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a b s t r a c t

We prove that in a locally finite variety that has definable principal congruences (DPC),
solvable congruences are nilpotent, and strongly solvable congruences are strongly abelian.
As a corollary of the arguments we obtain that in a congruence modular variety with DPC,
every solvable algebra can be decomposed as a direct product of nilpotent algebras of prime
power size.
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1. Introduction

A varietyV is said to have Definable Principal Congruences (DPC) if there is a first order formula that defines the principal
congruences in all members of V . That is, a formula ϕ(x, y, u, v) exists such that for every a, b, c, d ∈ A ∈ V , we have
c ≡ d CgA(a, b) if and only if, ϕ(a, b, c, d) holds in A. This property ensures that the class of subdirectly irreducible algebras
is first order definable in V . Thus, in a variety with DPC either the size of the subdirectly irreducibles can be bounded by
a natural number, or there is no cardinal bound at all. The investigation of DPC and residual smallness seems to be related
also at the level of the tools used in the arguments ([2] is an early reference). The concept is also related to the question of
finite axiomatizability, as shown by McKenzie in [14].
In [14] McKenzie proves that a variety of lattices has DPC if and only if, it is distributive and in [10] Kiss generalizes this

by providing a characterization of the finitely generated congruence distributive DPC varieties. Finite groups generating a
DPC variety were first studied by Burris and Lawrence [3,4], and were completely described later by Baker in [1]. These
varieties all happen to be nilpotent of class at most three. The variety of commutative rings is an important example of a
DPC variety. The collection of rings Z2n for n > 0 in this variety shows that, in general, we cannot restrict the nilpotence
degree of congruences under the hypothesis of DPC (as was done for groups), not even in congruence permutable varieties.
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A further study of ring varieties with DPC can be found in [3,4,15–18]. These results demonstrate that the property of having
DPC is quite restrictive.
In this paper, we investigate solvable congruences and algebras in a DPC variety. We shall see that DPC imposes stronger

centrality conditions such as nilpotence, or strong abelianness; this can be considered as a generalization of some of the
results mentioned above. The limit of how far such arguments can reach is given by a result in [13], Corollary 4.1, which says
that every locally finite abelian variety has DPC. In particular, everything that we prove in this paper holds for locally finite
abelian varieties, too, and some of the results are new even in this special case. We summarize our results in the following
theorem, so as to make references easier.

Theorem 1.1. Let A be a finite algebra in a DPC variety.

(1) If β is a solvable congruence of A, then β is left and right nilpotent, moreover, β centralizes every prime quotient of A below β
on both sides.

(2) If β is a strongly solvable congruence of A, then β is strongly abelian.
(3) If V(A) is congruence modular and A is solvable, then A can be decomposed as a direct product of nilpotent algebras of prime
power size.

This result is a summary of Theorems 6.3 and 6.6 and Corollary 9.5. Most of the arguments in the paper serve the proof
of these statements, but Example 3.12 may be of independent interest. In the last section, we pose some problems that may
show possible directions of further investigations concerning DPC.
The authorswish to acknowledge the hospitable environment of the Fields Institute in Toronto, Canada,where all of them

were invited in the fall of 1996, and where the first important steps toward proving the results of the paper were taken.

2. Some machinery

In this section we give references for some tools used in the paper. First of all, the reader is assumed to be fluent in tame
congruence theory, and also familiar with the theory of nilpotent algebras. The main references are [5,12,6]. We shall also
use the elementary properties of strong and rectangular centrality and strong nilpotence, introduced in [8]. We single out
two results that we shall refer to.

Lemma 2.1 (cf. [5], Lemma 4.27). Let 0 ≺ µ be a minimal congruence of type 2 on a finite algebra A, and U a 〈0, µ〉-minimal
set. If β is a solvable congruence of A, then there is no (b, t) ∈ β such that b is in the body and t is in the tail of U.

Theorem 2.2 ([6], Theorem 3.5). On a finite algebra, every right nilpotent congruence is left nilpotent.

Next, we define the characteristic of a type 2 prime quotient 〈α, β〉 of a finite algebra A. Choose an 〈α, β〉-minimal set U ,
and an 〈α, β〉-trace N of U . Then, N/α|N is polynomially equivalent to a vector space over a finite field. Let p denote the
characteristic of this field. Since all traces are polynomially isomorphic, p is independent of the trace (and of the minimal
set) chosen. This prime number pwill be called the characteristic of 〈α, β〉.

Lemma 2.3. Perspective type 2 prime quotients have the same characteristic.

Proof. It is shown in [5] that perspective quotients have the same minimal sets and the same type. As this type is 2,
Theorem 5.2 of [12] shows that the bodies of these minimal sets are also the same for these quotients. By the results of
Section 4 of [5], this body is an E-minimal algebra of type 2. Thus the structure theorem on E-minimal algebras in [5],
Theorem 13.9 (or the fact that the body has an induced Maltsev-operation) implies that the two characteristics are the
same. �

The theorem below is not explicitly mentioned in [7], but it can be put together easily, using the arguments there.

Theorem 2.4. LetV be a congruence modular variety. Suppose that for every finite, nilpotent subdirectly irreducible algebra S ∈
V , every prime quotient of S has the same characteristic (depending on S). Then every finite nilpotent algebra in V is a direct
product of nilpotent algebras of prime power size.

Proof. Let S ∈ V be a finite nilpotent subdirectly irreducible algebra, and denote by p the common characteristic of the
prime quotients of S. Lemma 3.1 of [7] and the remarks preceding it show that the cardinality of S is a power of p. Since in a
congruence modular variety, factors of nilpotent algebras are nilpotent, we see that every finite nilpotent algebra in V is a
subdirect product of nilpotent subdirectly irreducible algebras of prime power size. Now, the appropriately modified proof
of Theorem 3.11 of [7] gives the statement of the theorem. �

Our final weapon is a translation of DPC to amore algebraic concept, one introduced by Alan Day, andwhich can be found
in Lemma 3 of [10].

Lemma 2.5. A locally finite varietyV satisfies DPC if and only if, there exists a number K , depending only on the variety, with the
following property: whenever a, b, c, d ∈ A ∈ V and c ≡ d CgA(a, b), there exists a subalgebra B of A of at most K elements that
contains a, b, c, d, and satisfies that c ≡ d CgB(a, b).



32 P.M. Idziak et al. / Annals of Pure and Applied Logic 157 (2009) 30–49

We call the smallest such K theDPC-number of the varietyV . Now let us extend this result to the case of finitely generated
congruences. If a = (a1, . . . , am) and b = (b1, . . . , bm), then we shall denote by Cg(a, b) the congruence generated by all
pairs (a1, b1), . . . , (am, bm).

Lemma 2.6. If a locally finite variety V has DPC, then for every natural number m there exists an integer Km such that for every
algebra A ∈ V , elements c, d ∈ A, and vectors a, b ∈ Am, if c ≡ d CgA(a, b), then A has an at most Km-element subalgebra B
containing c, d, and all components of a and b such that c ≡ d CgB(a, b).

Proof. We induct onm, the casem = 1 is established by the previous lemma. So, suppose that the statement is true form−1.
Let θ = CgA(am, bm). Then, there exists a subalgebra C of A/θ of at most Km−1 elements such that c/θ is congruent to d/θ
modulo CgC{(a1/θ, b1/θ), . . . , (am−1/θ, bm−1/θ)}.
Consider aMaltsev chain demonstrating this.We can assume that its elements are pairwise different, so there are atmost

Km−1−1 links in the chain. Pull the constants used in the polynomials in this chain back toA, making sure thatwe are picking
atmost one representative fromany θ-class. Pull back theMaltsev chain also, using these representatives in the polynomials.
Where we had an equality in the chain in A/θ , we now get a θ-related pair in A. Thus, we get at most Km−1 pairs in θ , and
these pairs, together with the pairs pulled back from the Maltsev chain, connect c to d. By the previous lemma, to each such
θ-related pair (u, v) we can find a subalgebra of at most K1 elements, where u ≡ v Cg(am, bm). Consider the elements of
all these subalgebras, the pulled-back constants above, c , d, a1, . . . , am and b1, . . . , bm, and generate a subalgebra Bwith all
these. Then c ≡ d CgB(a, b). The number of generators of B is at most Km−1K1+Km−1+2m+2, and therefore the size of B is
limited by the size of the free algebra in the variety generated by this many elements. The size Km of this free algebra clearly
depends only on the variety V and the numberm, by the induction hypothesis, and we have demonstrated that Km satisfies
the conditions. �

Finally a word about the notation used in the paper. It is mainly standard, that is, the same as in the works cited above.
Boldface lowercase letters usually denote vectors (sequences of elements), whose length is determined by the context, and
bi is always the ith component of b (we have already seen an example of this convention above). If b is some element of a
set A, then b̂ denotes the constant vector (b, . . . , b) of appropriate length. Similarly, if p is a function on A, then p̂ denotes
the function on (sub)powers of A acting componentwise as p. If β is a congruence on an algebra A, then β [n] denotes the
subalgebra of An consisting of all vectors that run in a β-class, that is, whose components are pairwise β-related.

3. Twin groups

An essential tool of the proofs is the so-called twin group on the traces of the algebras. The scope of this paper does not
allow us to give a full introductory treatment. We only give the main definitions, and prove those technical statements that
we shall use later in the proofs. The reader is encouraged to browse Section 2 of [9] before reading this paper, which gives
an introduction to the concept of the twin group, and reviews the concepts of rectangular and strong centrality as well.

Definition 3.1. Let R be a reflexive, symmetric binary relation of an algebra A, and c R d (this means that the vectors c and
d of A are R-related componentwise). If p is a polynomial of A, then the polynomials f (x) = p(x, c) and g(x) = p(x, d) are
called R-twins. If the vectors c and d are of length 1, then f and g are called binary R-twins.

The twin relation is useful in describing polynomials on subpowers of an algebra. In the statements below, A is always
an algebra, E is a nonempty subset of A, and R is a reflexive, symmetric binary relation of A.

Definition 3.2. We denote by G(E) the group of all unary polynomials of A|E that are permutations of E, and by Tw(E, R)
the set of all elements of G(E) that are R-twins of the identity map of E. This is a group under composition, which is called
the R-twin group on E.

Claim 3.3. The R-twin relation is a tolerance both on the group G(E) and on the semigroup Pol1(A|E). The twin group Tw(E, R)
is a normal subgroup in G(E).

The last statement of the previous claim follows from the fact that every reflexive, compatible relation on a Maltsev
algebra (in particular, on a group) is a congruence. The twin group is the normal subgroup obtained form the twin relation
this way.

Remark. The set of binary twins of the identitymap is not even a subgroup of G(E), in general. The readermaywonder why,
since here we also have compatibility in the following sense. Let∼ denote the binary R-twin relation on G(E). Then clearly,
if f ∼ g , then hf ∼ hg and fh ∼ gh for every h ∈ G(E). However, to prove that ∼ is a tolerance one needs to show that
f ∼ g and h ∼ k imply fh ∼ gk. This follows from the previous observation only if we assume that∼ is transitive (which is
not necessarily the case). On the other hand, the normal R-twin relation (using polynomials of arbitrary arity) is obviously
a tolerance, and then we also get transitivity using the Maltsev operation of the group G(E).

Even though the binary twins do not normally form a subgroup, they do generate the twin group in important cases.
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Lemma 3.4. Let R be a reflexive, symmetric, binary relation on a finite algebra A, and E = e(A), where e is an idempotent unary
polynomial of A. Suppose that every binary R-twin of a permutation of E that maps E to E is also a permutation of E. If β is
the congruence of A generated by R, then every β-twin of a permutation of E that maps E to E is also a permutation of E and
Tw(E, R) = Tw(E, β). Furthermore, the set of binary R-twins of the identity on E that map E to E generates the group Tw(E, R).

