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Abstract--This paper describes the construction of block predictor-corrector methods based on 
Runge-Kutta-Nystr6m correctors. Our approach is to apply the predictor-corrector method not 
only at step points, but also at off-step points (block points), so that in each step, a whole block 
of approximations to the exact solution at off-step points is computed. In the next step, these 
approximations are used to obtain a high-order predictor formula using Lagrange interpolation. By 
suitable choice of the abscissas of the off-step points, a much more accurately predicted value is 
obtained than by predictor formulas based on last step values. Since the block of approximations at 
the off-step points can be computed in parallel, the sequential costs of these block predictor-corrector 
methods are comparable with those of a conventional predictor-corrector method. Furthermore, by 
using Runge-Kutta~NystrSm corrector methods, the computation of the approximation at each off- 
step point is also highly parallel. Application of the resulting block predictor-corrector methods to a 
few widely-used test problems reveals that the sequential costs are reduced by a factor ranging from 
4 to 50 when compared with the best sequential methods from the literature. 

Keywords--Kunge-Kutt~-Nystr6m methods, Predictor-corrector methods, Stability, Parallelism. 

1. I N T R O D U C T I O N  

Consider numerical solution of nonstiff Initial Value Problems (IVPs) for the systems of special 
second order, Ordinary Differential Equations (ODEs) 

yU(t) = f (y(t)) ,  y(t0) = Y0, yf(t0) = y~, to ~ t ~ T, (1.1) 

where y,  f E R d. Problems of the form (1.1) are encountered in, e.g., celestial mechanics. The 
most efficient numerical methods for solving this problem is the explicit Runge-Kutta-NystrSm 
methods (RKN methods) directly designed for problem like (1.1). In the literature, sequential 
explicit RKN methods up to order 10 can be found in [1-4]. In order to exploit the facilities of 
parallel computers, several class of parallel Predictor-Corrector methods (PC methods) based on 
RKN-type correctors have been investigated in [5-9]. A common challenge in these papers is to 
reduce, for a given order of accuracy, the required number of sequential f-evaluations per step, 
using parallel processors. In the present paper, we investigate a particular class of RKN-type par- 
allel block PC methods considered in [10]. Following the approach used in that  paper, we apply 
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the PC method not only at step points, but also at off-step points (block points), so that, in each 
step, a whole block of approximations to the exact solutions is computed. This approach was first 
used in [11] for obtaining reliable defect control in explicit ILK methods. It was also successfully 
applied in [12] for increasing efficiency of RK-type parallel PC methods. In [10], the block of 
approximations is used to obtain a highly accurate predictor formula by using Hermite-type inter- 
polation. In this paper, we also use this block of approximations to obtain a high-order predictor 
formula by using Lagrange-type interpolation. The RKN-type parallel PC methods based on 
this approach require few numbers of sequential f-evaluations per step with acceptable stability 
properties. The precise location of the off-step points can be used for minimizing the Lagrange 
interpolation errors and also for obtaining various cheap error estimates for stepsize control. Since 
the approximations to the exact solutions at off-step points to be computed in each step can be 
obtained in parallel, the sequential costs of the resulting RKN-type parallel block PC methods 
are equal to those of conventional PC methods. Furthermore, by using Runge-Kutta-NystrSm 
corrector methods, the PC iteration method computing the approximation to the exact solution 
at each off-step point, itself is also highly parallel (cf. [6,9]). Consequently, the RKN-type parallel 
PC methods considered in this paper use a large number of processors. They can be considered 
as block versions of the Parallel-Iterated RKN methods (PIRKN methods) considered in [6,9] 
using block Lagrange-type predictors, and will therefore be termed Block P I R K N  methods with 
Lagrange-type predictor (BPIRKN-L methods). Moreover, if the PC iteration process continues 
until convergence, then using direct RKN correctors, leads to BPIRKN-L methods possessing 
both faster convergence and smaller truncation error resulting in better efficiency than by using 
indirect RKN correctors (cf., e.g., [6]). 

In the next section, we shall formulate and investigate the block PIRKN-L methods. Further- 
more, in Section 3, we present numerical comparisons of BPIRKN-L methods with parallel and 
sequential explicit RKN methods available in the RKN literature. 

In the following sections, for the sake of simplicity of notation, we assume that the IVP (1.1) 
is a scalar problem. However, all considerations below can be straightforwardly extended to a 
system of ODEs, and therefore, also to nonautonomous equations. 

