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Abstract—This paper describes the construction of block predictor-corrector methods based on
Runge-Kutta-Nystrém correctors. Our approach is to apply the predictor-corrector method not
only at step points, but also at off-step points (block points), so that in each step, a whole block
of approximations to the exact solution at off-step points is computed. In the next step, these
approximations are used to obtain a high-order predictor formula using Lagrange interpolation. By
suitable choice of the abscissas of the off-step points, a much more accurately predicted value is
obtained than by predictor formulas based on last step values. Since the block of approximations at
the off-step points can be computed in paralle], the sequential costs of these block predictor-corrector
methods are comparable with those of a conventional predictor-corrector method. Furthermore, by
using Runge-Kutta-Nystrom corrector methods, the computation of the approximation at each off-
step point is also highly parallel. Application of the resulting block predictor-corrector methods to a
few widely-used test problems reveals that the sequential costs are reduced by a factor ranging from
4 to 50 when compared with the best sequential methods from the literature.
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1. INTRODUCTION

Consider numerical solution of nonstiff Initial Value Problems (IVPs) for the systems of special
second order, Ordinary Differential Equations (ODEs)

Y'(t)=f(y®), y(to)=yo, ¥(to)=y5 to<t<T, (1.1)

where y,f € R%. Problems of the form (1.1) are encountered in, e.g., celestial mechanics. The
most efficient numerical methods for solving this problem is the explicit Runge-Kutta-Nystrom
methods (RKN methods) directly designed for problem like (1.1). In the literature, sequential
explicit RKN methods up to order 10 can be found in [1-4]. In order to exploit the facilities of
parallel computers, several class of parallel Predictor-Corrector methods (PC methods) based on
RKN-type correctors have been investigated in [5-9]. A common challenge in these papers is to
reduce, for a given order of accuracy, the required number of sequential f-evaluations per step,
using parallel processors. In the present paper, we investigate a particular class of RKN-type par-
allel block PC methods considered in [10]. Following the approach used in that paper, we apply
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the PC method not only at step points, but also at off-step points (block points), so that, in each
step, a whole block of approximations to the exact solutions is computed. This approach was first
used in [11] for obtaining reliable defect control in explicit RK methods. It was also successfully
applied in [12] for increasing efficiency of RK-type parallel PC methods. In [10], the block of
approximations is used to obtain a highly accurate predictor formula by using Hermite-type inter-
polation. In this paper, we also use this block of approximations to obtain a high-order predictor
formula by using Lagrange-type interpolation. The RKN-type parallel PC methods based on
this approach require few numbers of sequential f-evaluations per step with acceptable stability
properties. The precise location of the off-step points can be used for minimizing the Lagrange
interpolation errors and also for obtaining various cheap error estimates for stepsize control. Since
the approximations to the exact solutions at off-step points to be computed in each step can be
obtained in parallel, the sequential costs of the resulting RKN-type parallel block PC methods
are equal to those of conventional PC methods. Furthermore, by using Runge-Kutta-Nystrom
corrector methods, the PC iteration method computing the approximation to the exact solution
at each off-step point, itself is also highly parallel (cf. [6,9]). Consequently, the RKN-type parallel
PC methods considered in this paper use a large number of processors. They can be considered
as block versions of the Parallel-Iterated RKN methods (PIRKN methods) considered in [6,9]
using block Lagrange-type predictors, and will therefore be termed Block PIRKN methods with
Lagrange-type predictor (BPIRKN-L methods). Moreover, if the PC iteration process continues
until convergence, then using direct RKN correctors, leads to BPIRKN-L methods possessing
both faster convergence and smaller truncation error resulting in better efficiency than by using
indirect RKN correctors (cf., e.g., [6]).

In the next section, we shall formulate and investigate the block PIRKN-L methods. Further-
more, in Section 3, we present numerical comparisons of BPIRKN-L methods with parallel and
sequential explicit RKN methods available in the RKN literature.

In the following sections, for the sake of simplicity of notation, we assume that the IVP (1.1)
is a scalar problem. However, all considerations below can be straightforwardly extended to a
system of ODEs, and therefore, also to nonautonomous equations.