Proof. Suppose that r(x, c) and r(x, d) are polynomials that map E to E such that c β d and r(x, c) is the identity map on E.
Replacing r by er implies that r(x, y)maps E to E for every y β c.
We shall prepare a long chain of binary R-twin polynomials that connect r(x, c) and r(x, d). First, change the components

of the vector c to the components of d one by one. Every such move leads to a pair of binary β-twins. Next, as (ci, di) ∈ β ,
we can connect ci to di by a chain of pairs that are images of pairs in R under a unary polynomial. Substitute this unary
polynomial into r at the appropriate coordinate to get a new polynomial. We finally get a chain of binary R-twins between
r(x, c) and r(x, d). By our assumption, these are all permutations of E and in particular, r(x, d) is.
Clearly, if two permutations f and g are binary twins, then either of their quotients g−1f and gf −1 in the group of

permutations is a binary twin of the identity map. Hence, we have shown that every element of Tw(E, β) is a product
of binary R-twins of the identity map. These binary twins are elements of Tw(E, R), and therefore so is their product, since
this is a subgroup. Thus Tw(E, R) ⊇ Tw(E, β). The other inclusion is obvious, and so the lemma is proved. �

Of particular interest will be the twin group Tw(N, R), where N is a trace for a minimal congruence. As indicated by the
previous lemma, the question will frequently arise: is an R-twin of a permutation a permutation? This question is related to
centrality and nilpotence (see Lemma 3.6). We prove an elementary statement first.

Lemma 3.5. Let U be an 〈α, β〉-minimal set for some congruences α ≺ β of a finite algebra A, and N ⊆ U an 〈α, β〉-trace.
(1) If every R-twin of every element of G(U) that maps U to U is also a permutation of U, then the analogous statement holds
for N.

(2) The elements of Tw(N, R) are exactly the restrictions of those elements of Tw(U, R) to N that map N to N.

Sketch of proof. Let f (x) = p(x, c) and g(x) = p(x, d) be twin unary polynomials of A such that f (N) = N . Replace p by
ep for some idempotent unary polynomial e of Awhose range is U , thus ensuring that f and g map A to U . Then f (β) is not
contained in α, and therefore f is a permutation of U by the minimality of U . The reader can easily infer (1) from this.
Now, suppose in addition that f is the identity map on N and g(N) = N . Let h be a polynomial inverse of f on U , and

replace p by hp. This does not change the action of f and g on N , but makes sure that the new f is the identity map on U . �

Next, we borrow some ideas from [6] to clear up the relationship between centrality conditions and the behavior of twins
and twin groups. To fix terminology, we shall say that a permutation group is semiregular, if the stabilizer of every point is
trivial. It is regular if it is semiregular and transitive. It has been observed in [6] that if β is a right nilpotent congruence on
a finite algebra, then the β-twin groups on traces for minimal congruences must be semiregular.

Lemma 3.6. Suppose that 0 ≺ µ ≤ β are congruences of a finite algebra A. Then exactly one of the following two possibilities
hold.

(1) For every symmetric, reflexive binary relation R that generates the congruence β , and for every 〈0, µ〉-trace N, the identity
map on N has a binary R-twin g that is constant on N. In this case β is not left nilpotent, and if β/µ is left nilpotent, then
g(N) ⊆ N, and the centralities C(µ, β; 0), C(β, µ; 0) (in factW(µ, β; 0)) fail.

(2) For every 〈0, µ〉-minimal set U, every β-twin of every permutation of U mapping U to U is a permutation of U. If we are in
this case, then the type of 〈0, µ〉 is 1 or 2, and the centrality C(µ, β; 0) fails if and only if Tw(N, β) is not semiregular for
some (equivalently: every) 〈0, µ〉-trace N. When this non-semiregularity happens, the type of 〈0, µ〉must be 1.

Proof. Let U be a fixed 〈0, µ〉-minimal set. Suppose that we are not in Case (2) and let R be a binary relation as in Case (1).
Then by Lemma 3.4, there is a binary polynomial p(x, y) and (c, d) ∈ R such that p(x, c) is the identity map on U and p(x, d)
is collapsing on U . Note that as all 〈0, µ〉-minimal sets are polynomially isomorphic, then this situation will arise for every
such U . This will take us to Case (1).
Since U is the range of an idempotent polynomial, we can assume that the range of p is contained in U . Iterate p in its

first variable to obtain a new polynomial, also denoted by p(x, y), that is idempotent for every choice of y, is still the identity
map for y = c , and is still collapsing for y = d. The polynomial g(x) = p(x, d) is then a binary R-twin of the identity map on
U and is constant on every 〈0, µ〉-trace contained in U .
We show by induction on n that p(x, d) (β]n x for every x ∈ U . For n = 1 this is true, since p(x, d) β p(x, c) = x. Suppose

that p(x, d) (β]n x holds. Then

p(p(x, d), d) = p(x, d)

implies (by moving d to c) that

p(x, d) = p(p(x, d), c) [β, (β]n] p(x, c) = x.

Thus, the induction is complete.
If β is left nilpotent, then (β]n = 0 for some n, and so the above statement yields that p(x, d) = x for every x ∈ U , which

is a contradiction, since p(x, d) is collapsing on U . If β/µ is left nilpotent, we have (β]n ⊆ µ for some n. Then p(x, d) µ x,
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hence p(N, d) ⊆ N for every trace N ⊆ U . In this case, let u ∈ N be the constant value that p(x, d) takes on N and choose
some v ∈ N , which is different from u. Then u = p(u, c) = p(u, d) = p(v, d), but p(v, c) = v 6= u. Thus all the centralities
mentioned above fail, and so we have proved all the statements in Case (1).
Now, assume that we are in Case (2), that is, that every β-twin of every permutation of U that maps U to U is also a

permutation of U . First, notice that by the properties of a pseudo-meet operation, the type of 〈0, µ〉 can only be 1 or 2.
As all 〈0, µ〉-traces are polynomially isomorphic, the fact that Tw(N, β) is semiregular or not does not depend on the

trace chosen. Suppose that Tw(N, β) is not semiregular for some trace N , that is, the identity map p(x, c) of N has a non-
identity β-twin p(x, d) that maps N to N and fixes some a ∈ N . Let b ∈ N be an element that is not fixed by p(x, d). Then
p(a, c) = a = p(a, d), but b = p(b, c) 6= p(b, d), which is a failure of C(µ, β; 0). Suppose further that the type of 〈0, µ〉
is 2. Let − denote the subtraction polynomial operation on N (with respect to some 0 ∈ N), and consider the polynomial
p(x, d) − p(x, c). It is a β-twin of the constant zero map p(x, c) − p(x, c), and as we are in Case (2), p(x, d) − p(x, c) is
also constant on N . Substituting x = a we get that this constant value is zero, hence p(x, d) = p(x, c) on N , which is a
contradiction. Thus, the type of 〈0, µ〉must be 1.
To prove the last remaining statement, suppose that C(µ, β; 0) fails (and we are still in Case (2)). Then there exists a

polynomial p(x, y) such that p(a, c) = p(a, d) but p(b, c) 6= p(b, d) for some a µ b and c β d. By connecting a to b with a
chain of traces we may assume that a and b are contained in a 〈0, µ〉-trace N . Since p(b, c) µ− 0 p(b, d) by the transitivity
of µ, we can map this pair nontrivially to N . Let U be the 〈0, µ〉-minimal set containing N . By prefixing p with a suitable
idempotent polynomial we can assume that the range of p(x, y) is contained in U . Thus p(a, c) = p(a, d) ∈ N , and either
p(a, c) 6= p(b, c) or p(a, d) 6= p(b, d) (or both); we may assume that the former holds by symmetry. Then p(x, c) is a
permutation of U , and by prefixing it with its inverse we may assume that it is the identity map of U . Thus the failure of
C(µ, β; 0) allowed us to construct a β-twin of the identitymap onU that has a fixed point a ∈ N (andwhich, thereforemaps
N to N), but which is not the identity map on N . Since we are in Case (2), this is a permutation of U . Therefore Tw(N, β) is
not semiregular, and the lemma is proved. �

We shall need the following characterization of strongly nilpotent congruences. Contrary to ‘‘normal’’ nilpotence, it
makes no difference whether we use strong centrality on the left, or on the right in their definition. For strongly nilpotent
congruences, the twin groups are not just semiregular: they are trivial.

Lemma 3.7 ([8], Lemma 3.4). Let β be a congruence of a finite algebra A. Then the following are equivalent.

(1) β is strongly nilpotent.
(2) For any prime quotient 〈δ, θ〉, any two β-twin polynomials of A mapping any product C = C1 × · · · × Ck of θ-classes into
U have the property that either they are equal modulo δ on C, or both collapse C into a δ-class.

(3) β strongly centralizes every prime quotient of A on both sides.
(4) For every prime quotient 〈δ, θ〉 and each 〈δ, θ〉-trace N, the congruence β weakly centralizes N2 modulo δ and the β-twin
group on N/δ is trivial.

In particular, homomorphic images of strongly nilpotent congruences are also strongly nilpotent. (This property fails for left and
for right nilpotence in general, see [6].) It suffices to check the conditions in parts (2), (3), and (4) for prime quotients below β .

Now we delve deeper into the group-theoretic aspects of twin groups on traces.

Lemma 3.8 (cf. [9], Corollary 2.3). Let N be a trace for a minimal congruence on a finite algebra A. Then G(N), as a permutation
group on N, is either primitive, or trivial. If R is a symmetric binary relation on N, then Tw(N, R) is either transitive or trivial.

Lemma 3.9. Let E be an E-minimal algebra of type 2. Then, the size of E is a power of some prime p, and the 1-twin group on E
is a p-group.

Proof. This statement follows from the structure theorem of E-minimal algebras ([5], Theorem 13.9), or from the proof of
Corollary 3.5 in [7]. �

Lemma 3.10. Let G be a primitive permutation group on a set N that has a minimal abelian normal subgroup K. Then the order
of K equals pn for some prime p, and K acts regularly on N, hence |N| = pn. If L is a normal p-subgroup of G, then L = K or
|L| = 1.

Proof. It is a well-known, elementary fact that a minimal abelian normal subgroup of a finite group is elementary abelian,
hence K has order pn. As G is primitive, K is transitive, and as it is abelian, it is also regular. Hence, the size of N is also pn.
Next, we recall the well-known fact that the centralizer of K in G is K itself. We prove this for the sake of completeness.

Clearly, the centralizer CG(K) is a normal subgroup of G containing K. Let H be the stabilizer of an x ∈ N , then G = HK (as K
is transitive), and therefore CG(K) = (H ∩ CG(K))K by modularity. Let g ∈ H ∩ CG(K), then gk(x) = kg(x) = k(x) for every
k ∈ K, so the transitivity of K implies that g is the identity map, proving CG(K) = K.
Now, suppose that L is a nontrivial normal p-subgroup of G. The center Z(L) of L is characteristic in L, hence it is normal

in G. By the minimality of K we have that Z(L) ∩ K is either K or trivial. In both cases, we see that Z(L) centralizes K. Then
Z(L) ≤ CG(K) = K, so the minimality of K implies that Z(L) = K (since Z(L) is nontrivial). But, L centralizes Z(L) = K, so by
CG(K) = K again we get L = K. �
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We take a brief digression by presenting an example of independent interest.

Lemma 3.11 (cf. [6], Theorem 4.20). Let R be an abelian reflexive and symmetric binary relation of A, and E a finite subset of A.
Then the R-twin group on E is also abelian.

Proof. Let r(x, b) and s(x, d) be elements of Tw(E, R) such that r(x, a) and s(x, c) are both the identity map on E for some
tuples a and c from A with aRb and cRd. Write ry for the permutation r(x, y), and use a similar notation for s. Consider the
group-theoretic commutator [rb, sd]. This is a polynomial, since the inverse of a permutation on a finite set can be expressed
as a power of the permutation. We have

[ra, sc] = x = [ra, sd].