2. B P I R K N - L  M E T H O D S  

Our starting point is an s-stage collocation-based implicit RKN methods (see, e.g., [13; 
14, p. 272]) given by 

Un = Une + hu~n c + h2Af(Un),  

Un+l = Un + hu~n + h2bY f (Un) ,  (2.1) 
¢ t un+ 1 = u n + hdr  f (Un) ,  

! 
where Un ~ y(tn), u,~ ~ y~(t~), h is the stepsize, s × s matrix A, s-dimensional vectors b, e, d are 
the method parameters matrix and vectors, e being the s-dimensional vector with unit entries 
(in the following, we will use the notation e for any vector with unit entries, and ej for any jth 
unit vector, however, its dimension will always be clear from the context). Vector Un denotes 
the stage vector representing numerical approximations to the exact solution vector y(tne + eh) 
at n th step. b'hrthermore, in (2.1), we use for any vector v = ( v l , . . . , v s )  "r and any scalar 
function f ,  the notation f (v)  := ( f ( v x ) , . . . ,  y(vs)) T. This RKN method will be referred to as 
the correetor method. We distinguish two types of collocation implicit RKN methods: direct 
and indirect (cf. [13]). Indirect collocation implicit RKN methods are derived from collocation 
implicit RK methods for first-order ODEs. Direct collocation implicit RKN methods are directly 
constructed for second-order ODEs of the form in (1.1). A first family of these direct implicit 
RKN methods is obtained by means of collocation technique considered in [13]. In this paper, 
we will confine our considerations to high-order collocation implicit RKN methods that is the 
Ganss-Legendre and Radau IIA methods. This class contains methods of arbitrarily high order. 
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Indirect collocation implicit RKN methods can be found in [15]. Direct collocation implicit RKN 
methods were investigated in [6,13]. 

Applying the RKN method (2.1) at step tn with r distinct stepsizes a~h, where i = 1 , . . .  , r  
and 31 = 1, we obtain in this way, a block of correctors 

Un,~ = Une + aihutnc + a2h2Af(Un,i) ,  

Un+l,i = Un ~t_ aihuln + a~h2bT y(Un,i) ' 

' ' / ( u ~ # ) ,  i = 1 , . . . ,  r. un+l, i = u .  + a~hd T 

(2.2) 

Let us suppose that  at ( n -  1) th step, a block of predictions U(°) 1,i, i = 1 , . . . ,  r, and the approx- 

imations Yn-1 "~ y(tn-1),  ' ' t Yn-1 ~ Y ( n - i )  are given. We shall compute r approximations Ynj to 
the exact solutions y ( tn - i  + a~h), i = 1 , . . .  ,r,  defined by 

U (j) a~hy: I c a~h2Af  (U  (j-a)~ n-l , i  = y n - l e +  - + ~, n - l , i ) ,  

Yn,i = Yn-1 + aihy" 1 "~- a2h2bT f fiT(rob) ~ 
- ~ " n - - l , i ) '  

yln, i = t Y , -x  + a~hdT f fir(rob) ~ ~,-~-x,~], 

j = I , . . . ,  mb, 

i = l , . . . , r .  

In the next step, these r approximations are used to create high-order predictors using Lagrange 
interpolation. By denoting 

Yn := (Yn,1,..-,Yn,r) T , 

I , Yn,r) , Y ' : = ( y , , 1 , . . .  ' T 

Yn,1 " =  Yn, 
(2.3) 

y',x = y ' ,  

we can construct the following Lagrange-type predictor formulas: 

u(O!=ViYn, i = l ,  . , r ,  
n 1 5  " " 

(2.4) 

where predictor matrices V~, i = 1 , . . . ,  r, will be determined by order conditions (see Section 2.1). 
Apart from (2.4), we can construct predictors of other types like, e.g., Herrnite and Adam types 
(cf. [10,12]). Regarding (2.2) as block corrector methods and (2.4) as block predictor methods 
for the stage vectors, we leave the class of one-step methods and arrive at a block PC method in 
P(CE)mE mode 

u(O! = H Y . ,  

a2h2Af (U(J-1)~ --n,~ U0") = eelTYn + a ihce~Y"  + i \ n,~ ] 

y n + l , i = e T y n  T t 2 2bT fu(m.)'~ + a~hex Y n  + a~ h f k " " / '  

= el Yn + a~hdTf  y,+~,~ T , (U(m)~ \ n,~j, 

j = 1 , . . . , m ,  

i = l , . . . , r .  

(2.53) 

(2.5b) 

It  can be seen that  the block PC method (2.5) consists of a block of PIRKN-type corrections using 
a block of Lagrange-type predictions at the off-step points (block points) (cf. [6,9]). Therefore, 
we shall call method (2.5) the r-dimensional block P I R K N  method with Lagrange-type predictors 
(BPIRKN-L  method). Given the vectors Yn and Y~, the r values Yn,~ can be computed in 
parallel and, on a second level, the components of the i th stage vector iterate U (j) --n,~ can also be 
evaluated in parallel (cf. [6,9]). Hence, the r-dimensional BPIRKN-L methods (2.5) based on 
s-stage RKN correctors can be implemented on a computer possessing r • s parallel processors. 
The number of sequential f-evaluatious per step of length h in each processor equals s* - m + 1. 
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2.1. Order Condi t ions  for the  Predictor  

In this section, we consider order conditions for the predictors. For the fixed stepsize h, the 
qth-order conditions for (2.5a) are derived by replacing U (°) and Y~ by the exact solution values --rL# 

y(tne + aihc) and y ( t n - l e  + ha) = y(tne + h(a - e)), respectively, with a = ( a l , . . .  ,at)  T. On 
substitution of these exact values into (2.5a) and by requiring that the residue is of order q + 1 
in h, we are led to 

y (the + aihc) - Viy (t,~e + h (a - e)) = O (hq+l) ,  i = 1 , . . . ,  r. (2.6) 

Using Taylor expansions, we can expand the left-hand side of (2.6) in powers of h and obtain 

[exp (ha , c  d )  - Viexp 

= h y(t . )  + c ?  
j=O 

i = 1 , . .  