2. BPIRKN-L METHODS

Our starting point is an s-stage collocation-based implicit RKN methods (see, e.g., [13;
14, p. 272]) given by
U, = ugne + hul,c + h2Af(U,),

Unt1 = Up + hul, + 26T £(U,), (2.1)
Uny1 = Uy, + hd" f(Uy),

where up, & y(tn), up, = y'(tn), h is the stepsize, s X s matrix A, s-dimensional vectors b, ¢,d are
the method parameters matrix and vectors, e being the s-dimensional vector with unit entries
(in the following, we will use the notation e for any vector with unit entries, and e; for any jtb
unit vector, however, its dimension will always be clear from the context). Vector U, denotes
the stage vector representing numerical approximations to the exact solution vector y(tne + ch)
at nt? step. Furthermore, in (2.1), we use for any vector v = ('vl,...,v,)T and any scalar
function f, the notation f(v) := (f(v1),..., f(v,))T. This RKN method will be referred to as
the corrector method. We distinguish two types of collocation implicit RKN methods: direct
and indirect (cf. [13]). Indirect collocation implicit RKN methods are derived from collocation
implicit RK methods for first-order ODEs. Direct collocation implicit RKN methods are directly
constructed for second-order ODEs of the form in (1.1). A first family of these direct implicit
RKN methods is obtained by means of collocation technique considered in [13]. In this paper,
we will confine our considerations to high-order collocation implicit RKN methods that is the
Gauss-Legendre and Radau ITA methods. This class contains methods of arbitrarily high order.
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Indirect collocation implicit RKN methods can be found in {15]. Direct collocation implicit RKN
methods were investigated in [6,13].

Applying the RKN method (2.1) at step t,, with r distinct stepsizes a;h, where i = 1,...,r
and a; = 1, we obtain in this way, a block of correctors

Up: = une + ashulc + a?h2Af(Uy, ),
Uni1,i = Un + ashuy, +aZh?b! f(Uy ), (2.2)
Upyri =, +ahdT f(Uns),  i=1,...,n

Let us suppose that at (n — 1)t" step, a block of predictions Uﬁ?_)u, i=1,...,r, and the approx-

imations yn—1 = Y(tn—1), ¥n_, = ¥ (tn—1) are given. We shall compute r approximations yy ; to
the exact solutions y(t,—1 + a;h), i =1,...,r, defined by

ngl,,- = yn_18 + a;hyl,_,c + a2h2Af (Uff:llz) , F=1,...,my,

Yni = Yoot + ashtfyy +aZh?T £ (U,

Vi =Yp—1 +ashd’ f (Uf.'ﬁ"l)_,-) , i=1,...,r

In the next step, these r approximations are used to create high-order predictors using Lagrange
interpolation. By denoting

T
Yn = (yﬂ,ly e ,yn,r) y yn,l = yﬂn

Yoim (o) Yoa = >

we can construct the following Lagrange-type predictor formulas:
U9 =viyY,, i=1,..,n (2.4)
where predictor matrices Vi, ¢ = 1,...,r, will be determined by order conditions (see Section 2.1).

Apart from (2.4), we can construct predictors of other types like, e.g., Hermite and Adam types
(cf. [10,12]). Regarding (2.2) as block corrector methods and (2.4) as block predictor methods
for the stage vectors, we leave the class of one-step methods and arrive at a block PC method in
P(CE)™E mode

Upi = Vi¥a, (2.58)
UY) = ee] Yo + aihee] Yy, +a2h24f (USTY),  j=1,...,m,
Yn+1,i = €] Yo +ashe] Y, +ah?bT f (Ufl":)) , (2.5b)
Ynirs = €] Yo+ aihd" £ (US)), i=1,...,m

It can be seen that the block PC method (2.5) consists of a block of PIRKN-type corrections using
a block of Lagrange-type predictions at the off-step points (block points) (cf. [6,9]). Therefore,
we shall call method (2.5) the r-dimensional block PIRKN method with Lagrange-type predictors
(BPIRKN-L method). Given the vectors Y, and Y}, the r values y,; can be computed in
parallel and, on a second level, the components of the ith stage vector iterate Uff; 1 can also be
evaluated in parallel (cf. [6,9]). Hence, the r-dimensional BPIRKN-L methods (2.5) based on
s-stage RKN correctors can be implemented on a computer possessing 7 - s parallel processors.

The number of sequential f-evaluations per step of length h in each processor equals s* = m+1.