Move the parameters a to b to obtain

x = [rb, sc] [R, R] [rb, sd].

As R is abelian, we have equality, proving that rbsd = sdrb. �

We show that it is not possible to generalize the above lemma to get that the twin group for a solvable congruence is
solvable. The following example presents a two-step right nilpotent finite algebra, where the 1-twin group is a nonabelian
simple group, even on a trace for a minimal congruence.

Example 3.12. LetG be a nonabelian finite simple group and u 6= v some symbols.We define an algebraAwhose underlying
set consists of all the pairs (g, u) and (h, v), where g ∈ G and 1 6= h ∈ G. The algebra has one binary operation ∗, and |G|
unary operations. For every k ∈ G the unary operation fk maps (g, u) to (k−1gk, u), and maps (h, v) to itself. The binary
operation ∗ satisfies that x ∗ y = xwith the exception that (g, u) ∗ (h, v) = (gh, u).
It is easy to see that A is an E-minimal algebra of type 1 (see [12], Theorem 4.4). Let µ be the congruence whose only

non-singleton block is N = {(g, u) | g ∈ G}. Then µ is a minimal congruence, and N is a 〈0, µ〉-trace, on which the 1-twin
group is isomorphic to G (the twin permutations of the identity are the right translations of G given by the polynomials
x ∗ (h, v)). Note that the size of N is not a prime power. To see that the algebra is right nilpotent, one has to check the
centrality C(µ, 1; 0). This follows by looking at the congruence∆ on A2 consisting of the pairs ((a, b), (a, b)) plus the pairs
(((g, u), (h, u)), ((k, u), (`, u)))where gh−1 = k`−1.

In a congruence modular variety, the twin group is better behaved, as shown in [7].

4. Two DPC constructions

In this section, starting with a finite algebra Awe present a ‘‘DPC’’ construction. Given a finite algebra A in a DPC variety
we will construct a large subdirect power of A, and then apply the DPC-number of the variety to this subdirect power to
derive certain properties of A.

Lemma 4.1. Let A be a finite algebra, 〈α, β〉 a type 1 prime quotient of A, and M an 〈α, β〉-trace. Let n be a natural
number and B a subalgebra of An+1 generated by the constant elements of An+1 and some collection of n + 1-tuples of the
form (u, . . . , u, v, u, . . . , u), for some u, v ∈ M with the v occurring anywhere but the last component.
Let L = log2(|A|) and letC be a subalgebra ofB of size strictly less than n/L. Then, for some i < n+1wehave that (ci, cn+1) ∈ α

for all c ∈ C.

Proof. For b ∈ B we have that b = q̂(b1, . . . , bk), for some k-ary polynomial q(x1, . . . , xk) of A and some non-constant
generators bi, i ≤ k. Since the type of 〈α, β〉 is 1 then the induced algebra onW = M/α|M is essentially unary and modulo
α, qwill depend on at most L variables on any product of β-blocks. In particular, q|Mk depends on at most L variables.
By replacing in q̂ those bi for which q|Mk does not depend on ximodulo α by some constant fromM we obtain an element

b′ that, componentwise, is α-related to b. Furthermore, since the generators bi are constant except at one coordinate, the
element b′ will be constant outside of a set of coordinates I(b) of size at most L and this constant value will be equal to the
n+ 1st component of b′. In terms of bwe have that if i /∈ I(b) then (bi, bn+1) ∈ α.
Setting I =

⋃
{I(b) : b ∈ C} we have that |I| ≤ |C |L < n and so there is some i < n+ 1 with i /∈ I . Then, for all c ∈ C ,

(ci, cn+1) ∈ α. �

Corollary 4.2. Let A be a finite algebra in a DPC variety, and α ≺ β congruences of A such that the type of 〈α, β〉 is 1. Suppose
that we have a subset U of A, a binary polynomial r(x, y) of A, and elements c, d in an 〈α, β〉-trace M such that r(x, c) = x and
s(x) := r(x, d) ∈ U for every x ∈ U. Then the congruence

(u, s(u)) ≡ (v, s(v)) Cgα((u, u), (v, v))

holds in the subalgebra of A2 with universe α, for any u, v ∈ U.
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Proof. Let K be the DPC number of the variety generated by A and choose an integer n > K log2(|A|). Let B be the subalgebra
of An+1 generated by the constant elements of An+1 along with the elements bi = (c, . . . , c, d, c, . . . , c) ∈ An+1 for
1 ≤ i ≤ n, where d occurs at the ith component. When substituting bi for yi, and û for x into the polynomial

t(x, y) = r(. . . r(r(x, y1), y2), . . . , yn).

it is clear that the result will be the element

(s(u), s(u), . . . , s(u), u).

Therefore, (s(u), s(u), . . . , s(u), u) and (s(v), s(v), . . . , s(v), v) are congruent modulo the principal congruence CgB(û, v̂).
By DPC, this congruence relation holds in a subalgebra C of B of size at most K . By Lemma 4.1 there is some i ≤ n such
that the projection of C down to the pair of coordinates (i, n+ 1) is contained in the congruence α. The result follows from
this. �

Corollary 4.3. Let A be a finite algebra in a DPC variety, and α ≺ β congruences of A such that the type of 〈α, β〉 is 1. Suppose
that we have a subset U of A, a ternary polynomial r(x, y, z) of A, elements a, b ∈ A and c, d in an 〈α, β〉-trace M such that
r(x, c, a) = r(x, d, a) = r(x, c, b) = x and s(x) := r(x, d, b) ∈ U for every x ∈ U. Then the congruence

(u, u) ≡ (u, s(u)) Cgα((a, a), (b, b))

holds in the subalgebra of A2 with universe α, for any u ∈ U.

Proof. The proof of this corollary is a variation of the proof of the previous corollary and so we will only point out the main
differences. Consider instead, the polynomial

t(x, y, z) = r(. . . r(r(x, y1, z), y2, z), . . . , yn, z)

and elements

t(û, b1, . . . , bn, â) = (u, u, . . . , u)
t(û, b1, . . . , bn, b̂) = (s(u), s(u), . . . , u)

of B. Note that these two elements are congruent modulo the principal congruence of B generated by the pair (â, b̂).
Applying Lemma 4.1 and making use of the DPC number as in the previous proof establishes the result. �

We shall now modify the above arguments to work in the case when the type of 〈α, β〉 is 2. Our conclusions will be
similar, with the exception that we have to use sp instead of s, where p is the characteristic of 〈α, β〉.
For the rest of this section, let A be a finite algebra, 〈α, β〉 a prime quotient of A of type 2, and M an 〈α, β〉-trace. Then,

M/α|M is polynomially equivalent to a one-dimensional vector space W over a finite field F, no matter how we choose
the zero element ofW. Let 0, +, −, and p denote the zero element, addition, the subtraction, and the characteristic ofW,
respectively.
Fix an integer n, and denote by I the set of all linear maps fromWn toW. We shall also denote by 0 the constant zero map

in I . This I will be our index set, and we shall construct a subalgebra B ≤ AI . Let w ∈ W n, and denote by Bw the set of all
functions b : I → M such that for every f ∈ I we have bf /α = f (w) (here, as usual, we denote the f th component of b as bf
rather than b(f )). Let B be the subalgebra of AI generated by the diagonal, and by the elements from the Bw , where w runs
over the entireW n. Clearly, every non-constant generator of B is inM I , and therefore every element of B runs in a β-class.
The following lemma establishes a property of ‘‘small’’ subalgebras of B/αI . Note that by regarding B/αI as a subalgebra

of (A/α)I we can regard elements of this algebra as functions from I to A/α.

Lemma 4.4. Let C be a subalgebra of B/αI . Then there exists a subgroup G of I = Hom(Wn,W) of index at most |A||C | such that
the partition of I given by the cosets of G is contained in the kernel of every c ∈ C, considered as a function from I to A/α.

Proof. Each set Bw collapses to a single element bw in B/αI , and this element, as a function from I toW is additive, because
bwf+g = (f + g)(w) = bwf + bwg . For c ∈ C there is some polynomial s(x1, . . . , xm) of A/α and tupleswi ∈ W

n for i ≤ m such
that c = ŝ(bw1 , . . . , bwm). So, for f ∈ I we have that cf = s(f (w1), . . . , f (wm)).
Since β/α is abelian it follows that

cf+g = s(. . . , f (wi)+ g(wi), . . .) = s(. . . , f (wi)+ 0, . . .) = cf
if and only if,

cg = s(. . . , 0+ g(wi), . . .) = s(. . . , 0+ 0, . . .) = c0.

That is, the kernel of c is a coset decomposition modulo some subgroup of I , whose index of course is at most |A|. The
intersection of these subgroups for all elements of C then has index at most |A||C | in I , so we have established the property
of the algebra C stated above. �

Our proofs of the analogs of Corollaries 4.2 and 4.3 hinge partly on the following observation.
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Lemma 4.5. Let p be a prime andW an elementary abelian p-group. Fix an elementw ∈ W. Suppose that G is a subgroup of Wn

that contains none of the
(n
p

)
vectors that have p components equal tow, and all other components equal to zero. Then, the index

of G inWn is at least n/(p− 1).

Proof. Let ei be the element ofWn whose ith component is w, and all other components are zero. If the index of G is less
than n/(p− 1), then there must exist a coset modulo G that contains at least p different elements from e1, . . . , en. The sum
of p such elements is in G, becauseWn/G has exponent p. On the other hand, this sum is a forbidden element of G, proving
our assertion. �

Corollary 4.6. Let A be a finite algebra in a DPC variety, and α ≺ β congruences of A such that the type of 〈α, β〉 is 2, and its
characteristic is p. Suppose that we have a subset U of A, a binary polynomial r(x, y) of A, and elements c, d in an 〈α, β〉-trace M
such that r(x, c) = x and s(x) := r(x, d) ∈ U for every x ∈ U. Then the congruence

(u, sp(u)) ≡ (v, sp(v)) Cgα((u, u), (v, v))

holds in the subalgebra of A2 with universe α, for any u, v ∈ U.

Proof. We may assume that c and d are not α-related (for otherwise sp is an α-twin of the identity, and the statement is
trivial). Let K be the DPC number of the variety generated by A and let n > (p−1)|A|K . Setting the zero element of the vector
spaceW induced on M/α|M by A to be the element 0 = c/α, let B be the subalgebra of AI described prior to Lemma 4.4.
Let w = d/α and for i ≤ n, let ei = (0, . . . , 0, w, 0, . . . , 0) ∈ W n, where the w occurs at the ith component. Note that the
ei’s form a basis of the vector spaceWn and that the map f 7→ (f (e1), . . . , f (en)) is a vector space isomorphism between
I = Hom(Wn,W) andWn.
For each i ≤ n, define bi ∈ Bei to be any element satisfying that b

i
f = dwhenever f (ei) = w = d/α, and b

i
f = c whenever

f (ei) = 0 = c/α. We are interested in the values of t(x̂, b1, . . . , bn) at those coordinates f ∈ I for which f (ei) ∈ {w, 0} for
every i, where

t(x, y) = r(. . . r(r(x, y1), y2), . . . , yn).

For such an f, we see that by the definition of bi if f (ei) = 0, then bif = c , while if f (ei) = w, then bif = d. As r(x, c) is the
identity map, and r(x, d) = s(x) it follows that the f th coordinate of t(x̂, b1, . . . , bn) is equal to sk(x), where k is the number
of those i for which f (ei) = w.
In the algebra B, we have that

t(û, b1, . . . , bn) ≡ t(v̂, b1, . . . , bn) CgB(û, v̂).

