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A common existing approach to modeling rainfall extremes employs a spatial Bayesian hierarchical
model, where latent Gaussian processes are specified on distributional parameters in order to pool
spatial information. The data are taken to be conditionally independent given the latent processes, and so
spatial dependence arises only through this conditional structure. This methodology can be extended by
incorporating an explicit max-stable dependence structure, which therefore produces more realistic
spatial surfaces, and removes the assumption of conditional independence. We further extend the max-
stable methodology to incorporate the joint modeling of rainfall data at different accumulation durations.
We therefore pool information across both space and accumulation duration within a broad framework
which includes an explicit specification of spatial dependence. Our model can be used to derive in-
ferences at ungauged sites, and easily incorporates missing values.

Our methodology is applied to a dataset of pluviometer records recorded at 182 meteorological
stations located on the Central Coast of New South Wales, Australia. For each station, rainfall data are
accumulated over 16 different durations ranging from 5 min to 7 days. The model is fitted using Markov
chain Monte Carlo simulation, employing auxiliary variables so that exact Bayesian inference can be
performed. We present estimated parameters and posterior inferences for isohyetal maps and intensity-
duration-frequency curves at selected sites of interest, and compare our inferences with those derived
from the standard latent variable model.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The occurrence, extent and intensity of rainfall has a significant
impact on ecosystems, population health, food production, in-
surance costs, and infrastructure. There is therefore a need for
accurate analysis of these extremes and their consequences. The
estimation of rainfall intensity-duration-frequency (IDF) relation-
ships is of central importance for impacts assessment when con-
sidering extreme rainfall at a particular site. Regional frequency
analysis (Hosking and Wallis, 1995) is a relatively simple method
for estimation of IDF curves, but it is difficult to expand these
procedures to more general settings, such as temporal variability
or the incorporation of covariates. Moreover, regional frequency
analysis typically makes very simple assumptions regarding the
pooling of spatial information in the local area around the site of
interest, and it does not explicitly model the relationship between
r B.V. This is an open access article

phenson).
rainfall at different accumulation durations.
An alternative approach to regional frequency analysis is to

apply Bayesian hierarchical modeling by specifying latent Gaus-
sian spatial processes on distributional parameters. Bayesian
hierarchical modeling represents a approach that allows for the
integration of multiple sources of uncertainty. Examples of this
approach include Gaetan and Grigoletto (2007) and Sang and
Gelfand (2008), who both analyze rainfall maxima using the
generalized extreme value (GEV) distribution, where the para-
meters of that distribution are defined using latent Gaussian
processes. Recent work by Lehmann et al. (2013) and Lehmann
et al. (2016) has applied this latent variable model to rainfall of
different accumulation durations using a relationship given by
Koutsoyiannis et al. (1998). Their model therefore pools both
spatial information and information across different durations
within a formal framework. The disadvantage of the latent variable
model is the assumption that the data at different sites are con-
ditionally independent, which means that the spatial dependence
arises only through the latent processes. Because of this
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 2.2. Distributions of annual rainfall maxima at a one hour accumulation
duration, plotted against time. Each boxplot shows the distribution of rainfall
maxima as recorded at the sites given in Fig. 2.1. The width of each boxplot is
proportional to the square-root of the total number of observations in that year.
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assumption, the model cannot produce plausible extreme rainfall
surfaces (Sang and Gelfand, 2010; Davison et al., 2012). The aim of
this article is to incorporate the max-stable process framework of
Reich and Shaby (2012) and Stephenson et al. (2015) into the la-
tent modeling approach of Lehmann et al. (2013). This max-stable
process gives an explicit spatial dependence structure which does
not rely on assumptions of conditional dependence. Our model
can be used to spatially extrapolate to ungauged sites (see Fig. 4.2
and Appendix B), and easily incorporates missing values (see
Section 3).

The contribution of this article is to incorporate the modeling of
different rainfall accumulation durations within a max-stable and
latent variable process. The methodology we present is novel: as
far as we are aware, this is the first published application of spatial
max-stable processes applied to rainfall data at different accu-
mulation durations. Return level estimates and other inferences
can then be made at any duration and at any site, gauged or un-
gauged. The addition of a max-stable dependence structure leads
to more realistic spatial surfaces than the standard latent variable
framework. Additionally, our model is an extension of the latent
variable model in the sense that it contains the latent variable
model as a special case. For additional applications of latent vari-
able models to spatial extremes see e.g. Cooley et al. (2007),
Schliep et al. (2010) and Apputhurai and Stephenson (2013). For
applications of max-stable process models to weather data using
composite likelihoods see e.g. Smith and Stephenson (2009),
Padoan et al. (2010) and Ribatet et al. (2012).