( h ( a - e ) d ) ]  y(tn) 

h d ~q+t 
~ /  y (t*) = 0 (hq+'), 

• , r ,  

(2.7) 

where t~ is a suitably chosen point in the interval [tn-1, tn-1 + (1 + ai)h], and 

1 
C~ j ) =  7.1 [(aic)'  - Vi ( a -  e ) J ] ,  

j = O , . . . , q ,  i =  l , . . . , r .  
(2.8a) 

The vectors C~ j), i = 1 , . . . ,  r represent the error vectors of the block predictors (2.5a). From (2.7), 
we obtain the order conditions 

C~ j) = 0, j = 0 , 1 , . . . , q ,  i = 1 , . . . , r .  (2.8b) 

The vectors C~ q+t), i = 1, . . .  ,r ,  are the principal error vectors of the block predictors. The 
conditions (2.8), imply that  

u . , , -  u(.°J = o ( t , , + ' ) ,  i = 1 , . . , r .  (2.9) 

Since each iteration raises the order of the iteration error by 2, the following order relations are 
obtained: 

Un,i - U (m) -- O (h 2m+q+l) nt~ 

U n + x # - Y n + 1 , , = - , n  u f ( U n # ) - f  U ) =O(h2m+q+a) ,  

, , [ ( Un+l,i --  Yn+l,i = ai hdT f (Un,i) - f U ) = O ( h 2 m + q + 2 ) ,  

i = l , . . . , r .  

Furthermore, for the local truncation error of the BPIRKN-L method (2.5), we may write 

y(tn+l) - Yn+l = [y(tn+x) - Un+l] + [un+i - Yn+l] = O (h p+I) + O (h2m+q+3), 
t t t _- t t t t t -- y(.+i)-y.+i [y ( .+ , ) -~ .+ l ]+[u .+ , -y .+ , ]  o(hP+')+O(h2~+,+2), 

where p is the order of the generating RKN corrector (2.1). Thus, as in [10], we have the similar 
theorem. 
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THEOREM 2. I. I[ the conditions (2.8) are satisfied and if the generating RKN corrector (2.1) has 
step point order p, then the BPIRKN-L method (2.5) has the iteration error order Piter ---- 2re+q+1 
and step point order p* = min{p, Piter}. 

In order to express V~, i = 1,... ,r explicitly in terms of vectors a and c, we suppose that 

q = r - 1 and define the matrices 

2 2  3 3  4 4  Pi := (e,a,c,a,c ,a~c ,a,c , . . . ,a~- lcr -1) ,  

Q := (e, (a - e), (a - e) 2 , ( a - e ) a , . . . , ( a - e ) r - 1 ) ,  

i =  l , . . . , r .  

Then the order conditions (2.8) can be presented in the form 

Pi - V~Q = O, i = 1 , . . . ,  r. (2.10) 

Since the components ai of vector a are assumed to be distinct implying that  Q is nonsingular, 
and from (2.10), we may write 

V~ -- piQ-1, i = 1 , . . .  ,r.  (2.11) 

In view of Theorem 2.1 and the simply explicit expressions of t he predictor matrices Vi in (2.11), 
we have the following theorem. 

THEOREM 2.2. Hq = r-- 1, and the predictor matrices Vi, i = 1, . . . ,  r satisfy the relations (2.11), 
then for the BPIRKN-L methods (2.5), Piter -- r + 2m, p* = min{p, Piter}, and s* = m + 1. 

In the application of BPIRKN-L methods, we have two classes of high-order corrector methods: 
Gauss-Legendre correctors and Radau IIA correctors. The use of high-order corrector methods 
is motivated by reducing the number of processors needed for implementation of BPIRKN-L 
methods. However, recent developments indicate that  the number of processors is no longer an 
important issue. 

In this paper, we concentrate our considerations on the BPIRKN-L methods using Gauss- 
Legendre correctors. In the near future, we intend to investigate a class of more suitable correctors 
methods in order to reduce round-off effect (cf. Section 2.3). 

2.2. Convergence Boundaries 

In actual implementation of BPIRKN-L methods, the number of iterations m is determined 
by some iteration strategy, rather than by order conditions using minimal number of iterations 
to at tain order of the corrector. Therefore, it is of interest to know how the integration step 
effects the rate of convergence. The stepsize should be such that  a reasonable convergence speed 
is achieved. 