Hence by DPC, we have this congruence in a subalgebra C of size at most K . By Lemma 4.4 there is a subgroup G of I ∼= Wn

of index at most |A|K such that all elements of C are α-constant on the cosets of G. Lemma 4.5 then shows that since
n/(p − 1) > |A|K then there is an f ∈ G such that f is of the form investigated above, with the number k of nonzero
components in f being equal to p. Projecting down our algebra to the index-set {f , 0} ⊆ I we get the desired conclusion. �

Corollary 4.7. Let A be a finite algebra in a DPC variety, and α ≺ β congruences of A such that the type of 〈α, β〉 is 2, and
its characteristic is p. Suppose that we have a subset U of A, a ternary polynomial r(x, y, z) of A, elements a, b ∈ A and c, d in
an 〈α, β〉-trace M such that r(x, c, a) = r(x, d, a) = r(x, c, b) = x and s(x) := r(x, d, b) ∈ U for every x ∈ U. Then the
congruence

(u, u) ≡ (u, sp(u)) Cgα((a, a), (b, b))

holds in the subalgebra of A2 with universe α, for any u ∈ U.

Proof. The proof of this corollary is a variation of the proof of the previous corollary and so we will only point out the main
differences. Consider instead the polynomial

t(x, y, z) = r(. . . r(r(x, y1, z), y2, z), . . . , yn, z)

and elements t(û, b1, . . . , bn, â) and t(û, b1, . . . , bn, b̂) of B. Note that these two elements are congruent modulo the
principal congruence of B generated by the pair (â, b̂). Also, for f ∈ I with f (ei) ∈ {w, 0} for every i ≤ n we have that
these elements take on values u and sk(u) respectively at the coordinate f . Applying Lemmas 4.4 and 4.5 as in the previous
proof establishes the result. �
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5. Homogeneous characteristic

In order to prove in the next section that solvable congruences are right nilpotent in a DPC variety, we show in Lemma 5.2
that certain prime quotients of their algebras must have the same characteristic. First we translate a special case of the
conclusions of Corollaries 4.3 and 4.7 in terms of the existence of certain binary twins.

Lemma 5.1. Suppose that A is a finite algebra, µ is a minimal congruence of type 2, and U is a 〈0, µ〉-minimal set whose body
is B. Let a, b ∈ A such that CgA(a, b) is solvable, and θ a solvable congruence of A generated by a reflexive, symmetric binary
relation R. Then there exist u 6= v ∈ B such that

(u, u) ≡ (u, v) Cg((a, a), (b, b))

holds in the subalgebra of A2 whose universe consists of all θ-related pairs if and only if there exists a binary polynomial r and a
pair (c, d) ∈ R such that

u′ := r(a, c) = r(a, d) = r(b, c) 6= r(b, d) =: v′,

and u′, v′ ∈ B.

Proof. Let C denote the subalgebra of A2 whose universe consists of all θ-related pairs. If r , c and d above exist, then

(u′, u′) ≡ (u′, v′) CgC((a, a), (b, b))

clearly holds. To prove the converse, consider a Maltsev chain between (u, u) and (u, v) given by CgC((a, a), (b, b)). By
prefixing its polynomials with an idempotent polynomial whose range is U , we may assume that the chain goes inside
U × U . As the congruence β = CgA(a, b) is solvable, Lemma 2.1 shows that no β-related pair can cross from the body B to
the tail of U . Therefore, the chain is actually in B× B.
A typical link of this chain is a pair

((p(a, c), p(a, d)), (p(b, c), p(b, d))),

where c θ d. Let D be the subalgebra of C2 generated by the diagonal, and the pair ((a, a), (b, b)). The pair above is a typical
element of D. We show that the subset D ∩ B4, considered as a binary relation of C, is symmetric and transitive.
Let d be a pseudo-Maltsev operation of U; we know that it is Maltsev on B. Hence, if (x, y) ∈ D ∩ B4 (where x, y ∈ C),

then

(y, x) = d((x, x), (x, y), (y, y)) ∈ D ∩ B4,

proving symmetry. Similarly, if (x, y), (y, z) ∈ D ∩ B4, then

(x, z) = d((x, y), (y, y), (y, z)) ∈ D ∩ B4,

proving transitivity.
Each link in theMaltsev chain above can be considered an element ofD∩B4. Since this relation is symmetric and transitive,

the starting point and the endpoint of the chain is also contained in D ∩ B4, that is, ((u, u), (u, v)) ∈ D ∩ B4. By changing
notation we therefore have an appropriate p and c θ d such that

(p(a, c), p(a, d)) = (u, u) and (p(b, c), p(b, d)) = (u, v).

Write this as

(p(a, c), p(b, c)) = (u, u) and (p(a, d), p(b, d)) = (u, v).

Move the components of c to d one by one, and for every i connect ci to di by a chain demonstrating that ci is related to di by
the congruence generated by R. By linking all these chains together we get a long chain of pairs (not necessarily in C) from
(u, u) to (u, v), such that each link in this chain has the form

((q(a, c), q(b, c)), (q(a, d), q(b, d))),

where q is a binary polynomial, and (c, d) ∈ R. The solvability of θ ensures that this chain is also contained in B× B. Hence,
there exists a step when we move out of the diagonal, that is, q(a, c) = q(b, c) but q(a, d) 6= q(b, d). To finish the proof, we
use another classical method (described for example in Lemma 2.8 of [12]). Define the binary polynomial

r(x, y) = d(q(x, y), q(a, y), q(a, c)).

Then r(a, c) = q(a, c), r(b, c) = q(b, c) = q(a, c), and r(a, d) = q(a, c), so we have to prove that r(b, d) is different from
these three elements. If not, then

d(q(b, d), q(a, d), q(a, c)) = r(b, d) = r(a, d) = d(q(a, d), q(a, d), q(a, c)),

and q(a, d) 6= q(b, d) implies that d(x, q(a, d), q(a, c)) is not a permutation in x, which contradicts the properties of a
pseudo-Maltsev polynomial. �



P.M. Idziak et al. / Annals of Pure and Applied Logic 157 (2009) 30–49 39

Lemma 5.2. Let A be a finite algebra in a DPC variety, and 0 ≺ µ ≤ α ≺ β congruences of A such that both 〈α, β〉 and 〈0, µ〉
have type 2. Suppose that 0 is meet-irreducible in the interval I[0, β] and that β centralizes every prime quotient below it on the
left. Then 〈α, β〉 and 〈0, µ〉 have the same characteristic.

Proof. Suppose not, and choose a counterexample that has the interval I[0, β] as small as possible. Let p′ be the characteristic
of 〈0, µ〉 and p 6= p′ be the characteristic of 〈α, β〉. We first establish two properties of the interval I[0, β]: β is join
irreducible, and all intervening prime quotients between µ and α have type 1.
Let β ′ be a minimal congruence in the interval I[0, β] that is not below α. Then β ′ is a join-irreducible congruence, and

thus it has a unique lower cover α′. Clearly, 〈α′, β ′〉 and 〈α, β〉 are perspective quotients, hence they have the same type
and characteristic by Lemma 2.3. As 0 is meet-irreducible below β and the characteristic of 〈0, µ〉 is p′ then β ′ 6= µ and so
by the minimality of I[0, β] it follows that β ′ = β and so β is join irreducible.
Next suppose that there is an intervening prime quotient µ ≤ ρ ≺ τ ≤ α of type 2 and choose such a prime quotient

with ρ maximal. Note that the maximality of ρ ensures that it is meet irreducible in the interval I[ρ, β]. The minimality of
I[0, β] implies that the characteristic of 〈ρ, τ 〉 is p′ and so factoring A by ρ produces a smaller counterexample. Thus there
can be no intervening type 2 prime quotients.
So nowwe can assume that every prime quotient betweenµ and α has type 1. Let U be a 〈0, µ〉-minimal set whose body

is B. Let C be the set of all congruences θ ≤ β that satisfy the following property: there exists (a, b) ∈ β and u 6= v ∈ B
such that

(u, u) ≡ (u, v) Cg((a, a), (b, b))

holds in the subalgebra of A2 whose universe consists of all θ-related pairs. Since β centralizes all prime quotients below it
on the left, we have the centrality C(β, µ; 0), which shows that µ /∈ C.

Claim 5.3. β ∈ C.

Proof. Let (a, b) ∈ β − α be elements of an 〈α, β〉-trace K . As 0 is meet-irreducible below β , we get that µ ≤ Cg(a, b).
Hence, we can connect any two elements in a µ-trace with a Maltsev chain originating from (a, b). Pull this chain into U
by an idempotent polynomial. As β is solvable, this chain stays within B by Lemma 2.1. Thus, there is a unary polynomial f
such that f (a) and f (b) are different elements of B.
Let m be a pseudo-Maltsev operation on K , and d a pseudo-Maltsev operation on U . Then f (K) ⊆ B, hence ry(x) :=

d(x, f (a), f (y)) is a permutation of B for every y ∈ K . Define y+ z = m(y, a, z) on K , and set

q(y, z) = ry+zr−1z r
−1
y .

This is a polynomial in x that is a permutation of B. Then q(c, a) = q(a, d) = q(a, a) are the identity map on B, whenever
c, d ∈ K . So if c = kb = b + b + . . . b (k summands, the association does not matter), and d = `b = b + · · · + b (`
summands), then (a, c) and (a, d) are in CgA(a, b) ≤ β . Hence,

(q(a, a)(x), q(c, a)(x)) ≡ (q(a, d)(x), q(c, d)(x)) Cg((a, a), (b, b))

holds in the subalgebra β of A2 for every x ∈ B. By evaluating we get for every x ∈ B that

(x, x) ≡ (x, q(c, d)(x)) Cg((a, a), (b, b)).

So if β /∈ C, then we have that rc+d = rcrd on B for every such c and d.
Recall that p′ denotes the characteristic of 〈0, µ〉, and p denotes the characteristic of 〈α, β〉. The induced algebra on the

body of a type 2minimal set is E-minimal, so Lemma 3.9 shows that kb = a, for k some power of p (since x+b is a K×K -twin
of the identity map x+ a on K ). Therefore, rb raised to the same power is the identity. However, using Lemma 3.9 again we
see that the order of rb is a power of p′ (since rb is a B× B-twin of the identity map ra on B). Therefore, our assumption that
p 6= p′ yields that rb itself is the identity map. That is, d(x, f (a), f (b)) = x for every x ∈ U . This is impossible, since this
permutation takes f (a) to f (b). This finishes the proof of the claim. �

Claim 5.4. Suppose that µ ≤ δ ≺ θ ≤ β , and θ ∈ C. Then δ ∈ C.

Proof. LetM be a 〈δ, θ〉-trace, and choose the relation R to beM2 ∪ δ. Since θ ∈ C then Lemma 5.1 implies that there exists
a binary polynomial q and a pair (c, d) ∈ R such that

u′ = q(a, c) = q(a, d) = q(b, c) 6= q(b, d) = v′,

and u′, v′ ∈ B. If (c, d) ∈ δ, then Lemma 5.1 shows that δ ∈ C. So we can assume that c, d ∈ M . Let d be a pseudo-Maltsev
operation on U , and define

r(x, y, z) = d(x, q(z, y), u′).

Then r(x, c, a) = r(x, d, a) = r(x, c, b) = x holds for every element x ∈ U . Apply either Corollary 4.3 or Corollary 4.7,
depending on the type of 〈δ, θ〉, for this quotient. In the type 1 case we get that for every u ∈ B,

(u, u) ≡ (u, s(u)) Cg((a, a), (b, b))
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in the subalgebra δ of A2, where s(x) = r(x, d, b) = d(x, q(b, d), u′). Hence δ ∈ C unless s(u) = u for every u ∈ B. However,

s(v′) = d(v′, q(b, d), u′) = d(v′, v′, u′) = u′ 6= v′.