48 N.-H. Cong

2.1. Order Conditions for the Predictor

In this section, we consider order conditions for the predlctors For the fixed stepsize h, the
th_order conditions for (2.5a) are derived by replacing U a.nd Y. by the exact solution values

y(tne + a;hc) and y(t,-1e + ha) = y(t,e + h(a — e)), respectlvely, with a = (al,...,ar) . On
substitution of these exact values into (2.5a) and by requiring that the residue is of order q + 1
in h, we are led to

y(tne +ashc) - Viy(tre + h(a—e)) =0 (h?*1), i=1,...,r (2.6)

Using Taylor expansions, we can expand the left-hand side of (2.6) in powers of h and obtain

[exp (haicdi) V; exp (h(a e)i)] y(tn)
_ Zcm( ) y(ta) + O+ (h:t) ") = 0 (), @27)
i=1,...,r,
where t} is a suitably chosen point in the interval [t,_1,t,-1 + (1 + a;)A], and

) = 5 [y ~Vita-e],
j=0,..., q, t=1,...,7

(2.8a)

The vectors ng i=1,...,r represent the error vectors of the block predictors (2.5a). From (2.7),
we obtain the order conditions

cP =0, j=01,....qy i=1,...,r (2.8b)

The vectors Cg‘”’l), i = 1,...,r, are the principal error vectors of the block predictors. The
conditions (2.8), imply that

Uni~UQ =0 (rt*), i=1,...,rn (2.9)

Since each iteration raises the order of the iteration error by 2, the following order relations are
obtained:

Uni — UM = O (h2m+a+l),
Unt1i = Ynt1i = aTh7DT [f (Un,i) - f ( ulm )] O (R2m+a+3) |

Untr,i = Ynt1i = aihd” [f (Uns) = f (US,':))] =0 (h2m+q+2) ,
i=1,...,7

Furthermore, for the local truncation error of the BPIRKN-L method (2.5), we may write

Y(tnt1) = Yns1 = [Y(tn+1) — Unt1] + [Un+1 — Yns1] = O (AP*Y) + O (R2™H943)
y’(tn+1) - y1Iz+1 = [yl(tn+1) - u:—;+1] + [";z+1 - y:1+1] =0 (hp+1) +0 (h2m+q+2) y

where p is the order of the generating RKN corrector (2.1). Thus, as in [10], we have the similar
theorem.
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THEOREM 2.1. If the conditions (2.8) are satisfied and if the generating RKN corrector (2.1) has
step point order p, then the BPIRKN-L method (2.5) has the iteration error order pie, = 2m+q+1
and step point order p* = min{p, Piter}.

In order to express Vi, i = 1,...,r explicitly in terms of vectors a and ¢, we suppose that
¢ = r — 1 and define the matrices

P; = (e,a;c,a2¢?,aic?,aict, .. o] ¢,
Q:=(e,(a—e),(a— el (a—e)d,...,(a— e’ ),
i=1,...,r

Then the order conditions (2.8) can be presented in the form
P,-V.Q=0, i=1,...,r. (2.10)

Since the components a; of vector a are assumed to be distinct implying that @ is nonsingular,
and from (2.10), we may write

V;=PQ!, i=1,...,rn (2.11)

In view of Theorem 2.1 and the simply explicit expressions of the predictor matrices V; in (2.11),
we have the following theorem.

THEOREM 2.2. Ifq = r—1, and the predictor matrices V;, i = 1,...,r satisfy the relations (2.11),
then for the BPIRKN-L methods (2.5), piter = v + 2m, p* = min{p, piter}, and s* = m + 1.

In the application of BPIRKN-L methods, we have two classes of high-order corrector methods:
Gauss-Legendre correctors and Radau ITIA correctors. The use of high-order corrector methods
is motivated by reducing the number of processors needed for implementation of BPIRKN-L
methods. However, recent developments indicate that the number of processors is no longer an
important issue.

In this paper, we concentrate our considerations on the BPIRKN-L methods using Gauss-
Legendre correctors. In the near future, we intend to investigate a class of more suitable correctors
methods in order to reduce round-off effect (cf. Section 2.3).

2.2. Convergence Boundaries

In actual implementation of BPIRKN-L methods, the number of iterations m is determined
by some iteration strategy, rather than by order conditions using minimal number of iterations
to attain order of the corrector. Therefore, it is of interest to know how the integration step
effects the rate of convergence. The stepsize should be such that a reasonable convergence speed
is achieved.