As in, e.g., [6,10], we shall determine the rate of convergence by using the model test equation 
y'~(t) = Ay(t), where A runs through the spectrum of the Jacobian matrix ~ .  For this equation, 
we obtain the iteration error equation 

u(J!  Vn,i .~. a2izA IV(hi,? 1 ) -  Vn,i] z :--  h2~, j ~-- 1, m. (2.12) n ~ $  , • • • ,  

Hence, with respect to the model test equation, the convergence factor is determined by the 
spectral radius p(a~zA) of the iteration matrix a~zA, i = 1 , . . . ,  r. Requiring that  p(a~zA) < 1, 
leads us to the convergence condition 

1 1 (2.13) 

p p(A) 
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We shall call lip(A) the convergence boundary. In actual computation, the integration stepsize h 
should be substantially smaller than allowed by condition (2.13). By requiring that p(a2zA) is 
less than a given damping factor ~ (~ << 1), we are led to the condition 

a~lzl < , r (~ )  or a~h 2 g 7(°~-~---) 7(or ) = o~ (2.14) p ( O~y) ' p(A)' 

where 7(a) presents the boundary of convergence with damping factor a of the method. Spec- 
ification of the convergence boundaries 7(a) of the BPIRKN-L methods baaed on direct and 
indirect Gauss-Legendre and Radau IIA correctors can be found in, e.g., [6,10]. Notice that for 
a given stepsize h, the maximal damping factor is defined by 

7(1) 

The convergence boundaries of the BPIRKN-L methods given in, e.g., [6,10] show that the direct 
Gauss-Legendre and l~dau IIA correctors give rise to faster convergence than indirect ones of the 
same order. Therefore, if the PC iteration is continued until convergence, then the BPIRKN-L 
methods based on direct collocation RKN correctors are prefered (cf. [6,10]). These corrector 
methods are not A-stable (see [13]), but their stability regions are sufficiently large for nonstiff 
problems (cf. [6]). The similar parallel PC methods based on PC pairs Hermite-Radau IIA 
have been investigated in [10]. In this paper, we shall consider BPIRKN-L methods based on 
Gauss-Legendre correctors (PC pairs Gauss-Legendre-Lagrange). 

2.3. The  Choice  of  Block Abscissas ai 

The accuracy of Lagrange interpolation formulas is improved if the interpolation abscissas are 
more narrowly spaced. However, this will increase the magnitude of the entries of the predictor 
matrices V~, causing serious round-off errors. There are several ways to reduce this round-off 
effect as were discussed in [12]. Also in [11], where Hermite interpolation formulas were used for 
increasing reliability in explicit RK methods, it was found that on a 15 digits precision computer, 
the Hermite interpolation abscissas should be separated by 0.2 in order to suppress rounding 
errors. 

In order to derive a further criteria for the choice of suitable values of the abscissas a~, we need 
to get insight into the propagation of a perturbation ~ of the block vectors Yn and Y~ within 
a single step (the similar analysis was given in [10,12]). We shall study this for the model test 

! equation y"(t) ---- ~y(t). For that purpose, we first express Yn+l# and hYn+l, i in terms of Yn 
and hY~. Since 

Un,, = [I-a~zA] -1 [eeTyn + eeTa ihY ' ] ,  

U ( : ~ -  Un,, = [Vi - t I - a ~ z A ] - l e e  T] Y ,  - [ I -  a~za]-' eeTaihY ", 

applying (2.5),(2.12) to the model test equation for a given number m, we obtain 

Yn+l,i = e T y n  + aiheTYIn + a~zbr /ru(m)-n,' Un,,] + a~zbrUn,i 

= e T y n  + aiheTy" + aa~zb r [I-a~zA] "a [eeTyn + ceTa, hY "] 

2 T 2 m 2 - 1  T t +a, zb [a,.A] [[V,-[Z-a~zA]-lee;]Y.-[Z-a, zA] ce, a, hY.] (2.15a) 

= [o: + + + .T  I+ l" [V, '< ] ]  
+ [a,e? + a,~zb T [Z- a,~za]-' a,ce? - a,~zb T [a,~a] m [Z- a,~a]-I a,ce?] bY', 
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[U (m-) - U.,i] + aizdTU., i  hy'+l,/ = e~hY" + +a/zd T [ ,~,, 

= he,Ty.' + aizd T [l_a2zA] -I [eel-rVn + cel-raihV.] 

+aizd  T [a~zA] m [[Vi-[I-a2zA]-leeYl ] Yn-[I-a2izA]-lcelTa/hYIn] 

= [a/zd T [ 1 -  a~zA]-lee T +aizd T [a2zA] m [Vi-  [ ' -  a2zA]-leeT]] Yn 

+ [el y + a / z d  T [I-a2zA]-la,celT - a , z d  T [a2izA] m [I-a2zA]-la/ceYl] hY~. 