Hence, δ ∈ C in this case, and so the claim is proved if the type of 〈δ, θ〉 is 1.
If the type of this quotient is 2, then of course 〈δ, θ〉 = 〈α, β〉, which has characteristic p. From Corollary 4.7 we get that

for every u ∈ B,

(u, u) ≡ (u, sp(u)) Cg((a, a), (b, b))

in the subalgebra δ = α of A2. Again if δ /∈ C, then sp is the identity map on B. The fact that s(v′) 6= v′ shows that s is not
the identity map on B, and so s has order p. But s is a B× B-twin of the identity in A|B, and the twin-group here is a p′-group
by Lemma 3.9, so we have p = p′, which is a contradiction proving the claim. �

To finish the proof of Lemma 5.2, consider a maximal chain of congruences between µ and α, and use the claim just
proved to move down this chain. From β ∈ C we get that µ ∈ C. This final contradiction proves the statement. �

6. Solvability implies right nilpotence

To prove Theorem6.3,we need two auxiliary lemmas. Firstwe translate the behavior of certain congruences in the square
of an algebra to the existence of various twin polynomials.

Lemma 6.1. Let 0 ≺ µ be a congruence of a finite algebra A, and N a 〈0, µ〉-trace. Suppose that α ≥ µ is a congruence of A such
that every α-twin of the identity map on N that maps N to N is also a permutation on N. Let B be the subalgebra of A2 whose
universe consists of all α-related pairs. Then the following hold.

(1) The non-constant unary polynomials of the induced algebra B|N×N are exactly pairs ofα-twin unary polynomial permutations
of N, acting componentwise.

(2) Suppose that u 6= v, u′, v′ are elements of N and

(u, u′) ≡ (v, v′) CgB((u, u), (v, v)).

Then there exist f , g ∈ Tw(N, α) such that f (u) = u′ and g(v) = v′.
(3) If in addition, Tw(N, α) is semiregular on N, then f = g holds in (2).
(4) Let U be a 〈0, µ〉-minimal set and suppose that u, v, u′, v′ ∈ U such that u µ− 0 v and

(u, u′) ≡ (v, v′) CgB((u, u), (v, v)).

If C(µ, α; 0) holds, and every α-twin of a permutation on U that maps U to U is also a permutation on U, then there is an
f ∈ Tw(U, α) such that f (u) = u′ and f (v) = v′.

Proof. The statement in (1) is an easy consequence of the fact that the polynomials of B are pairs of α-twin polynomials
of A acting componentwise. As N × N is an E-trace in B, any congruence of B generated by pairs in N × N restricts to N × N
to be the same as the congruence generated in the induced algebra B|N×N . The congruences on this induced algebra are
determined by the non-constant unary polynomials, which are the permutations described in (1). Let G = G(N×N) denote
this group of permutations of N × N .
Assume the hypotheses of (2). If (u, u) and (v, v) are not in the same G-orbit, then G(N) is trivial (since G(N) is either

trivial, or transitive on N). In that case G is trivial, too, hence u = u′ and v = v′ must hold, and thus (2) and (3) are true
in this case. Otherwise, the G-orbit containing (u, u) and (v, v) must also contain (u, u′) and (v, v′) (since collapsing this
orbit and leaving all other elements alone is a congruence of B|N×N ). Thus there is a pair (f1, f2) ∈ G such that f1(u) = u and
f2(u) = u′. Then f = f2f −11 ∈ Tw(N, α), which maps u to u

′, so (2) is proved.
Now assume that Tw(N, α) is semiregular. Then the stabilizer of (u, u) in G is trivial, hence G acts regularly on the orbit

of (u, u). Let h(u) = v for some h ∈ G(N), and let H be the subgroup of G generated by (h, h). The G-orbit of (u, u) is in one-
to-one correspondencewith the elements ofG, and the left coset partitionmoduloH yields a congruence that collapses (u, u)
to (v, v). Therefore, this congruence collapses (u, u′) = (u, f (u)) to (v, v′) = (v, g(v)), which means that (id, f )−1(id, g)
is an element of H , that is, a power of (h, h). The first component shows that this power is the identity, so f −1g = id, too,
proving (3).
Finally, assume the conditions in (4). Note that the hypothesis on U implies the hypothesis on N stated at the beginning

of this lemma. We show that there is a pair (f ′, g ′) of α-twin permutations of U that maps (u, u) to (u, u′). The unary
polynomials of B|U×U are pairs of α-twin polynomials. Such a polynomial is either a permutation, or both components
are collapsing by our assumption. The latter kind collapses (u, u) to (v, v), and is therefore useless in any Maltsev chain
originating from this pair. Therefore there exists a pair of α-twin permutations mapping either (u, u) or (v, v) to (u, u′). In
the first case we have found (f ′, g ′). In the second case, when (v, v) is mapped to (u, u′), the first component shows that
there is a h ∈ G(U)mapping v to u. Composing with (h, h)we obtain the desired pair (f ′, g ′).
The unary polynomial f = g ′f ′−1 is in Tw(U, α), and f (u) = u′. Applying the unary polynomial (id, f −1) to (u, u′) ≡

(v, v′) we get that (u, u) and (v, f −1(v′)) are also congruent modulo CgB((u, u), (v, v)). The centrality C(µ, α; 0) implies
that the diagonal of B is a union of CgB((u, u), (v, v))-classes. Therefore v = f −1(v′), proving the lemma. �
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Next, we prove that the R-twin group on a trace cannot increase when we increase the relation R, except under special
circumstances. Lemma 3.5 is used implicitly throughout the proof.
Lemma 6.2. Let A be a finite algebra in a DPC variety, 0 ≺ µ ≤ α ≺ β congruences of A such that β/α is solvable, and U a
〈0, µ〉-minimal set such that every β-twin of a permutation of U mapping U to U is also a permutation of U. Suppose that N is a
〈0, µ〉-trace in U such that Tw(N, α) is semiregular, and Tw(N, β) 6= Tw(N, α). Then the type of 〈α, β〉must be 2. Furthermore,
if p denotes the characteristic of 〈α, β〉, then Tw(N, α) cannot be a nontrivial p-group, and if Tw(N, α) is trivial, then Tw(N, β)
is a regular, elementary abelian p-group, and |N| is a power of p.
Proof. Let M be an 〈α, β〉-trace, (a, b) ∈ M2 − α and R = {(a, b), (b, a)} ∪ α. By Lemma 3.4, every β-twin of the identity
map on U that maps U to U can be written as q(x, b, a, d)while q(x, a, b, c) is the identity map on U , for some c α d. Let e be
an idempotent unary polynomial of A with e(A) = U , and s(x) = eq(x, b, a, d), r(x) = eq(x, b, b, c), t(x) = eq(x, b, b, d).
Then, r and st−1 are binary R-twins of the identity map on U , witnessed by (a, b) ∈ R, while tr−1 is in Tw(U, α).
First, assume that the type of 〈α, β〉 is 1 and apply Corollary 4.2 to this situation. We get that for every u, v ∈ U the

congruence
(u, r(u)) ≡ (v, r(v)) Cg((u, u), (v, v))

holds in the subalgebra B of A2 with universe α. The semiregularity of Tw(N, α) implies C(µ, α; 0) by Lemma 3.6, and so if
u µ− 0 v, then Lemma 6.1 (4) yields an f ∈ Tw(U, α) such that f (u) = r(u) and f (v) = r(v).
Now assume that s(N) = N , and repeat the above argument for s(u) and s(v) instead of u and v, and for ts−1 instead of r .

We get a g ∈ Tw(U, α) such that g(s(u)) = ts−1(s(u)) and g(s(v)) = ts−1(s(v)). Thus
s(u) = g−1t(u) = g−1(tr−1)r(u) = g−1(tr−1)f (u),

and similarly s(v) = g−1(tr−1)f (v). However, h := g−1(tr−1)f ∈ Tw(U, α). What we have just shown can be summarized
as follows: every s ∈ Tw(N, β) can be interpolated at any two points u, v ∈ N by an element h ∈ Tw(N, α).
If s ∈ Tw(N, β) has a fixed point in N , but is not the identity on N , then the same holds for some h ∈ Tw(N, α) that

interpolates s at these two points, which contradicts the semiregularity of Tw(N, α). Therefore Tw(N, β) is semiregular
on N . So if s ∈ Tw(N, β) is arbitrary, and u ∈ N , then we have s(u) = h(u) for some h ∈ Tw(N, α) by interpolation, and
then semiregularity implies that s = h on N . This gives that Tw(N, β) = Tw(N, α), which is a contradiction.
Now let us modify this argument to work in the case, when the type of 〈α, β〉 is 2 of characteristic p. Note that K =

Tw(U, α) is a normal subgroup of L = Tw(U, β). We can decompose every s ∈ L as a product s = (st−1r)(r−1t) ∈ (st−1r)K .
The polynomial d(x) = st−1r(x) is a binary R-twin of the identity map on U and we have that sp ∈ dpK since K is a normal
subgroup of L. Using the above argument, and Corollary 4.6 and Lemma 6.1 (4)we see that dp can be interpolated and hence
that sp can be interpolated at any two µ-related points by an element of K.
Thus if Tw(N, α) is trivial, then sp must be the identity map on N . Therefore each element of Tw(N, β) has order p or 1,

and so this is indeed a p-group. Then it is solvable, and is a normal subgroup of G = G(N). Therefore any minimal normal
subgroup of G contained in Tw(N, β) is an abelian p-group. Lemma 3.10 implies that |N| is a power of p, and as Tw(N, β) is
a p-group, it equals this minimal, elementary abelian, normal subgroup by the same lemma, hence it is regular.
Now suppose that Tw(N, α) is a nontrivial p-group. By the same argument as in the previous paragraph, applied to

Tw(N, α), we get that |N| is a power of p, and Tw(N, α) is a regular, minimal normal subgroup of G(N). We show that
Tw(N, β) is a p-group. Indeed, if not, then it has an element swhose order is a prime different from p. Then sp has the same
order, and as |N| is a power of p, this permutation must have a fixed point on N . But this contradicts the two-interpolation
property, since Tw(N, α) is semiregular. Thus Lemma 3.10 implies that Tw(N, β) = Tw(N, α), again a contradiction. �

Theorem 6.3. Let A be a finite algebra in a DPC variety and β a solvable congruence of A. Then β is right nilpotent, moreover it
centralizes each prime quotient below it on both sides.
Proof. We shall prove that if β is solvable, then β centralizes all prime quotients below it on the right. (Every such
congruence centralizes all prime quotients below it on the left, too, by Theorem 2.2.) Choose a failure of this property such
that the size of the interval I[0, β] is minimal. This ensures that we have a finite algebra A in our variety, and a congruence β
of A having the following properties:
(1) For every congruence α < β we have that α centralizes all prime quotients below α on both sides;
(2) β centralizes all prime quotients below it on both sides, except, possibly, those at the bottom (because if not, we could
move to a factor of A);

(3) there exists a congruence 0 ≺ µ ≤ β such that C(µ, β; 0) fails.
Fix a 〈0, µ〉-minimal set U , and a 〈0, µ〉-trace N ⊆ U .
We show that we are in Case (2) of Lemma 3.6 for 0 ≺ µ ≤ β . Suppose not, and let α be any lower cover of β withµ ≤ α

and M an 〈α, β〉-trace. Define the binary relation R to be M2 ∪ α. As we are in Case (1), there exists a binary polynomial r
and a pair (c, d) ∈ R such that r(x, c) is the identity map on N , but s(x) := r(x, d) is constant on N , with value u ∈ N . Then
(c, d) /∈ α since we have C(µ, α; 0) by our assumptions above. Therefore c, d ∈ M . Let v be an element of N that is not equal
to u. Now apply Corollary 4.2 or Corollary 4.6, depending on the type of 〈α, β〉. Since s(x) = sp(x) = u for x ∈ N , we get that

(u, u) ≡ (v, u) Cg((u, u), (v, v))
in the subalgebra α of A2. This contradicts C(µ, α; 0).
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Therefore Case (1) of Lemma3.6 is excluded, andwe see by the same lemma that the type of 〈0, µ〉 is 1. By our assumption
that C(µ, β; 0) fails we get, by this lemma, that Tw(N, β) is not semiregular. In particular, it is nontrivial.
Let T denote the set of all prime quotients 〈δ, θ〉 such that Tw(N, δ) is trivial, but Tw(N, θ) is not, whereµ ≤ δ ≺ θ ≤ β .

