with $f_{0}=1, f_{1}=2$) is easily checked by induction. Hence, $v(i)=f_{n}$, since $i \rightarrow j$ is allowed iff $i+j \in F$, where the addition is bitwise $\bmod 2$. Hence, we get $M \leqslant f_{n}$, and, using the well-known approximation of $f_{n}: f_{n} \cong 2^{\rho n}$, where $\rho:=(1+\sqrt{5}) / 2)$ is the golden ratio, we get

$$
R \leqslant \log ((1+\sqrt{5}) / 2)
$$

Let us summarize these results.
Proposition 2.2. The optimal rate for writing on a WIM (in all four cases) satisfies

$$
1 / 2 \leqslant R \leqslant \log ((1+\sqrt{5}) / 2) \cong 0.69 .
$$

From now on, we consider only the following case:
Encoder knows the previous state of the memory (i.e. can read before writing), but decoder does not).

3. Coding with blocks

We now present a coding strategy based on the notion of good blocks, which we define as follows.
For $x \in V_{n}$, set $F(x):=F+x:=\{f+x, f \in F\}$. Hence, $F(0)=F$. In words, $F(x)$ is the set of states reachable from x. We call $F(x)$ the F-set centered at x.

A block $B \subset V_{n}$ is called good if

$$
\begin{equation*}
\bigcup_{b \in B} F(b)=V_{n} . \tag{1}
\end{equation*}
$$

That is, V_{n} is covered by F-sets centered on the elements of B.
Proposition 3.1. If a block B is good, any translate $B+t, t \in V_{n}$, of B is also good.
Proof. $\bigcup_{b^{\prime} \in B+t} F\left(b^{\prime}\right)=\left(\bigcup_{b \in B} F(b)\right)+t=V_{n}$.
With a different phrasing, the following result is already in [3].

Proposition 3.2. If B is good, then

$$
\forall x \in V_{n} \quad \exists b \in B \exists f \in F: x+f=b .
$$

In other words, starting from any state x of the memory, there exists an allowed transition f which transforms x into an element of B (say b).

Proof. By (1), for all x, there is an i s.t. x is in $F\left(b_{i}\right)$, i.e. $x=b_{i}+f$ for some f in F.
Proposition 3.3. If $B_{0}, B_{1}, \ldots, B_{M-1}$ are pairwise disjoint good blocks, they yield a WIM-code of size M.

Proof. Put the M messages to be coded in 1-1 correspondence with the blocks. By Proposition 3.2, whatever the state of the WIM is, updating will be possible to any message.

Example 3.4. $n=3$. Set $B_{0}=\{000,111\}$. Then B_{0} is good, since

$$
\begin{aligned}
& F(000)=F=\{000,001,010,100,101\}, \\
& F(111)=\{111,110,101,011,010\}=\bar{F}
\end{aligned}
$$

and $F \cup \stackrel{\rightharpoonup}{F}=V_{3}$; so, (1) holds.
By Proposition 3.1, the following blocks are also good:

$$
\begin{aligned}
& B_{1}=B_{0}+001=\{001,110\}, \quad B_{2}=B_{0}+010=\{010,101\}, \\
& B_{3}=B_{0}+100=\{100,011\} .
\end{aligned}
$$

This yields, by Proposition 3.3 , since $B_{0}, B_{1}, B_{2}, B_{3}$ form a partition of V_{3}, a WIMcode with 4 code words, i.e. rate $2 / 3$. Unfortunately, we could not use this example for an infinite construction.

Let us visualize how the coding works: suppose we are in state $x=010$, representing message 2 . The following are the allowed transitions for writing messages $0,1,2,3$, respectively:

$$
010 \rightarrow 000,010 \rightarrow 110,010 \rightarrow 010,010 \rightarrow 011 .
$$

4. $R=\log \rho$

We shall now close the gap between the two bounds in Proposition 2.2 by showing that the actual achievable rate is $R=\log \rho \cong 0.69$.

This will a fortiori give the achievable rate in the more favorable case when writer and reader know the previous state. This result is not difficult to prove in a probabilistic (nonconstructive) way. We shall rather give here a 'semi-constructive' proof, which also helps in obtaining good codes.

In view of Proposition 3.3, it is intuitive to look for 'small' good blocks, so as to be able to pack many of them (e.g. by translation) in V_{n}.