(2.15b) 

Let us now replace Yn by Y~ = Yn + e and Y" by Y'~ = Y" + e. Then from (2.15), the 
* 1" t perturbed values Y.+Ij and y n+l,i of Yn+l,i and Yn+l,i, respectively, are given by 

Yn+l , i  : 
Yn+l,i + [el T + a2izbT [ I -  a2izA] -1 celt 

+a2zb T [a~zA] m [Vi - [ I -  a2zA]-leelT]] e 

+ 

_a2 zb T 

+ a 2 zb1- [I - a 2 zA]-1 aiceT1 

[a~zA] m [ I -  a2zA] -1 aice: ]  he, 

(2.16a) 

,. , 1 [ 
Y ,+I,/ = Yn+l,/ + -h La/zdT [I - a~zA]-teelT 

+a/zd T [a~zA] m [Vi-  [ I -  a2zA]-lee~]] 
(2.16b) 

+ [el .[ + aizd T [I-a2zA]-laicelT 

-a/zd -r [a2zA] m [ I -  a2zA] -1 aicel T]e .  

These relations show that the first component of the perturbation e is amplified by a factor O(1) 
for both Y ,  and Y ' ,  whereas all other components are amplified by a factor of O(h 2m+2) and 
O(h 2re+t) for Y ,  and Y~, respectively. Refering to the approach used in [12], leads us to the 
choice of the values a /such that the maximum norm of the principal error vector C~ q+1) in (2.8) 
is minimized. 

In our case of Lagrange-type predictors, where q = r - 1 (cf. Theorem 2.2), we have to 
minimize the magnitude of IIC r)lloo, Although we may use (2.8a) for minimizing IIC r)lloo, 
it is more convenient to start with usual expression of Lagrange interpolation formulas. For 
r-times continuously differentiable function y(t), the r-point Lagrange interpolation formula can 
be written as (see, e.g., [16, p. 878; 17]) 

y(tn + 7h) = Z l i ( v ) y ( t ,  + a/h) + c(r)(~ ") h~-~ y (t*), 
i=1 

r 

( ,  - = 1 1 - [ (  _ l/(T) = 1-[ ( a / -  F.' 
j=Ij#i 

(2.17) 

where t* is a suitably chosen point in the interval [tn, t ,  + rh]. Hence, we have the following 
alternative form of (2.7): 

y(tn + a/ckh) = Z lj (1 + a/ck)y (tn + (aj -- 1)h) + C (r)(1 + aick) h-~ Y (t/*k), 
j----1 

k = l , . . . , s ,  i = l , . . . , r ,  
(2.1s) 

where t/*~ is also a suitably chosen point in the interval [ t~- l , t~- i  + (1 + a/)h]. The principal 
error vectors of the Lagrange-type predictor formulas defined by (2.8a) axe given by C~ r) = 
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c(r)(e  + aic), i = 1 , . . . ,  r. Recalling that  for i = 1, we are led to minimize the magnitude of the 
values 

1 r 
C(r)(1 + ck) ---- ~ H ( 1  + Ck -- aj),  k = 1 , . . . ,  s. (2.19) 

j = l  

Confining our considerations to the block dimensions r _> s + 1, we set 

a l = l ,  a ~ = l + C ~ _ l ,  i = 2 , . . . , s + l .  (2.20a) 

By this choice, the principal error vector C~ r) vanishes (i.e., []C~r)Hoo = [[c(r)(e + c)llo o = 0), so 
that  all inaccuracies introduced by the predictor formula are damped by a factor of O(h 2m+2) 

for Y ,  and by a factor of O(h 2m+1) for Y"  (cf. (2.16)). If r > s + 1, then we have additional 
abscissas for improving the predictor formulas. It is tempting to use these additional abscissas 
for reducing the magnitude of the norm of other principal error vectors. Therefore, it seems 
recommendable to choose the remaining abscissas outside the interval [1, 1 + cs] with averaged 

spacing of the abscissas a l , . . . , a s + l  equal to 1~is + 1) (cf. [12]). This leads us to define the 
remaining abscissas according to: 

s + i  
if cs # 1, then ai = - - - ~ ,  i = s + 2 , . . .  r, 

s-4- 
s + i - 1 (2.20b) 

else ai = - - ,  i = s + 2 , . . . , r .  
8 

For Gauss-Legendre correctors of order p = 2s, the choice (2.20) results in an averaged spacing of 
2/(2 + 2). Recalling that  on a 15-digit precision machine, the minimal spacing of 0.2 is acceptable 
in the case of Hermite interpolation (cf. [11]), we expect that  for order up to 10, this averaged 
spacing 2/ (p  + 2) should be acceptable for more stable Lagrange interpolation formulas. Finally, 
we remark that  the abscissas defined by (2.20) enable us to develop various cheap strategies for 
stepsize control. For example, if r _> s + 2, then the difference Y,-1,s+2 - Yn,1 can be used for 
obtaining an error estimate. 