As the type of 〈0, µ〉 is 1, the µ-twin group is trivial on N , but the β-twin group is not, and so the set T is nonempty. By
Lemma 3.6 the conditions of Lemma 6.2 are satisfied for every such δ and θ in place of α and β . Lemma 6.2 therefore shows
that every quotient in T has type 2, and if the characteristic of such a quotient is p, then |N| is a power of p. Since the size
of N determines the prime p, we see that all elements of T have the same characteristic p, and the groups Tw(N, θ) are all
p-groups, acting regularly on N .
We prove that for every µ ≤ α ≺ β the type of 〈α, β〉 is 2 and its characteristic is different from p. Indeed, if there

is no 〈δ, θ〉 ∈ T such that θ ≤ α, then Tw(N, α) is trivial. Then Lemma 6.2 shows that Tw(N, β) is regular, which is a
contradiction. So there is some 〈δ, θ〉 ∈ T such that θ ≤ α. Then C(µ, α; 0) implies that Tw(N, α) is semiregular, and as
Tw(N, θ) is regular, these two groups are the same. Thus Tw(N, α) is a nontrivial p-group in this case. Lemma 6.2 implies
that indeed the type of 〈α, β〉 is 2 and its characteristic is different from p.
Choose a quotient 〈δ, θ〉 ∈ T , and push it as high as possible below β . That is, consider a congruence δ ≤ ρ ≤ β that

is maximal for not being below θ . Then, ρ is meet-irreducible below β , and its unique upper cover τ below β satisfies that
〈δ, θ〉 and 〈ρ, τ 〉 are perspective, hence they have the same type and characteristic (namely p) by Lemma 2.3. Thus τ 6= β
by the statement proved in the previous paragraph. Choose α so that τ ≤ α ≺ β . Then 〈α, β〉 has type 2, and characteristic
different from p by the result proved in the previous paragraph. We know that ρ ≥ µ > 0, hence β/ρ centralizes all
prime quotients below it by our assumptions. Therefore Lemma 5.2 can be applied in the factor A/ρ, and yields that the
characteristic of 〈ρ, τ 〉 is the same as the characteristic of 〈α, β〉. This contradiction proves the theorem. �

Corollary 6.4. Let A be a finite algebra in a DPC variety, and 0 ≺ µ ≤ β congruences of A such that β is solvable. Then Tw(N, β)
is abelian for every 〈0, µ〉-trace N. If β is strongly solvable, then Tw(N, β) is trivial.

Proof. The previous theorem ensures that all factors of β are left and right nilpotent. Hence the conditions of Lemma 6.2
are guaranteed by Lemma 3.6. Consider a chain of prime quotients between µ and β , and apply Lemma 6.2 successively,
starting at 0. The twin group cannot increase at all at type 1 quotients, and so if β is strongly solvable, then it remains trivial
throughout the process. If there are type 2 quotients on the way, then the twin group may become nontrivial at some point.
Lemma 6.2 says that in this case it becomes a regular, elementary abelian p-group for some prime p. But it stays regular,
because even Tw(N, β) is regular by Lemma 3.6. Therefore this twin group can never increase after such a step. �

Corollary 6.5. Let A be a finite algebra in a DPC variety. Then every strongly solvable congruence of A is strongly nilpotent.

Proof. Let β be a strongly solvable congruence of A. By Theorem 6.3, β centralizes each prime quotient below β , and by the
previous corollary, the β-twin groups on the traces are trivial. Thus the statement follows from Lemma 3.7. �

Theorem 6.6. Let A be a finite solvable algebra in a congruence modular DPC variety. Then A is nilpotent, and is a direct product
of algebras of prime power cardinality.

Proof. This is clear by Lemma 5.2, Theorems 2.4 and 6.3. �

7. Trivial twins

We shall now start proving that strongly solvable congruences are strongly abelian in a DPC variety. In this section, we
discuss a concept that we need in the proof.

Definition 7.1. Let A be an algebra, U a subset of A, and β , µ congruences of A. We say that (U, β, µ) has the trivial twin
property, if the following holds: any two β-twin polynomials of Amapping any product C = C1 × · · · × Ck of µ-classes into
U have the property that either they are equal on C , or both are constant on C .

Lemma 3.7 says that if β is strongly nilpotent and 0 ≺ µ, then for every 〈0, µ〉-minimal set U the triple (U, β, µ) has
the trivial twin property. This property may be lost when we move to a subpower of A, for the following reason. Take two
β-twin unary polynomials f and g . Then, for everyµ-class C , either these are equal on C , or they are both constant on C . This
behavior is not necessarily uniform: it can happen that f and g are equal on some µ-class C , but on some other µ-class C ′
they are different constants. We need to rule out this non-uniform behavior to move up to subpowers.

Definition 7.2. Let A be a finite algebra, 0 ≺ µ ≤ β congruences of A and U a 〈0, µ〉-minimal set. We say that (U, β, µ) has
the strong trivial twin property, if the following holds: whenever f and g are two binary β-twin unary polynomials mapping
A to U that are both the identity map on the body of U , then f and g are equal on any β-class that intersects the body of U .

Lemma 7.3. Let A be a finite algebra, 0 ≺ µ ≤ β congruences of A such that β is strongly nilpotent. Suppose that (U, β, µ)
satisfies the strong trivial twin property for every 〈0, µ〉-minimal set U. Then in the subalgebra B := β[n] ≤ An the triple
(Un ∩ B, βn, µn) has the trivial twin property for every 〈0, µ〉-minimal set U.
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Proof. Any two βn-twin polynomials on B can be written in the following way. Take a polynomial p(x, y) of A, and 2n
parameter sequences ui and vi for i = 0, 1, . . . , n such that any two of these are β-related componentwise. Then the two
twin polynomials are

(p(x,u1), . . . , p(x,un)) and (p(x, v1), . . . , p(x, vn))

acting componentwise on B.
Suppose that these two βn-twin polynomials map some product C ′ of µn-blocks into Un ∩ B, are not equal on C ′, and

one of them, say the first one, is not constant on C ′. Since U is a minimal set, we can assume that the range of p is contained
in U . As these twins are not equal on C ′, they differ at some element c′ ∈ C ′ in some coordinate, say the first coordinate. Let
c denote the sequence of the first coordinates of the vector c′, so

p(c,u1) 6= p(c, v1).

As the first of these twins is not constant on C ′, it takes different values on some d′, e′ ∈ C ′. Suppose these values differ in
the ith coordinate and let d and e denote the sequence of ith coordinates of d′ and e′, respectively. Then, d µ e, and

p(d,ui) 6= p(e,ui).

The sequence of ith coordinates of c′ is β-related to c, because we are in β [n], and is µ-related to d because c′, d′ ∈ C ′. Thus
µ ≤ β implies that c β d.
Let C = C1×· · ·×Ck be the product ofµ-blocks containing c, andD = D1×· · ·×Dk the product ofµ-blocks containing d

and e. We know that for every j, the µ-classes Cj and Dj are contained in the same β-block and that the triple (U, β, µ) has
the trivial twin property by Lemma 3.7. Applying this for the several pairs of twins here we get that p(x,u1) and p(x, v1) are
constant on C (since they differ at c), and p(x,u1), p(x,ui), p(x, v1) are equal on D (because p(x,ui) is not constant on D). In
particular,

p(d,u1) 6= p(e,u1).

Moving the components of d to those of e one by one will change p(x,u1) at some point. By rearranging the order of the
variables of p we may assume that this happens when we move the first component. Therefore, we can rewrite p(x, y) as
p(x, a, y), where a ∈ D2 × · · · × Dk is fixed, such that p(x, a,u1) is not constant on D1.
Now, let us see how this rewriting of p affects its behavior on C . Choose any vector b ∈ C2 × · · · × Ck such that a β b.

(This can be done, since Cj and Dj are β-related.) Then the three polynomials

p(x, a,u1), p(x, b,u1), p(x, b, v1),

are β-twins. The first of these is not constant on D1 and so by the trivial twin property of (U, β, µ) we see that all three
are equal on D1 (and are not constant). On the other hand, p(x, b,u1) and p(x, b, v1) are different constants on C1 (since
if x ∈ C1, then (x, b) ∈ C). Modify p again by writing p(x, y) instead of p(x, b, y). This new polynomial then satisfies that
p(x,u1) and p(x, v1) are different constants on C1, while the first one is not constant on D1.
Since D1 is connected up by traces, we can choose a 〈0, µ〉-trace M such that p(x,u1) is not constant on M . Let V be a

〈0, µ〉-minimal set containingM . Then p(x,u1) is a polynomial isomorphism from V to U and so it has a polynomial inverse
q that maps U to V . Then, the polynomials f ′(x) = qp(x,u1) and g ′(x) = qp(x, v1) are β-twin unary polynomials mapping
V to V and which differ at every c ∈ C1. But C1 andM ⊆ D1 are in the same β-class and so f ′ and g ′ differ on a β-class that
intersects the body of V . On the other hand, f ′ is the identity map on V by its construction.
Tomake these two β-twin polynomials binary twins, move the components of u1 to those of v1 one by one. At some point

we must get different values at c . Let such a pair be f and g . But f and g are β-twins of f ′, which is the identity map on V .
The fact that β is strongly nilpotent implies, using the trivial twin property, that f and g are also the identity map on the
body of V . Therefore f and g exhibit a failure of the strong trivial twin condition, proving the statement of the lemma. �

Lemma 7.4. Let A be a finite algebra, and µ ≤ β congruences of A. Suppose that U is the range of an idempotent polynomial of
A such that (U, β, µ) has the trivial twin property. If δ ≤ µ is any congruence then (U/δ, β/δ, µ/δ) also has the trivial twin
property in A/δ.

Proof. Consider two twin polynomials in the factor that are not equal on some C . Pull back the parameter sequences
arbitrarily to A, and apply an idempotent unary polynomial to make sure that these pulled-back twin polynomials map
to U . Then these pulled-back twins cannot be equal on the coimage of C , hence both are constant on this coimage, so the
original twins are both constant on C in the factor. �
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8. Another DPC construction

The DPC construction used in Section 4 was sensitive to long compositions of polynomials, depending on many
parameters. In this section, we present a new construction that has long Maltsev chains which are then reduced to short
ones by DPC. We need the following ingredients.

(1) A finite algebra A in a DPC variety and a subalgebra D ≤ A;
(2) Congruences β and γ of A;
(3) A polynomial r(x, y) of D (that is, a term with parameters from D; we are allowed to substitute elements of A into r);
(4) Vectors a γ b and u β v β w such that all components of a, b, u and w are in D, and c := r(a,u) = r(a, v) and
d := r(b, v) = r(b,w) hold.

Notice that c = r(a, v) and d = r(b, v) are congruent modulo CgA(a, b), but the parameter sequence v used to spread this
congruence is not assumed to be in D.
Next we shall build a subdirect power of A. For any elements u, v, w consider the following vectors of length n+2 having

index set {0, 1, . . . , n+ 1}:

(w, u, u, u, u, u, . . . , u, u, u) = z1(u, v, w)

(w, v, u, u, u, u, . . . , u, u, u) = z2(u, v, w)

(w,w, u, u, u, u, . . . , u, u, u) = z3(u, v, w)

(w,w, v, u, u, u, . . . , u, u, u) = z4(u, v, w)

(w,w,w, u, u, u, . . . , u, u, u) = z5(u, v, w)
· · ·

(w,w,w,w,w,w, . . . , w, u, u) = z2n−1(u, v, w)

(w,w,w,w,w,w, . . . , w, v, u) = z2n(u, v, w)

(w,w,w,w,w,w, . . . , w,w, u) = z2n+1(u, v, w).