As in, e.g., [6,10], we shall determine the rate of convergence by using the model test equation
y"(t) = Ay(t), where X runs through the spectrum of the Jacobian matrix %. For this equation,
we obtain the iteration error equation

UY) - U,; = a224 [U,‘{;”-U,,,,-], 2:=h2\, j=1,...,m. (2.12)

Hence, with respect to the model test equation, the convergence factor is determined by the
spectral radius p(a?zA) of the iteration matrix a?24, i = 1,...,r. Requiring that p(a?z4) < 1,
leads us to the convergence condition

aflz|<—1—— or a?h2<—71——.
— ) p(4
p(5) o

) (2.13)
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We shall call 1/p(A) the convergence boundary. In actual computation, the integration stepsize h
should be substantially smaller than allowed by condition (2.13). By requiring that p(a?z4) is
less than a given damping factor a (a < 1), we are led to the condition

%)—, ¥(a) = ;(%,

aflzl <v(a) or afh®< (2.14)

Oy

where y(a) presents the boundary of convergence with damping factor @ of the method. Spec-
ification of the convergence boundaries v(a) of the BPIRKN-L methods based on direct and
indirect Gauss-Legendre and Radau ITA correctors can be found in, e.g., [6,10]. Notice that for
a given stepsize h, the maximal damping factor is defined by

a2z, (O
7(§)ay) '

The convergence boundaries of the BPIRKN-L methods given in, e.g., [6,10] show that the direct
Gauss-Legendre and Radau ITA correctors give rise to faster convergence than indirect ones of the
same order. Therefore, if the PC iteration is continued until convergence, then the BPIRKN-L
methods based on direct collocation RKN correctors are prefered (cf. [6,10]). These corrector
methods are not A-stable (see [13]), but their stability regions are sufficiently large for nonstiff
problems (cf. [6]). The similar parallel PC methods based on PC pairs Hermite-Radau ITA
have been investigated in [10]. In this paper, we shall consider BPIRKN-L methods based on
Gauss-Legendre correctors (PC pairs Gauss-Legendre-Lagrange).

o=

2.3. The Choice of Block Abscissas a;

The accuracy of Lagrange interpolation formulas is improved if the interpolation abscissas are
more narrowly spaced. However, this will increase the magnitude of the entries of the predictor
matrices V;, causing serious round-off errors. There are several ways to reduce this round-off
effect as were discussed in [12]. Also in [11], where Hermite interpolation formulas were used for
increasing reliability in explicit RK methods, it was found that on a 15 digits precision computer,
the Hermite interpolation abscissas should be separated by 0.2 in order to suppress rounding
€ITorS.

In order to derive a further criteria for the choice of suitable values of the abscissas a;, we need
to get insight into the propagation of a perturbation & of the block vectors Y, and Y/, within
a single step (the similar analysis was given in [10,12]). We shall study this for the model test
equation y"(t) = Ay(t). For that purpose, we first express yn41,; and hy/, +1,; in terms of Y,
and Y. Since

Uni = [I - a?24] 7" [ee] Y, + ce] a;hY}]
U = Upi = [Vi- [ - a?24] " ee] | Yo ~ [ - a?24] " ce] ashYy,
applying (2.5),(2.12) to the model test equation for a given number m, we obtain
Ynt14 = o] Yn + aihe] Y;, +aZ2b" [US) - U, ,-] +a22bTU,;

=e] Y, +a:he] Y, +a22b" [I —a?24] " [ee] Yy, + ce] a.hY']

+a?2b7 [aZzA)™ [[ — [I-a?24]" eel] n—[I - a,-zA] ce, a.th:,] (2.15a)
= [eir +aZzb" [I- a?zA]— ee] +a?zb" [aZz4]™ [V,- -[I- a,?zA]_l eeI]] Y.

+ [ase] +a2zbT [I - a?24] " asce] — aZebT [a24]™ I - a22A] " ayce] T]wvs,
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hytyy1s = €] KY), + +a,2dT [Uﬁ{j? - U,,,,-] +a;2d"U,;
= hel Y., +a;zd" [I - a?zA]_1 [ee] Yn + ce{ a;hY))
+a;2d" [a224]™ [[Vi- [I-a?24] " ee] | Yo [I-a?z4] ™' ceIa,.hY;] (2.15b)
= [a:2d" [1 - a?24] " ee] +a;2d" [a224]" [Vi - [1 - a?24] " ee] || Y
+ [ef +ai2dT [I - a?24] " aice] —a;2dT [a224]™ [I - al24] " aice] | A,