In fact, we shall first prove the existence of small good subgroups of V_{n} (i.e. good blocks which are groups). Then the second step, finding pairwise disjoint good blocks, becomes simple: if G is a good subgroup, $|G|=2^{k}$, then there are 2^{n-k} pairwise disjoint good blocks, namely the cosets of G (see Example 3.4). To that end, we use Theorem 1 of [4], which is established for coverings of V_{n} by Hamming spheres centered on the elements of a group (group coverings). Its extension to group covering by tiles other than spheres is easy and already mentioned in [4]; so, we shall not give its proof, which is based on a 'group' greedy algorithm:

Proposition 4.1. There exists a group covering G of V_{n} with 2^{k} sets $F\left(g_{i}\right), g_{i} \in G$, with

$$
k \leqslant n-\log f_{n}+\log n+O(1) .
$$

This gives

$$
k \leqslant n(1-\rho)+\log n+O(1)
$$

and

$$
M=2^{n-k} \geqslant 2^{\rho n} / n \mathrm{O}(1) .
$$

Corollary 4.2. $R=\log \rho$.
Dropping the group condition, one can obtain still smaller good blocks, but this will, of course, not improve the rate. We shall nevertheless give some details, since they shed more light on the possible constructions.

Let $B=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ be a good block of minimal size (i.e., by (1), a minimal covering of V_{n} by F-sets). Consider the hypergraph $H=(V, E)$, where $V=V_{n}$ and
$E=\left\{F(x), x \in V_{n}\right\}$. Then H is clearly f_{n}-uniform and f_{n}-regular (i.e. $|\{x: y \in F(x)\}|=f_{n}$ for all y). Thus, by a Theorem of Lovàsz [11], there exists a covering with

$$
\begin{equation*}
2^{n} / f_{n} \leqslant m \leqslant\left(2^{n} / f_{n}\right)\left(1+\log f_{n}\right), \tag{2}
\end{equation*}
$$

where the lower bound is the well-known covering bound.

5. Explicit constructions

5.1. Length $n=6$

We have $F_{6}=21$; So, by (2), a good block has size at least $\left\lceil 2^{6} / 21\right\rceil=4$. An exhaustive search for minimal good blocks of length 6 was done by Busson [3] with a computer; it turned out that exactly 64 minimal good blocks exist. One good subgroup is

$$
B_{6}=\begin{aligned}
& 000000 \\
& 100110 \\
& 011001 \\
& 111111
\end{aligned}
$$

Now to get a WIM-code, just take the $16=2^{4}$ cosets of this block. Its rate is $R=4 / 6 \cong 0.66$.

The next natural question (from a constructive point of view) is: How do we build WIM-codes of arbitrary length? One answer is to try and concatenate small WIMs. For instance, we can get a WIM-code of length $n=7 k$ by dividing a memory of length $7 k$ into k blocks of size 6 , and use the above length-6-WIM-code on every block; unfortunately, we need to sacrifice a position between each block to ensure the 'isolation' condition.

Still, with this somewhat unrefined approach, we achieve a rate of $R=4 / 7=0.57$ for an explicitly constructed WIM-code of arbitrary length.

5.2. A more efficient concatenation

We will show here a method for concatenating the length- 6 example to obtain an explicit code with rate 0.6 .

Let $\varepsilon F_{n}\left(F_{n} \varepsilon^{\prime} ; \varepsilon F_{n} \varepsilon^{\prime}\right)$ denote the set of elements of F_{n} starting with $\varepsilon(\varepsilon=0$ or $\varepsilon=1$) (ending with ε^{\prime}; respectively, starting with ε and ending with ε^{\prime}). If x and y are two words of lengths, say n and n^{\prime}, we denote by $x: y$ the concatenation of x and y (so that $\left.x: y \in V_{n+n^{\prime}}\right)$.

In a similar fashion if A and B are 2 subsets of V_{n} and $V_{n^{\prime}}$, we denote by $A: B$ the set of concatenated words $x: y$, where $x \in A$ and $y \in B$.

In the following proofs we shall have to bear in mind the obvious.
Proposition 5.1. $F_{n+n^{\prime}}=\left(F_{n} 0: F_{n}^{\prime}\right) \cup\left(F_{n} 1: 0 F_{n}^{\prime}\right)=\left(F_{n}: 0 F_{n^{\prime}}\right) \cup\left(F_{n} 0: 1 F_{n}^{\prime}\right)$.

The purpose of the following construction is to obtain a good block in length $5 k$, with $4 k$ elements.

To do so, we start by stripping the above B_{6} in length 6 of its first column to obtain a good subgroup B_{5} in length 5:

$$
B_{5}=\begin{array}{r}
00000 \\
00110 \\
11001 \\
11111
\end{array}:=\begin{aligned}
& \beta_{0} \\
& \beta_{1} \\
& \beta_{2} \\
& \beta_{3} .
\end{aligned}
$$

From now on, elements in V_{5} will be denoted by greek letters.
Now we want a procedure that will give us a good block of length $n+5$, starting from a good one of length n. We will not do it for any good block, but for blocks B_{n} satisfying the following 3 properties:
(i) B_{n} is a group,
(ii) the last 5 coordinates of all the elements of B_{n} coincide with a word β_{i} of B_{5},
(iii) for every $\beta_{i} \in B_{5}$, the set of words of B_{n} ending with β_{i} is, when restricted to its $n-5$ first coordinates, a good block in length $n-5$.