These vectors can be described as follows. The 0th component is always w, the n + 1th component is always u. The
components of z2i+1 (where i = 0, 1, . . . , n) are w up to the ith coordinate, and after that they are u. The components
of z2i (where i = 1, . . . , n) arew up to the i− 1th coordinate, the ith coordinate is v, and after that the coordinates are u.
Let m denote the common length of the vectors u, v and w and define B to be the subalgebra of An+2 generated by the

diagonal ofD, and all (2n+1)m elements zi(uj, vj, wj), where i = 1, 2, . . . , 2n+1, and the uj, vj,wj run over the components
of u, v andw, respectively. For i = 1, 2, . . . , 2n+ 1 set

zi = (zi(u1, v1, w1), zi(u2, v2, w2), . . . , zi(um, vm, wm)) ∈ Bm

The equalities r(a,u) = r(a, v) and r(b, v) = r(b,w) then imply that

r̂(â, zi) = r̂(â, zi+1)

when i is odd, and

r̂(b̂, zi) = r̂(b̂, zi+1)

when i is even. (In the above formulas â denotes the sequencewhose components are âi, and b̂ ismeant similarly). Therefore,
r̂(â, z1) and r̂(b̂, z2n+1) are congruent modulo Cg(â, b̂) in the algebra B by transitivity. Of course r̂(â, z1) is constant c , with
the exception that its 0th coordinate is r(a,w), and r̂(b̂, z2n+1) is constant d, with the exception that its n+ 1th coordinate
is r(b,u).
By Lemma 2.6, this congruence holds in a ‘‘small’’ subalgebra C of B. Note that the elements of B are of the form

ŝ(. . . , zi(uj, vj, wj), . . .), where s is a (2n + 1)m-ary polynomial of D. Let Bj be the block of β containing uj, vj, wj (for
j = 1, . . . ,m). Then,

ŝ(. . . , zi(uj, vj, wj), . . .)

runs in the β-block s(. . . , Bj, . . .). We first show in the simplest case how these facts work together.

Corollary 8.1. If β is strongly abelian, then c ≡ d modulo Cg(a, b) in D.

Proof. Consider all the elements of the small subalgebra C above, and for each c ∈ C fix a corresponding polynomial sc as
above. As β is strongly abelian, every such sc depends on at most L = log2(|A|) variables on any product of β-blocks. We
claim that if n is large enough, then there exists an even number ` (between 2 and 2n) such that for each of the polynomials sc
fixed above, sc restricted to the specific product of β-blocks Bj mentioned above does not depend on any of them variables
where z`(uj, vj, wj) is written, j = 1, . . . ,m.
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Indeed, suppose otherwise. Then for every even ` there is c ∈ C such that sc is ‘‘bad’’, that is, sc depends on one of its
m variables where zi(uj, vj, wj) is written (where j can be 1, 2, . . . ,m). Thus there exists some sc which must be used at
least n/|C | times, and this sc then must depend on at least n/|C | variables on the above product of β-blocks. Thus, n ≤ |C |L,
a contradiction, since |C | is bounded.
Fix such an even `until the end of the argument and consider any element c ofC. Replacing z`(uj, vj, wj) by z`−1(uj, vj, wj)

for every j = 1, . . . ,m in the polynomial sc fixed above does not change the value, c , of the polynomial. The coordinate `/2
of this element is therefore contained in the subalgebraD, since the `/2th components of every zi(uj, vj, wj) are in D, except
for i = `. Thus projecting down to the coordinate `/2 we get our assertion. �

The condition that β is strongly abelian is not always satisfied whenwewant to use this construction.We shall only have
that β/µ is strongly abelian for some congruence µ ≤ β . In this case, we shall need additional assumptions.

Corollary 8.2. Suppose that β/µ is strongly abelian and u µ w. Then

(c, c) ≡ (d, r(b,u)) Cg(â, b̂)

holds in the subalgebra µ of A2 (here ˆmeans pairs of course).

Proof. We apply the argument proving Corollary 8.1. We know only that β/µ is strongly abelian, so we have to work in the
factor modulo µ. We obtain an even ` again, but when we replace z`(uj, vj, wj) by z`−1(uj, vj, wj) for every j = 1, . . . ,m,
the elements of Cmay change, although every changed element is µn+2-related to the original one.
Project C to the coordinates (`/2, n+ 1). The assumption u µ w implies that the changed elements of C have µ-related

coordinates at these two indices. Since the change moves the components in µ, the same is true for the original elements
of C. Therefore we get the desired conclusion. �

Corollary 8.3. Suppose that β/µ is strongly abelian, and that e is an idempotent unary polynomial of Awith parameters from D
such that U = e(A) contains the elements c and d, and (U, γ , µ) has the trivial twin property. Then c ≡ d modulo Cg(a, b) in D.

Proof. Apply the same argument as in the first paragraph of the previous proof. The `/2th coordinates of the changed
elements of C are again contained in the subalgebra D. Consider a Maltsev chain in Cmodulo â and b̂ that connects r̂(â, z1)
to r̂(b̂, z2n+1). Each link has the form

(p(âi, s1, . . . , sk), p(b̂i, s1, . . . , sk)),

where p is a term, i is between 1 and the length of a, and every sj ∈ C . Now, perform the replacement action described above.
Then each sj changes to some tj that is µ-related to sj in every coordinate. Project the chain down to the `/2th coordinate
and let sj and t j denote the `/2th coordinate of sj and tj, respectively. Then, sj µ t j and t j ∈ D for every j.
Prefixing p by e, produces a polynomial of D that pushes the Maltsev chain connecting c to d in the `/2th coordinate into

U . Deleting the trivial links from this Maltsev chain gives us that

ep(ai, s1, . . . , sk) 6= ep(bi, s1, . . . , sk).

As (U, γ , µ) has the trivial twin property, we get that

ep(ai, s1, . . . , sk) = ep(ai, t1, . . . , tk) and ep(bi, s1, . . . , sk) = ep(bi, t1, . . . , tk).

Thus, replacing every sj with t j throughout we get a Maltsev chain that has the same elements as before. The parameters are
now from D, so we have proved that c ≡ dmodulo Cg(a, b) in D. �

9. Strongly solvable implies strongly abelian

First, we establish the strong trivial twin property in DPC varieties.

Lemma 9.1. Let A be a finite algebra in a DPC variety, and 0 ≺ µ ≤ γ congruences of A such that γ is strongly nilpotent, and
γ /µ is strongly abelian. Let U be a 〈0, µ〉-minimal set. Then, (U, γ , µ) satisfies the strong trivial twin property.

Proof. Suppose that this fails. Then there exist two binary γ -twin unary polynomials f and g mapping A to U such that both
are the identity map on the body of U , but f and g differ on some γ -class that intersects the body B of U . By prefixing both
polynomials with the inverse of f on U , we may assume that f is the identity on U .
Let f (x) = r(a, x) and g(x) = r(b, x), where a γ b. Thus r(a, x) = x = r(b, x) for every x ∈ B, but there is an

element v ∈ A such that u := r(a, v) and w := r(b, v) are different elements of U , where v γ s for some s ∈ B. Then,
w = r(b, v) γ r(b, s) = s, hence w γ v. As f is the identity map on U we get that r(a, w) = w = r(b, v). But γ /µ is
strongly abelian, so this equality implies thatw = r(a, w) µ r(a, v) = u. Thus u andw are contained in a trace N within U ,
and therefore both elements are in B. Thus we have the equalities

r(a, u)= u r(a, v)= u r(a, w)=w
r(b, u)= u r(b, v)=w r(b, w)=w.
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We have just set up the conditions of Corollary 8.2, where simply D = A, β = γ , c = u and d = w. As r(b, u) = u = c , this
corollary shows that

(c, c) ≡ (d, c) Cg((a, a), (b, b))

holds in the subalgebra µ of A2. This is a failure of C(γ , µ; 0), which must hold, since γ is strongly nilpotent. This
contradiction proves the lemma. �

To prove that strongly solvable congruences are strongly abelian in a DPC variety, we shall go to a factor of a subalgebra
of the cube of a finite algebra, and use the DPC construction. We shall perform an important calculation first in a separate
lemma. The motivation for the investigation of the situation below will be apparent later in this section.
Let C be a finite algebra and 0 ≺ α ≤ τ congruences of C. Suppose that U is a 〈0, α〉-minimal set such that every τ -twin

of a permutation of U mapping U to U is also a permutation of U . Let N be an α-trace of U such that Tw(N, τ ) is semiregular.
Consider a τ , τ -matrix[

t(a′, c′) t(a′, d′)
t(b′, c′) t(b′, d′)

]
=

[
z s
x y

]
such that x 6= y, x, y ∈ N and z, s ∈ U such that z α s. Let δ be the congruence of the algebra T = τ [3] generated by the pairs

(t1, t2) = ((s, s, x), (s, z, x)) and (t3, t4) = ((y, x, x), (y, y, y)),

and E the subalgebra consisting of those elements of Twhose first two components are equal.

Lemma 9.2. Suppose that for every τ , τ -matrix above, the restriction of δ to U3 ∩ E is nontrivial. Then, for every such matrix
there exists a permutation f ∈ Tw(U, τ ) such that f (x) = z and f (y) = s.

Proof. We wish to understand the restriction of δ to U3. The two generating pairs of δ are in U3. Consider a Maltsev chain
modulo δ connecting two elements ofU3. By applying an idempotent polynomial whose range isU componentwise, wemay
assume that the entire chain proceeds in U . Thus we may restrict our attention to the induced algebra on U3.
A unary polynomial of this algebra has the form (p1, p2, p3), where these are τ -twin polynomials mapping C to U , acting

componentwise. By our assumption, the pi are either all permutations of U , or all collapse α to 0. An inspection of the two
generators of δ show that the latter kind of polynomials collapse both generators to 0. Let G = G(U3) be the group of all
such triples of polynomial permutations. We have shown that the restriction of δ to U3 is the same as the G-set congruence
of (U3,G) generated by the two pairs above. That is, we have to apply all elements of G to these pairs, and take transitive
closure.

Claim 9.3. The congruence ψ generated by (t3, t4) restricts trivially to U3 ∩ E. In particular, z 6= s must hold for every matrix
above.