2.4. Stability Boundaries 

The linear stability of the BPIRKN-L methods (2.5) is investigated by again using the model 
test equation y"(t) = Ay(t), where A is assumed to be negative. From (2.15), we are led to the 
recursion 

I Y n + l  M m ( z ) ( Y n  I m m ( z ) =  M°m(Z)+ M I ( z ) ,  (2.21a) 3= 
1 %  

h Y ' + t  ] _ _ h Y "  ' 

where M°m(z) and Mira(z) are the 2r × 2r matrices defined by 

(eT + 4zbT + a zbT [4za] [Vl - [ I -  4 z a ] - I  03- 

: 

M°(z )  eT1 + a2rzb T [I - a2zA]-I ~ T  1 + a2zb3- [a2rzA]m [Vr - [I - a2rzA]-I eel  T] 03- 
= , (2.21b) 

alZd3- [I - a2zA]-1 eel  T + a,zd3- [a2zA] m [VI - [I - a2zA]- '  eeT1] 03- 

: 

arzd3- [I - a2rzA]--' " T  1 "t- arzd3- [a2rzA] m [Vr - [I - a2rzA]--1 ~IT] oT 

M~(z) = 

0 T a leT  + a12zbT [ / _  a2zA ] - I  .1Celt _ .21zbT [.2zA]m [1 _ a12zA]-1 .lC.lT 

0 3. areT1 + a2zb T [I - a~zA]-I arce13- _ a2rzbT [a2rzA]m [I - a2.zA]-1 arceT1 
0 v 0"1 r + alzd T [Z - a2zA]-I alCeT - a~zd v [a2zA] ~ [t - a2zA] -~ a~ce~ 

,03- [ I -  - 

(2.21c) 
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The 2r x 2r matr ix  Mrn(z) defined by (2.21) which determines the stability of the BPIRKN-  

L methods,  will be called the amplification matrix,  its spectral radius p (Mrn(z)), the stability 
function. For a given number m, the stability intervals of the BPIRKN-L methods are defined 

by 
( - f~(m) ,0)  := {z :  p(Mra(Z)) < 1, z <_ 0}. 

I t  is evident from (2.21) tha t  if z satisfies the convergence conditions (2.13), then the stability 
function of the BPIRKN-L method p (Mm(z)) converges to the stability function of the RKN 
corrector method as m --~ oo (cf., e.g., [13; 14, p. 273]). Hence, the asymptotic stability interval for 

m -~ oo, (-/3(oo),  0) is the intersection on the negative z-axis of the stability interval (-/3corr, 0) 
of the RKN corrector and its convergence region defined by (2.13). 

Confining the considerations to the BPIRKN-L methods with blocksize r = p = 2s, we numer- 
ically calculated the values of/3(m) for various resulting BPIRKN-L methods as listed in Table 1. 
The  boundaries f~(m) for BPIRKN-L methods based on direct and indirect Gauss-Legendre cot- 

rectors are denoted by ~(m)direct and ~(m)indireet, respectively. From this table we observe tha t  
the stabili ty boundaries show a rather irregular behaviour. For m = 0 or m = 1, the BPIRKN-  
L methods based on direct and indirect Gauss-Legender correctors have a comparable stability 
boundaries. From Table 1, we can select a whole set of BPIRKN-L methods of order p up to 10 
requiring 1 or 2 f-evaluations per step with acceptable stability intervals for nonstiff problems 

(cf. Theorem 2.2). 

Table 1. Stability boundaries/3(rn) 
on direct and indirect correctors. 

for various pth-order BPIRKN-L methods based 

BPIRKN Methods p = 4 p = 6 p = 8 p = 10 

f~(O) direct 
~(1)direct 
~(2)direct 
f~(3)direct 
~(4)direct 
f~(5)direct 
~(6)direct 

0.714 0 . 0 2 2  0.507 0.018 

0.015 1 .055  0.232 1.324 
0.104 0.150 1.311 5.073 
0.691 1 .730  0.871 1.502 

0.437 0 . 8 0 8  3.537 4.249 
0.667 1 .410  2.213 3.489 
1.042 4 , 3 5 4  4.614 4.736 

0.714 0 .022  0 ,5012 0.019 

2.229 1 .055  0.232 1.324 
0,021 1 .636  3.688 5.073 
0.117 0 .304  0.461 3.052 
2.281 0 .683  2.319 1.723 
0.328 2.689 1.535 2.910 
0.552 1 .513  3.377 3.396 

~(O)indirect 
f~(1)indirect 
f~(2)indirect 
/3(3)indirect 
~(4)indirect 
f~(5)indirect 
f~(6)indirect 

3. N U M E R I C A L  E X P E R I M E N T S  

In this section, we report  numerical results obtained by the BPIRKN-L methods (2.5). As 
it was mentioned in the previous sections, we confine our considerations to the r-dimensional 
B P I R K N  methods based on Gauss-Legendre correctors of orders up to 10 with r = p and block 
points defined by (2.20). We shall compare the BPIRKN-L methods with parallel and sequential 

explicit RKN methods from the literature. In the first step, we always use the trivial predictor 
formulas given by 