Let us now replace Y, by Y = Y, + & and Y, by Y';, = Y/, + €. Then from (2.15), the
perturbed values y};,; ; and 3, ; of Y415 and y},,; ;, respectively, are given by

Yn+1,i = Ynt1i + [elT +alzb" [I - a zA] ee]
+aZzb" [a?24]™ [Vi ~-[I- a?zA]_1 ee-lr” €

. (2.16a)
+ [a,-eI + a?sz [I - a?zA] a;ce]
—a2zb" [a2zA]™ [I - a?24)” ! a,,cel] he,
Ynt1i = Yne1it % [a,-sz [I —aZzA] “lee]
adT 2 m - 2 -1 T
+aizd’ [afzA] [V1 [I - a224] " ee| ]] € (2.16b)

+ [e;r +a;2d" [T - a2zA] ' a;ce]
—a;zd" [aZ24)™ [I - a?zA]_1 a,-celT] €.

These relations show that the first component of the perturbation ¢ is amplified by a factor O(1)
for both Y, and Y/, whereas all other components are amplified by a factor of O(h?*™+2) and
O(h*™+1) for Y,, and Y}, respectively. Refering to the approach used in [12], leads us to the
choice of the values a; such that the maximum norm of the principal error vector Cg‘”‘l) in (2.8)
is minimized.

In our case of Lagrange-type predictors, where ¢ = r — 1 (cf. Theorem 2.2), we have to
minimize the magnitude of ||C§')||°°. Although we may use (2.8a) for minimizing ||C(1r)||°°,
it is more convenient to start with usual expression of Lagrange interpolation formulas. For
r-times continuously differentiable function y(t), the r-point Lagrange interpolation formula can
be written as (see, e.g., [16, p. 878; 17])

Yt +7h) = 3" L(ry(tn + ash) + CO(r) (h;%) b8,

fl( ) L (2.17)
(1) = T4 )y = = —ai
Li(r) J.:I,,I,-#,. aay CTM=3 E(T a;),

where t* is a suitably chosen point in the interval [t,,t, + Th]. Hence, we have the following
alternative form of (2.7):

r d r
Y(tn + aseh) = le(l + aick)y (tn + (a; — 1)) + CV (1 + aycx) (haz) y(tic), (2.18)
Jj=1 .

where t}; is also a suitably chosen point in the interval [t,_1,tn—1 + (1 + a;)h). The principal
error vectors of the Lagrange-type predictor formulas defined by (2.8a) are given by CE') =
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C(e+aic),i=1,...,r. Recalling that for i = 1, we are led to minimize the magnitude of the
values

1 T
C1+¢) = 7-Jl'[l(1+ck—aj), k=1,...,s. (2.19)
J=
Confining our considerations to the block dimensions r > s + 1, we set
a; =1, a;=1+c¢;_1, i=2,...,5s+1. (2.20a)

By this choice, the principal error vector C(lr) vanishes (i.e., IIC(lr)Hoo = |C")(e + ¢)|lo = 0), s0
that all inaccuracies introduced by the predictor formula are damped by a factor of O(h2™+2)
for Y, and by a factor of O(h?™+!) for Y/, (cf. (2.16)). If r > s + 1, then we have additional
abscissas for improving the predictor formulas. It is tempting to use these additional abscissas
for reducing the magnitude of the norm of other principal error vectors. Therefore, it seems
recommendable to choose the remaining abscissas outside the interval [1,1 + ¢,] with averaged
spacing of the abscissas ai,...,a,41 equal to 1/(s + 1) (cf. [12]). This leads us to define the
remaining abscissas according to:

ife, #1, thena,-:s—_‘—;, i=8+2,...,7
s+ (2.20b)
s+i—-1 |
elsea,-=——s-—, t=s54+2,...,r

For Gauss-Legendre correctors of order p = 2s, the choice (2.20) results in an averaged spacing of
2/(p+2). Recalling that on a 15-digit precision machine, the minimal spacing of 0.2 is acceptable
in the case of Hermite interpolation (cf. [11]), we expect that for order up to 10, this averaged
spacing 2/(p + 2) should be acceptable for more stable Lagrange interpolation formulas. Finally,
we remark that the abscissas defined by (2.20) enable us to develop various cheap strategies for
stepsize control. For example, if 7 > s + 2, then the difference yn—1,542 — yn,1 can be used for
obtaining an error estimate.