Proof. Whatever we said so far about the way to generate δ applies also toψ . Suppose that the restriction ofψ to U3 ∩ E is
nontrivial. Then, there exist two different elements (a, a, b) and (c, c, d) of U3 ∩ E that are congruent moduloψ . Looking at
the generator of ψ we see that ψ-congruent pairs have equal first components. Therefore a = c. We also see that ψ ⊆ α3,
and so b α d holds. Thus b 6= d are in a trace within U .
Our first aim is to make sure that we can work in the induced algebra on N . Look at the first link of the chain connecting

(a, a, b) to (a, a, d). This yields an element g = (p1, p2, p3) ∈ G thatmaps one of the triples t3, t4 to (a, a, b). Apply g−1 to the
entire chain. Then this new chainwill run inN3, since its starting element is here, andψ ⊆ α3. If g−1(a, a, b) = t3 = (y, x, x),
then g−1(a, a, d) = (y, x, x′), where x′ ∈ N , but x′ 6= x, because b 6= d. Similarly, if g−1(a, a, b) = t4 = (y, y, y), then
g−1(a, a, d) = (y, y, y′), where y′ 6= y, and y′ ∈ N .
Now, we work in the induced algebra on N3 to get a contradiction. Let O ⊆ N3 be the set of those triples whose last two

components are equal. Clearly, the set O contains t3 and t4. We show that O is a union of congruence-classes ofψ restricted
to N3. Indeed, if this is not the case, then there is a unary induced polynomial g = (p1, p2, p3) of N3 such that (g(t3), g(t4))
straddles O. But if g maps some element (u, v, v) ∈ O to O, then p2(v) = p3(v), so by the semiregularity of Tw(N, τ )we get
that the τ -twin permutations p2 and p3 are equal on N . Therefore g maps O to O, and so O is indeed a union of congruence-
classes. But O does not contain (y, x, x′) or (y, y, y′). Hence, neither of these two elements can beψ-congruent to t3 or to t4.
This proves the first statement of the claim.
To prove the second statement, notice that if z = s, then t1 = t2, and so δ = ψ . Hence δ restricts trivially to U3 ∩ E by

what we have just proved, which contradicts our assumptions. �

As z 6= s and these two elements areα-related they are in a traceM . Consider aMaltsev chain coming from the generators
of δ that connects two different elements e1 and e2 of E. Let e1 = (a, a, b) and e2 = (c, c, d). Looking at the generators of
δ we see that δ ⊆ 0 × α × α. Therefore, a = c , and the elements b and d are α-related, but different. Furthermore, the
first and second components of any triple in the chain are α-congruent. The claim says that the links in such a chain cannot
all come from (t3, t4). They cannot all come from (t1, t2) either, because in such links the last components of the triples
are equal, but b 6= d. Thus, the chain has links of both kinds, and so there exist g1, g2 ∈ G such that {g1(t1), g1(t2)} and
{g2(t3), g2(t4)} intersect. In other words, there exists some g = (p1, p2, p3) ∈ G that takes one of t1 and t2 to one of t3 and
t4. Then p3(N) = N and p1(s) = y. Hence p−13 p1 ∈ Tw(U, τ ) takesM to N .
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First we handle the case, when Tw(N, τ ) is nontrivial. Then by Lemma 3.8 it must be transitive, and as all traces are
polynomially isomorphic, the same holds for the twin group on every trace. Therefore M and N are contained in an orbit
of Tw(U, τ ). Let f be an element of this group that takes x to z, and h an element that takes z to s. The τ , τ -matrix[

h(z) s
h(x) y

]
also satisfies our conditions, with the only possible exception that the elements in the bottom row may be equal. Indeed,
this must be the case by the claim above, since the two elements in the top row are equal. Thus, h(x) = y, hence h(N) = N .
Using the commutator [h, f ] = h−1f −1hf as in the proof of Lemma 3.11 we see that[

[id, id](x) [id, f ](x)
[h, id](x) [h, f ](x)

]
=

[
x x
x [h, f ](x)

]
is a τ , τ -matrix in U . Here

[h, f ](x) = h−1f −1hf (x) = h−1f −1(s) α h−1f −1(z) = h−1(x) ∈ N.
Applying the claim to this matrix we get that h−1f −1hf (x) = x, hence s = hf (x) = fh(x) = f (y). Therefore, f satisfies the
conditions of the lemma, and we are done in the case, when Tw(N, τ ) is nontrivial.
So, assume that the τ -twin group is trivial on the traces. It follows that any two members of Tw(U, τ ) that both map

a given 〈0, α〉-trace into the same trace must act identically on the given trace. Then, the G-orbit(s) of t2 and t3 do not
intersect E. Indeed, if some (q1, q2, q3) ∈ G maps t2 or t3 to E, then q1 = q2 on M or N respectively which is impossible
since z 6= s and x 6= y. Nowwe can say muchmore about the Maltsev chain connecting e1 and e2 considered above. Namely,
it must oscillate between the elements of E and the elements outside E, and so a nontrivial shortest chain connecting two
different elements of E must have two links only. That is, it has the form e′1 − o − e

′

2, where e
′

1 6= e
′

2 are in E but o is not.
Therefore, now we know that in fact t2 and t3 are in the same G-orbit (as o). If (p1, p2, p3) ∈ Gmaps t2 to t3, and f = p−12 p3,
then f ∈ Tw(U, τ ), and f (x) = z.
We have proved that if Tw(N, τ ) is trivial, then for every matrix in the statement of the lemma, the two elements of the

first column are in the same orbit of Tw(U, τ ). Switching columns, we see that the elements of the second column are also
in the same orbit. That is, there exists some g ∈ Tw(U, τ ) such that g(y) = s. Now f −1g fixes the trace N , and it is the
twin of the identity map on U . We have assumed Tw(N, τ ) to be trivial, which implies that f −1g is the identity map on N .
Therefore f (y) = g(y) = s, and Lemma 9.2 is proved. �

Lemma 9.4. Let C be a finite algebra in a DPC variety, and 0 ≺ α ≤ τ congruences of C such that τ is strongly nilpotent and
τ/α is strongly abelian. Suppose that U is a 〈0, α〉-minimal set, N is an α-trace N ⊆ U, and[

t(a′, c′) t(a′, d′)
t(b′, c′) t(b′, d′)

]
=

[
z s
x y

]
is a τ , τ -matrix such that x 6= y, x, y ∈ N and z, s ∈ U. Then x = z and y = s.
Proof. The fact that τ is strongly nilpotent implies that Tw(N, τ ) is semiregular (in fact trivial), and Lemma 3.6 shows that
every τ -twin of a permutation of U mapping U to U is also a permutation of U . As τ/α is abelian, we see that z α s. Therefore
the conditions described before Lemma 9.2 hold for every matrix above. We show that δ restricts nontrivially to U3 ∩ E for
every such matrix.
Suppose that this is not the case for the matrix above. We shall build up the situation in Corollary 8.3. Let A = T/δ, and

consider the elements and vectors

a = (a′, a′, b′)/δ, b = (b′, b′, b′)/δ,
u = (d′, d′, c′)/δ, v = (d′, c′, c′)/δ, w = (d′, d′, d′)/δ

of A. By this notation, we mean that, for example a has the same length as a′, and the ith component of a is (a′i, a
′

i, b
′

i)/δ,
where a′i is the ith component of a

′ and b′i is the ith component of b
′. Let r = t̂/δ. Then, we have the equalities

c := r(a,u) = r(a, v) and d := r(b, v) = r(b,w).
Recall that E is the subalgebra consisting of those elements of T whose first two components are equal and let D = E/δ.
Clearly, D contains the elements c , d, and all the components of the vectors a, b, u and w. Set β = γ = τ 3/δ and
µ = α3/δ. Lemmas 7.3 and 9.1 imply that (U3 ∩ T , τ 3, α3) has the trivial twin property, hence by Lemma 7.4 the triple
((U3 ∩ T )/δ, β, µ) has it, too. We have set up the conditions of Corollary 8.3 in A, so we get that (s, s, x) and (y, y, y) are
congruent modulo δ|E ∨ CgE((a′, a′, b′), (b′, b′, b′)). Pull a Maltsev chain witnessing this into U3 by applying a suitable
idempotent polynomial componentwise. We have assumed that δ restricts trivially to U3 ∩ E and therefore (s, s, x) and
(y, y, y) are congruent modulo CgE((a′, a′, b′), (b′, b′, b′)). But this is a contradiction, because the last components of the
two triples (a′i, a

′

i, b
′

i) and (b
′

i, b
′

i, b
′

i) are equal for every i, but the last components of the two triples (s, s, x) and (y, y, y) are
not. This contradiction proves that δ restricts nontrivially to U3 ∩ E.
We can now apply Lemma 9.2 to see that there exists an f ∈ Tw(U, τ ) such that f (x) = z and f (y) = s. In particular,

x τ z. Now f (x) = id(z), so the fact that τ/α is strongly abelian implies that f (x) α id(x). Thus z ∈ N , and f maps N to N .
But, Tw(N, τ ) is trivial, so f is the identity map on N , proving that x = z and y = s. �
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Corollary 9.5. In a DPC variety, every strongly solvable congruence on every finite algebra is strongly abelian.

Proof. Let C be a finite algebra in a DPC variety, and τ a strongly solvable congruence of C. Then τ is strongly nilpotent
by Corollary 6.5. Suppose that τ is not strongly abelian. By taking a suitable quotient, we may assume that C is subdirectly
irreducible with monolith α and that τ/α is strongly abelian.
We shall set up the conditions of Lemma 9.4. As τ is not strongly abelian, there exists a polynomial t such that

t(a, c) = t(b, d) for some a τ b and c τ d, but t(e, c) 6= t(e, d) for some e τ a. If t(b, c) 6= t(b, d), then consider the
τ , τ -matrix[

t(a, c) t(a, d)
t(b, c) t(b, d)

]
=

[
z s
x y

]
,

and if t(b, c) = t(b, d), then consider[
t(b, c) t(b, d)
t(e, c) t(e, d)

]
=

[
z s
x y

]
.

The fact that τ/α is strongly abelian implies that x α y. Hence we can push this pair nontrivially into a 〈0, α〉-trace N , and
make t map into the corresponding minimal set U . Lemma 9.4 shows that x = z and y = s. In the second matrix this is
impossible, because here z = s (but x 6= y). In the first matrix this is impossible, too, because in that one z = y. This
contradiction proves the corollary. �

10. Five problems

Themain questionwould be to ask for a complete characterization of finite algebras generating a DPC variety, as has been
done for groups in [1]. That result can be reformulated to say that a finite group generates a DPC variety if and only if, every
principal congruence is abelian. In a group, a principal congruence is always generated by a pair (g, 1), and of course the
subgroup generated by g is always abelian. Therefore, this result hints that DPCmay imply a kind of ‘‘commutator extension
property’’, as does its special case, the congruence extension property inmodular varieties (see [11]). The results in Section 8
may also point in this direction.

Problem 10.1. Is it possible to find a condition that is satisfied in every finite algebra generating a DPC variety, and which
implies, in the case of groups, that every principal congruence is abelian?

It would be interesting to solve the above problem even in the special case, when we assume modularity and/or
solvability. At the moment, we do not understand fully how DPC can be spoiled for solvable congruences. In case of strong
solvability, strong abelianness is a complete characterization. Hence, the problem is with the presence of type 2 quotients,
because we cannot force solvable congruences to be abelian. Is it true that in the solvable case, non-DPC is always caused by
the interaction of two type 2 quotients? This question may seem a bit vague, so we try to make it more concrete, as follows.

Problem 10.2. Let A be a finite algebra in a DPC variety, and ρ ≤ τ congruences of A such that τ is solvable and ρ is strongly
solvable. Does it follow that τ strongly centralizes ρ on both sides? Ifψ ≺ θ ≤ ρ andM is a 〈ψ, θ〉-trace is Tw(M/ψ, τ/ψ)
trivial?

Problem 10.3. Let A be a finite algebra in a DPC variety, and τ ≥ ρ ≥ ψ congruences of A. Suppose that ρ/ψ is abelian and
τ/ρ and ψ are strongly abelian. Does it follow that τ is abelian?

Some concrete examples indicate that Lemma 9.2 (whichmay be general enough in its present form), and a type 2 variant
of the construction in Section 8 could help to attack this problem.
A related question may be to investigate β-twin groups on subsets bigger than traces, where β is a solvable congruence.

Problem 10.4. LetA be a finite algebra in a DPC variety, andβ a solvable congruence ofA. What canwe say about theβ-twin
group on larger subsets of A? How is it related to translations on type 2 traces? Is it nilpotent?

With respect to this problem, we call the attention of the reader to the proof of Lemma 5.2, where we show that
polynomials mapping between type 2 traces must be homomorphisms under certain circumstances. The methods in [7]
could also serve as models to work on this question, since in that paper the twin group on the entire algebra is described in
the modular case.
The problem of characterizing DPC is almost completely open if we leave solvability, although the first author has

some results in this direction, which are not published yet. Even the result in [10], characterizing DPC in the congruence
distributive case, is a bit complicated.

Problem 10.5. Investigate DPC, using tame congruence theory, in the non-solvable case. Is it possible to simplify the main
result of [10]?
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