U(0). a~hY'nC, i 1 , . . . ,  r. n,~ ----- yne + 

The absolute error obtained at the end point of the integration interval is presented in the form 
10 -NeD (NCD may be interpreted as the number of correct decimal digits). The  computat ional  
efforts are measured by the values of Nseq denoting the total number of sequential f-evaluations 
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required over the whole integration interval. For an easy comparison of the various methods, 
the (fixed) stepsize is chosen such that the number of sequential f-evaluations of each method 

(approximately) equals a prescribed number N~q. To be more precise, let s* denote the number 
of sequential f-evaluations per step, ./X/steps denote the total number of integration steps for the 
integration interval [to, T], then Nseq = Nsteps • 8* which leads us to 

L s *  + ' 

T --  tO 

Ns t eps  ' 

where [.] denotes the integer part function (the effect of the integer part operation causes that the 
actual number of sequential f-evaluations may be slightly different from the prescribed number 
N~q). For pth-order PIRKN methods, s* = ~/2] in all steps (cf. [9]). For any pth-order BPIRKN- 

L methods, we used s* = [p/2] in first step and s* = I after first step so that the stepsize h will be 
evaluated accordingly. Since the PC iterations will not be continued until convergence, we confine 
our considerations on the BPIRKN-L methods based on indirect Gauss-Legendre correctors. All 

the computations were carried out on a 28-digit precision computer. An actual implementation 
on a parallel machine is a subject of further study. 

3.1. C o m p a r i s o n  w i t h  Pa ra l l e l  M e t h o d s  

In this section, we report numerical results obtained by the best parallel explicit RKN methods 
available in the literature, that is the (indirect) PIRKN methods proposed in [9] and the BPIRKN- 
L methods specified above. We selected a test set of three problems taken from the literature. 

3.1.1. L i n e a r  nonautonomous problem 

As a first numerical test, we apply the various pth-order PC methods to the linear nonau- 
tonomous problem (cf., e.g., [6-8]) 

d~y(t) (-2~(t) + i -~(t) + 12) 
-~ = ~ 2(c~(t) - 1) a(t) - y(t), 

~(t) = max {2 cos=(t), sin=(t)}, 0 < t < 20, 

y(0) = (0,0) T, y'(0) = (-1, 2) T, 

(3.1) 

with exact solution y(t) = (-sin(t), 2sin(t)) v. The numerical results listed in Table 2 clearly 
show that the BPIRKN-L methods are more efficient than the PIRKN methods of the same 
order. The high-order BPIRKN-L methods offer a gain of a factor more than 4. 

Table 2. NCD-values for several values of Nseq for problem (3.1) obtained by various 
pth-order parallel PC methods. 

M e t h o d s  p N , , q  = 100 N ,  eq = 200 NNq = 400 Nseq = 800 N , , q  = 1600 

PIR/~N 4 2.4 3.7 4.9 6.1 7.3 
B P I R K N - L  4 4.5 6.1 8.4 8.9 9.9 

PIRKN 6 3.9 5.8 7.7 9.7 11.5 
BPIRKN-L 6 7.7 9.8 12.0 14.4 16.9 

P I R K N  8 6.4 8.5 11.3 14.1 16.1 
B P I R K N - L  8 11.4 14.1 16.8 19.6 21.7 

P I R K N  10 7.2 9.9 13.2 16.4 19.6 
B P I R K N - L  10 15.0 18.4 20.2 
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3 . 1 . 2 .  N o n l i n e a r  F e h l b e r g  p r o b l e m  

For the  second numerical  test,  we apply the  various pth-order P C  methods  to  the well-known 

nonlinear Fehlberg problem (cf., e.g., [1,2,18,19]) 

d2y(t)~-~ = ( 

2) 
-4t2 - x/y2(t) + y~(t) y(t), 

2 
V/y~(t) + y~(t) -4t2 

T 

( d )  d y ' ( 0 ) =  - 2  ,0 , < t < 1 0 ,  y(0) = (0, I) T, 

(3.2) 

wi th  highly oscillating exact  solution given by y( t )  = (cos(t2), sin(t2)) T. The  results are repor ted  

in Table 3. These  numerical  results show tha t  the  B P I R K N - L  methods  are again superior to  the  

P I R K N  methods  of  the  same order by a speed-up factor more than  4. 

Table 3. NCD-values for several values of Nseq for problem (3.2) obtained by various 
pth-order parallel PC methods. 

Methods p Nseq = 300 Nseq = 600 N~q = 1200 Nseq = 2400 N ~ q  = 4800 

PIRKN 4 0.3 1.6 2.8 4.0 5.2 
BPIRKN-L 4 2.1 3.6 5.0 6.4 7.7 

PIRKN 6 1.1 3.1 5.0 6.9 8.8 
BPIRKN-L 6 4.8 6.8 8.9 11.0 13.0 

PIRKN 8 1.5 4.1 6.8 9.4 12.0 
BPII:tKN-L 8 7.8 10.4 13.0 15.7 18.4 

PIRKN 10 1.8 5.2 8.5 11.9 15.1 
BPIRKN-L 10 10.4 14.0 17.3 19.4 

3 . 1 . 3 .  