2.4. Stability Boundaries

The linear stability of the BPIRKN-L methods (2.5) is investigated by again using the model
test equation y”(t) = Ay(t), where \ is assumed to be negative. From (2.15), we are led to the
recursion v v

n+1 _ n _ 0 1
(hY,’.H_l) = M (z2) (hYg) , My (2) = My, (2) + M,,(2), (2.21a)
where M2 (z) and M} (2) are the 2r x 2r matrices defined by

el +afzb" [I —a224] ' ee] +a2zbT [a?zA]™ [V1 ~ [I-a224]! ee.lr] oT

(o of +a?zbT [I-a2zd] ™ ool +aZzbT [a2zA]™ [Vs - [ - a224] " ee] | 0T (221b)
z)= , .
" a12d7 [I - a32A4] ' ee] +a12dT [a224]™ [V1 — [I - a224]"! ee;r] o7

\ arzdT [I - a224] ' ee] +ar2dT [a2zA]™ [V;- - [I-a224]7! ee'lr] oT

07 aje] +a3zbT [I - a2zA] ' ajce] —alzbT [a2z4]™ [I - a?zA]" ! ajce]

07 are] +a2zbT [I —a224] 'arce] —a2zbT [a22A]™ [I - a22A] " arce]

07 e +a12dT [I -a?24] 'aice] —arzdT [0324]™ (I - a32zA] " ayce]

ML (2) = (2.21c)

\0T  e] +arzd” [1 - a224] " arce] — arzdT [a224]™ [I - a224] ' arce] /
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The 2r x 2r matrix M,,(2) defined by (2.21) which determines the stability of the BPIRKN-
L methods, will be called the amplification matriz, its spectral radius p (M,(z)), the stability
function. For a given number m, the stability intervals of the BPIRKN-L methods are defined
by

(=B(m),0) := {z: p(Mm(2)) <1, 2 <0}.

It is evident from (2.21) that if 2 satisfies the convergence conditions (2.13), then the stability
function of the BPIRKN-L method p(M,,(z)) converges to the stability function of the RKN
corrector method as m — oo (cf., e.g., [13; 14, p. 273]). Hence, the asymptotic stability interval for
m — 00, (—B(c0),0) is the intersection on the negative 2-axis of the stability interval (—Gsorr, 0)
of the RKN corrector and its convergence region defined by (2.13).

Confining the considerations to the BPIRKN-L methods with blocksize r = p = 2s, we numer-
ically calculated the values of 8(m) for various resulting BPIRKN-L methods as listed in Table 1.
The boundaries §(m) for BPIRKN-L methods based on direct and indirect Gauss-Legendre cor-
rectors are denoted by B(m)girect a0d B(M )indirect, respectively. From this table we observe that
the stability boundaries show a rather irregular behaviour. For m = 0 or m = 1, the BPIRKN-
L methods based on direct and indirect Gauss-Legender correctors have a comparable stability
boundaries. From Table 1, we can select a whole set of BPIRKN-L methods of order p up to 10
requiring 1 or 2 f-evaluations per step with acceptable stability intervals for nonstiff problems
(cf. Theorem 2.2).

Table 1. Stability boundaries 3(m) for various p*'-order BPIRKN-L methods based
on direct and indirect correctors.

BPIRKN Methods | p=4 p=6 p=38 p=10
B(0) direct 0.714 0022 0507  0.018
B(L)givect 0015 1.055  0.232 1.324
B(2)girect 0.104 0.150  1.311 5.073
B(3)direct 0.691 1.730  0.871 1.502
B(4) girect 0437 0.808  3.537  4.249
B(5)direct 0.667 1410 2213  3.489
B(6)direct 1.042 4354 4614 4.736

B(0)indirect 0.714 0022 05012  0.019
B(1)indisect 2220 1055  0.232 1.324
B(indirect 0021 1636 3688 5073
B(3)indirect 0117 0304  0.461 3.052
B(4)indirect 2281 0.683  2.319 1.723
B(5)indirect 0.328 2689 1535 2910
B(6);indirect 0552 1513  3.377  3.396

3. NUMERICAL EXPERIMENTS

In this section, we report numerical results obtained by the BPIRKN-L methods (2.5). As
it was mentioned in the previous sections, we confine our considerations to the r-dimensional
BPIRKN methods based on Gauss-Legendre correctors of orders up to 10 with » = p and block
points defined by (2.20). We shall compare the BPIRKN-L methods with parallel and sequential
explicit RKN methods from the literature. In the first step, we always use the trivial predictor
formulas given by