Given a block B_{n}, let B_{n+5} be defined by

$$
B_{n+5}:=\begin{aligned}
& B_{n}: \beta_{0} \\
& \left(t+B_{n}\right): \beta_{1} \\
& B_{n}: \beta_{2} \\
& \left(t+B_{n}\right): \beta_{3},
\end{aligned}
$$

where $t:=(00 . .0: 11000)$ is in V_{n}.
Now the point of all this is to obtain the following result.
Proposition 5.2. If B_{n} is good, in length n, and verifies (i)-(iii), then B_{n+5} is also good and verifies (i)-(iii).

Proof. B_{n+5} verifies (i)-(iii) (easy).
We must now prove that B_{n+5} is good, that is, $B_{n+5}+F_{n+5}=V_{n+5}$.
Point 1: Check that $B_{5}+0 F_{5}=V_{5} \backslash A$, where $A=\{\theta, \alpha, \bar{\theta}, \bar{\alpha})$, with

$$
\begin{aligned}
& \theta=10010, \\
& \alpha=10100, \\
& \bar{\theta}=01101, \\
& \bar{\alpha}=01011 .
\end{aligned}
$$

Point 2: All elements of the form $x: g$, where $x \in V_{n}$ and $g \in V_{5} \backslash A$, are in $B_{n+5}+F_{n+5}$. To check that, recall that B_{n} and $t+B_{n}$ are good, and that $F_{n}: 0 F_{5} \subset F_{n+5}$. We can, therefore, write, for $g \in V_{5} \backslash A$,
$\gamma=b_{i}+\lambda_{5}, \quad$ with β_{i} in B_{5} and λ_{5} in $0 F_{5}$.

Set

$$
\varepsilon_{0}=\varepsilon_{2}=0, \varepsilon_{1}=\varepsilon_{3}=1
$$

Then write $x+\varepsilon_{i} t=b+f$ for some b in B_{n} and f in F_{n} (remember B_{n} is good). Then

$$
x: \gamma=\left(\left(\varepsilon_{i} t+b\right): \beta_{i}\right)+\left(f: \lambda_{5}\right), \quad \text { with }\left(\varepsilon_{i} t+b\right): \beta_{i} \in B_{n+5} \text { and } f: \lambda_{5} \in F_{n+5}
$$

Point 3: The last case to study is $x \in V_{n}$ and $\gamma \in A$, for which we prove that

$$
x: \gamma \in B_{n+5}+F_{n+5}
$$

Let us do it first for $\gamma=\theta$ and $\gamma=\alpha$. Note that

$$
\begin{align*}
& \theta \in \beta_{0}+F_{5} \quad \text { and } \quad \theta \in \beta_{1}+F_{5} \\
& \alpha \in \beta_{0}+F_{5} \quad \text { and } \quad \alpha \in b_{1}+F_{5} \tag{3}
\end{align*}
$$

Since B_{n} is good, $x \in B_{n}+F_{n}$.
The problem is that concatenating an element of F_{n} with an element of F_{5} will not necessarily yield an element of F_{n+5}. To avoid this, we prove that

$$
x \in B_{n}+F_{n} 0 \quad \text { or } \quad x \in\left(t+B_{n}+F_{n} 0\right)
$$

The only x 's for which this is not obvious are the elements of $B_{n}+F_{n} 1$ (the others are in $B_{n}+F_{n} 0$). Since B_{n} is a group, we need only show that any element of $F_{n} 1$ belongs to $B_{n}+F_{n} 0$ or to $t+B_{n}+F_{n} 0$. Now the last 5 coordinates of every element of $F_{n} 1$ must be in F_{5}, where

$$
F_{5} 1=\{00001,10001,0001,00101,10101\}
$$

Since B_{n} verifies (iii) and since $F_{n-5}: 0 F_{5} 0 \subset F_{n} 0$, we will be finished when we show that any element of $F_{5} 1$ can be written as an element of $B_{5}+0 F_{5} 0$ or $\tau+B_{5}+0 F_{5} 0$, where $\tau=(11000)$ (the last 5 coordinates of $t)$.

That is checked easily:

$$
\begin{aligned}
& 00001=\tau+b_{2} \\
& 10001=b_{2}+01000 \\
& 01001=\tau+b_{2}+01000 \\
& 00101=\tau+b_{2}+00100 \\
& 10101=b_{3}+01010
\end{aligned}
$$

Summarizing, we have proved using properties (i)-(iii), that the troublesome elements of $F_{n} 1$ can be expressed as elements of $B_{n}+F_{n} 0$ or of $t+B_{n}+F_{n} 0$. Therefore, any element of V_{n} is in $B_{n}+F_{n} 0$ or $t+B_{n}+F_{n} 0$, so that with property (iii) of θ and α we get

$$
x: \theta \in\left(B_{n}+F_{n} 0\right):\left(\beta_{0}+F_{5}\right)
$$

or

$$
x: \theta \in\left(t+B_{n}+F_{n} 0\right):\left(\beta_{1}+F_{5}\right)
$$

This means $x: \theta \in B_{n+5}+F_{n+5}$, and the same holds for $x: \alpha$.