The  

N e w t o n ' s  e q u a t i o n  o f  m o t i o n  p r o b l e m  

th i rd  numerical  example is the  two-body  gravi tat ional  problem for Newton ' s  equat ion  of  

mot ion  (see [20, p. 245]). 

d 2yl(t) Yl(t) d2y2(t) y2 (t) 
~ = 3, ~ = 3, 0 < t  < 2 0 ,  

yl(0) = y2(0) = 0 ,  y i ( 0 ) = 0 ,  y (0) = 
V i  

(3.3) 

This  problem can also found in [19] or from the test set of  problems in [21]. The  solut ion 

componen t s  are y t ( t )  = cos(u(t))  - e ,  y2(t) = x/(1 + e)(1 - e) sin(u(t)),  where u(t) is the  solution 

of  Keppler ' s  equat ion t = u(t) -esin(u(t))  and e denotes the  eccentrici ty of  the  orbit.  In  this 

example,  we set e = 0.3. The  results for this problem are given in Table 4 and give rise to  roughly  

the  same conclusions as formulated in the two previous examples. 

Table 4. NCD-wlues for several values of Nseq for problem (3.3) obtained by various 
pth-order parallel PC methods. 

Methods p Nseq = 100 Nseq = 200 Nseq = 400 Nseq = 800 NB~ = 1600 

PIRKN 4 0.3 2.0 3.0 4.2 5.4 
BPIRKN-L 4 1.6 3.1 4.5 6.0 7.5 

PIRKN 6 2.1 3.3 4.9 6.7 8.6 
BPIRKN-L 6 3.8 5.8 7.9 10.0 12.1 

PIP~KN 8 2.7 4.9 7.0 9.4 11.8 
BPIRKN-L 8 6.6 9.8 11.9 14.4 17.0 

PIRKN 10 3.3 5.5 8.4 11.4 14.5 
BPIRKN-L 10 7.7 11.2 14.7 18.1 19,9 
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3 .2 .  C o m p a r i s o n  w i t h  S e q u e n t i a l  M e t h o d s  

In Section 3.1, a class of BPIRKN-L methods was compared with PIRKN methods (the most 
efficient parallel explicit RKN methods). In this section, we shall compare these BPIRKN-L 
methods with the sequential explicit KKN methods currently available. 

We restricted the numerical experiments to the comparison of o u r  10 th order BPIRKN-L 
method (BPIRKN10 method) with a few well-known sequential codes for nonlinear Fehlberg 
problem (3.2). We selected some embedded RKN pairs presented in the form p(p + 1) or (p + 1)p 
constructed in [1,2,18,19] and the code DOPRIN taken from [22]. We reproduced the best results 
obtained by these sequential methods given in the literature (cf., e.g., [9,19]) and added the results 
obtained by BPII~KN10 method. In spite of the fact that  the results of the sequential methods 
are obtained using a stepsize strategy, whereas BPIPJ~N10 method is applied with fixed stepsizes, 
it is the BPIRKN10 method that  performs most efficiently (see Table 5). When compared to the 
code DOPRIN from [22], the BPIRKN10 offers a speed-up factor ranging from 7 to 50 (depending 
on the accuracy required). 

Table 5. Comparison with sec 

Methods 

ll(12)-pair (from [15]) 
ll(10)-pair (from [16]) 
9(10)-pair (from [13]) 

8(9)-pair (from [12]) 
DOPRIN (from [20]) 

PIRKNlo (in this paper) 

~ential methods for problem (3.2). 

N, tep, NCD Ns,q 

876 20.3 17521 
919 20.7 15614 
628 15.1 8793 

3235 21.4 45291 
1452 13.5 15973 

79 3.8 633 
353 8.3 2825 

1208 12.3 9665 
4466 16.3 35729 

16667 20.3 133337 

200 8.6 494 
296 10.4 300 
596 14.0 600 

1196 17.3 1200 
2396 20.4 2400 

4.  C O N C L U D I N G  R E M A R K S  

This paper described an algorithm to obtain Runge-Kutta-NystrSm-type parallel block PC 
methods with Lagrange-type predictors (BPIRKN-L methods) requiring one or two sequential 
f-evaluations per step for any order of accuracy. The structure of BPIP,-KN-L methods also 
enables us to obtain various cheap error estimates for stepsize control. The sequential costs 
of a resulting class of BPIRKN-L methods implemented with fixed stepsize strategy are already 
considerably less than those of the best parallel and sequential methods available in the literature. 
These conclusions encourage us to pursue the study of BPIRKN-L methods. In particular, we 
will concentrate on performance analysis of predictor methods of other types like Hermits and 
Adams types, and on stepsize control that  exploits the special structure of BPIRKN-L methods. 
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