Uslo’)i = ype + a;hy ¢, i=1,...,r

The absolute error obtained at the end point of the integration interval is presented in the form
10~NCP (NCD may be interpreted as the number of correct decimal digits). The computational
efforts are measured by the values of Ngq denoting the total number of sequential f-evaluations
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required over the whole integration interval. For an easy comparison of the various methods,
the (fixed) stepsize is chosen such that the number of sequential f-evaluations of each method
(approximately) equals a prescribed number Nyoq. To be more precise, let s* denote the number
of sequential f-evaluations per step, Ngteps denote the total number of integration steps for the
integration interval [to, T, then Nyeq = Nyteps - * Which leads us to

’

N, 1 Tt
Nsteps= [ ;:q +§], h= g

N, steps
where [-] denotes the integer part function (the effect of the integer part operation causes that the
actual number of sequential f-evaluations may be slightly different from the prescribed number
Nieq). For pt-order PIRKN methods, s* = [p/2] in all steps (cf. [9]). For any p*h-order BPIRKN-
L methods, we used s* = [p/2] in first step and s* = 1 after first step so that the stepsize h will be
evaluated accordingly. Since the PC iterations will not be continued until convergence, we confine
our considerations on the BPIRKN-L methods based on indirect Gauss-Legendre correctors. All
the computations were carried out on a 28-digit precision computer. An actual implementation
on a parallel machine is a subject of further study.

3.1. Comparison with Parallel Methods

In this section, we report numerical results obtained by the best parallel explicit RKN methods
available in the literature, that is the (indirect) PIRKN methods proposed in [9] and the BPIRKN-
L methods specified above. We selected a test set of three problems taken from the literature.

3.1.1. Linear nonautonomous problem

As a first numerical test, we apply the various p*P-order PC methods to the linear nonau-
tonomous problem (cf., e.g., [6-8])

d’y(t) [ —2a(t)+1 -—aft)+1
o (2(a(t) 1) aff)- 2) y(),
o(t) = max {2 cosz(t),sin2(t)} , 0 <t <20,
y0 =007 yO=(-1,2T,

(3.1)

with exact solution y(t) = (—sin(t),2sin(t))T. The numerical results listed in Table 2 clearly
show that the BPIRKN-L methods are more efficient than the PIRKN methods of the same
order. The high-order BPIRKN-L methods offer a gain of a factor more than 4.

Table 2. NCD-values for several values of Ngeq for problem (3.1) obtained by various
p*P-order parallel PC methods.

Methods P Naeq =100 Nyeq =200 Naag =400 Npeq =800  Nyoq = 1600
PIRKN 4 2.4 3.7 49 6.1 7.3
BPIRKN-L 4 45 6.1 8.4 8.9 9.9
PIRKN 6 3.9 5.8 7.7 9.7 11.5
BPIRKN-L 6 7.7 9.8 12.0 14.4 16.9
PIRKN 8 6.4 8.5 11.3 14.1 16.1
BPIRKN-L 8 114 14.1 16.8 19.6 21.7
PIRKN 10 7.2 9.9 13.2 16.4 19.6
BPIRKN-L 10 15.0 18.4 20.2
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3.1.2. Nonlinear Fehlberg problem

For the second numerical test, we apply the various pt"-order PC methods to the well-known
nonlinear Fehlberg problem (cf., e.g., [1,2,18,19])

2
—4#2 ————
d?y(t) _ VYi(E) +y3(t) ®)
e | 2 u? Y
V2 + 3(0) (32)

y(0) = 0,17, y@=(4¢§®T, Jastso

with highly oscillating exact solution given by y(t) = (cos(t?),sin(t?))T. The results are reported
in Table 3. These numerical results show that the BPIRKN-L methods are again superior to the
PIRKN methods of the same order by a speed-up factor more than 4.

Table 3. NCD-values for several values of Nseq for problem (3.2) obtained by various
pth-order parallel PC methods.