The cases of $x: \bar{\theta}$ and $x: \bar{\alpha}$ are easily deducible from the above by noting that

$$
\{\bar{\theta}, \bar{\alpha}\}=\{\theta, \alpha\}+(11111)
$$

and

$$
\left\{\beta_{2}, \beta_{3}\right\}=\left\{\beta_{0}, \beta_{1}\right\}+(11111),
$$

which concludes the proof that B_{n+5} is good.
We can, therefore, use this theorem to construct inductively, starting from B_{5} - check that it verifies (i)-(iii) - a good subgroup of length $5 k$ and size $4 k$. It has $2^{3 k}$ cosets, which gives by Proposition 3.3, a WIM-code of rate

$$
R=3 k / 5 k=0.6 \text {. }
$$

6. Nonlinear WIM-coding and perspectives for further research

Until now we considered only WIM-codes obtained by taking the cosets of a good subgroup of V_{n}.
Now suppose that we have a good block B, which is not a group (obtained, say, with the help of a computer). To construct a WIM-code, we need disjoint good blocks, and the only systematic way we see of getting those from B is to search for a set of pairwise disjoint translates $B+t$ of B.

In other words, we see easily that a WIM-code can he constructed with:
(1) a good block B,
(2) a set of translations $T \subset V_{n}$ such that $B+B$ and $T+T$ are disjoint.

Note that looking for such a set T can be thought of as a classical coding problem: indeed, T is a code correcting a set B of parasite noise elements.

This general coding problem was considered by Deza [8], where he proved that the sets B of noises (of a given cardinality), for which the largest B-correcting codes T exist are either the most 'scattered', or the most 'dense' sets, that is, they are either included in a subgroup of V_{n}, or in a Hamming sphere.

In fact, one can easily convince oneself that B must have diameter at least $\lfloor n / 2\rfloor$, since F has diameter at most $\lceil n / 2\rceil$. In conclusion, small good blocks should 'resemble' subgroups.

Acknowledgment

We thank F. Busson for helpful discussions and for letting us include his computer results, a referee for improving Section 6 and AFIRST for financial support.

References

[1] R. Ahlswede and Z. Zhang, Coding for write-efficient memories, Inform. and Control 83 (1989) 80-87.
[2] J.M. Borden, Coding for write-unidirectional memories, preprint.
[3] F. Busson, Un code pour une WEM, rapport de stage ENST.
[4] G. Cohen and P. Frankl, Good coverings of Hamming spaces with spheres, Discrete Math. 56 (1985) 125-131.
[5] G. Cohen, P. Godlewski and F. Merkx, Linear block codes for write-once memories, IEEE Trans. Inform. Theory IT-29 (1983) 731-739.
[6] G. Cohen and G. Simonyi, Coding for write-unidirectional memories and conflict resolution, Discrete Appl. Math, 24 (1989) 103-114
[7] G. Cohen and G. Zemor, An application of combinatorial group theory to coding, Ars combin. 3A (1987) 81-89.
[8] M. Deza, Best additive arbitrary noise with given size, Research report CORR 75/20, University of Waterloo, Canada.
[9] T. Kløve, On Robinson's coding problem, IEEE Trans. Inform. Theory IT-29 (1983) 450-454.
[10] A. Kuznetsov, On the capacity of write-unidirectional memory in the presence of random errors, preprint.
[11] L. Lovasz, On the ratio of optimal integral and fractional covers, Discrete Math. 13 (1975) 383-390.
[12」 R.L. Rivest and A. Shamir, How to reuse a "write-once" memory, Inform. and Control 55 (1982) 1-19.
[13] J.P. Robinson, An asymmetric error-correcting ternary code, IEEE Trans. Inform. Theory IT-24, (1978) 258-261.
[14] A. Vinck, personal communication.
[15] J.K. Wolf, A.D. Wyner, J. Ziv and J. Korner, Coding for write-once memory, AT \& T Bell Lab.-Tech. J. 63 (1984) 1089-1112.

[^0]: Correspondence to: Gérard D. Cohen, Ecole Nationale Superieure des Telecomm., 46 rue Barrault, Paris 75634, Cedex 13, France.

 * Presented at the French-Israeli Conference on Combinatorics and Algorithms, November 14-17, 1988, Jcrusalcm, Israc̈l.