Methods  p  Neaq =300  Nyeq =600 Nyoq =1200  Noeq = 2400  Naoq = 4800
PIRKN 4 03 1.6 2.8 4.0 5.2
BPIRKN-L 4 2.1 3.6 5.0 6.4 7.7
PIRKN 6 11 3.1 5.0 6.9 8.8
BPIRKN-L 6 48 6.8 8.9 11.0 13.0
PIRKN 8 1.5 41 6.8 9.4 12,0
BPIRKN-L 8 7.8 10.4 13.0 15.7 18.4
PIRKN 10 1.8 5.2 8.5 11.9 15.1
BPIRKN-L 10 10.4 14.0 17.3 19.4

3.1.3. Newton’s equation of motion problem

The third numerical example is the two-body gravitational problem for Newton’s equation of
motion (see [20, p. 245)).

dy(t) _ y1(t) . d*ya(t) _ y2(t) 5 0<t<20
2 ’ 2 ’ -
dt ( yi(t) + s (t)) &t (\/ vi(t) + 3 (t)) (3.3)
y(0)=1-¢,  1(0)=0, y(0)=0, y3(0)= i :

This problem can also found in [19] or from the test set of problems in [21]. The solution
components are y;(t) = cos(u(t)) — ¢, y2(t) = /(1 + €)(1 — ) sin(u(t)), where u(t) is the solution
of Keppler’s equation t = u(t) — esin(u(t)) and € denotes the eccentricity of the orbit. In this
example, we set € = 0.3. The results for this problem are given in Table 4 and give rise to roughly
the same conclusions as formulated in the two previous examples.

Table 4. NCD-values for several values of Ngeq for problem (3.3) obtained by various
pth.order parallel PC methods.

Methods P  Neseq =100  Naeq =200 Neeq =400 Nyeq =800  Nyoq = 1600
PIRKN 4 0.3 2.0 3.0 42 5.4
BPIRKN-L 4 1.6 3.1 45 6.0 75
PIRKN 6 2.1 3.3 4.9 6.7 8.6
BPIRKN-L 6 3.8 5.8 7.9 10.0 12.1
PIRKN 8 2.7 4.9 7.0 9.4 11.8
BPIRKN-L 8 6.6 9.8 11.9 14.4 17.0
PIRKN 10 3.3 5.5 8.4 11.4 14.5
BPIRKN-L 10 7.7 11.2 14.7 18.1 19.9
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3.2. Comparison with Sequential Methods

In Section 3.1, a class of BPIRKN-L methods was compared with PIRKN methods (the most
efficient parallel explicit RKN methods). In this section, we shall compare these BPIRKN-L
methods with the sequential explicit RKN methods currently available.

We restricted the numerical experiments to the comparison of our 10" order BPIRKN-L
method (BPIRKN;o method) with a few well-known sequential codes for nonlinear Fehlberg
problem (3.2). We selected some embedded RKN pairs presented in the form p(p+1) or (p+1)p
constructed in [1,2,18,19] and the code DOPRIN taken from [22]. We reproduced the best results
obtained by these sequential methods given in the literature (cf., e.g., [9,19]) and added the results
obtained by BPIRKN;o method. In spite of the fact that the results of the sequential methods
are obtained using a stepsize strategy, whereas BPIRKN; method is applied with fixed stepsizes,
it is the BPIRKN;¢ method that performs most efficiently (see Table 5). When compared to the
code DOPRIN from (22}, the BPIRKN) offers a speed-up factor ranging from 7 to 50 (depending
on the accuracy required).

Table 5. Comparison with sequential methods for problem (3.2).

Methods Ngteps NCD  Nueq
11(12)-pair (from [15]) 876  20.3 17521
11(10)-pair (from [16]) 919 207 15614
9(10)-pair (from [13]) 628  15.1 8793

3235 214 45291

8(9)-pair (from [12]) 1452 135 15973
DOPRIN (from {20]) 79 3.8 633
353 8.3 2825

1208 123 9665

4466 16.3 35729
16667 20.3 133337

PIRKNj (in this paper) 200 8.6 494
206 104 300

596  14.0 600

1196  17.3 1200

2396 204 2400

4. CONCLUDING REMARKS

This paper described an algorithm to obtain Runge-Kutta-Nystrém-type parallel block PC
methods with Lagrange-type predictors (BPIRKN-L methods) requiring one or two sequential
f-evaluations per step for any order of accuracy. The structure of BPIRKN-L methods also
enables us to obtain various cheap error estimates for stepsize control. The sequential costs
of a resulting class of BPIRKN-L methods implemented with fixed stepsize strategy are already
considerably less than those of the best parallel and sequential methods available in the literature.
These conclusions encourage us to pursue the study of BPIRKN-L methods. In particular, we
will concentrate on performance analysis of predictor methods of other types like Hermite and
Adams types, and on stepsize control that exploits the special structure of BPIRKN-L methods.
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