This article is structured as follows. In Section 2 we discuss the
derivation of the rainfall maxima data calculated at different ac-
cumulation durations, recorded at 182 weather stations located in
the Australian state of New South Wales. In Section 3 we describe
the model that we apply to our data, and in Section 4 we present
the model fit and results, including posterior mean parameter
estimates and IDF curves, together with corresponding estimates
of uncertainty. Section 5 provides a brief discussion.
2. Rainfall data

The dataset of rainfall maxima used in this work was extracted
from pluviometer records acquired at N¼182 weather stations
located around the Sydney and Wollongong metropolitan areas in
New South Wales, Australia, as shown in Fig. 2.1. Station records
consist of rainfall depths (in mm) registered over 5 min intervals,
with different record lengths ranging from 7 to 40 years of mea-
surements during the T¼40 year period 1961–2000. The
Fig. 2.1. The 182 weather station locations for the dataset used in this article. The
two red crosses give the approximate locations of the cities of Sydney (upper) and
Wollongong (lower). The legend gives the elevation in meters. The extent of the
study area is roughly 200 km by 200 km.
pluviometer data at 5 min intervals were subsequently accumu-
lated over D¼16 different durations, namely 5, 10, 15 and 30 min,
and 1, 2, 3, 6, 12, 24, 48, 72, 96, 120, 144 and 168 h. The resulting
time series were then used to determine the largest annual rainfall
accumulation for each corresponding station, year, and accumu-
lation duration.

The extent of the study area in Fig. 2.1 is roughly 200 km by
200 km. For each accumulation duration, the dataset contains a
total of 3109 annual rainfall maxima distributed across the 182
weather stations. Within this region, rainfall accumulations tend
to be larger during the February to June period, where the monthly
average (i.e. the average accumulation for the calendar month) is
around 120 mm. The monthly average drops to around 80 mm
during the August to December period, and therefore the annual
rainfall maxima are more likely to occur during the southern
hemisphere autumn period. The largest monthly accumulation at
the Sydney Observatory Hill site was 630 mm, recorded in Feb-
ruary 1990. Boxplots of distributions of annual rainfall maxima
within each year, for a one hour accumulation duration, are given
in Fig. 2.2. There was less available data prior to 1980, as can be
seen from the width of the boxplots. Fig. 2.2 shows little evidence
of any temporal trend for the overall study area. A small number of
annual rainfall maxima at a one hour duration exceed 100 mm.
3. Modeling rainfall extremes

The general concepts described here are based on the con-
struction of Stephenson et al. (2015), but we extend these concepts
to account for the different rainfall accumulation durations, based
on the relationship suggested by Koutsoyiannis et al. (1998). We
model the annual maximum rainfall as a max-stable spatial pro-
cess. Full computational details are deferred to Appendix B. A
theoretical justification for using max-stable processes to model
spatial maxima is given by e.g. Schlather (2002). This justification
is an extension of standard asymptotic arguments for the com-
ponentwise maxima of random vectors (e.g. Tawn, 1990). These
asymptotic arguments assume that the underlying process at each
site is stationary and subject to weak dependence assumptions
(Leadbetter et al., 1983). For statistical purposes these results are
often applied to annual maxima of seasonal meteorological data
on the basis that e.g. annual rainfall maxima typically occur during
a particular season or period within the year, and stationarity is
assumed over that period. The asymptotic results therefore remain
valid, but the quality of the approximation deteriorates because
the effective block size over which the maxima are taken reduces.



Fig. 3.1. Estimates of generalized extreme value parameters μ̃d (top left), sd (top right) and ξd (bottom left) for the Cronulla Sewage Treatment Plant pluviometer station, located at
151.16° E, 34.03° S. Black dots with error bars are unconstrained maximum likelihood estimates and 95% confidence intervals for each duration = …d D1, , . The black lines and
shaded region give maximum likelihood estimates under the constraints μ μ˜ = ˜d , ξ ξ=d , and sd defined by Eq. (3.1), for each duration = …d D1, , . The histogram gives deviance
differences (i.e. twice the log-likelihood ratio) for the comparison of the two models across all sites with 20 or more observations, with each site considered independently. The
three marks above the x-axis denote the individual chi-squared 10%, 5% and 1% significance quantiles for the corresponding likelihood ratio test.
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For ease of exposition we focus only on the sites si for
= …i N1, , for which we have data, however inferences can also

be made at any arbitrary site s (see Appendix B). Let ( )sYt d i, be the
annual maximum rainfall at the data site si for year t and at ac-
cumulation duration = …d D1, , . The marginal distribution of

( )sYt d i, is taken to be Generalized Extreme Value (e.g. Coles, 2001)
with location, scale and shape parameters given by μ ( )sd i , σ ( ) >s 0d i

and ξ ( )sd i respectively. It can be reasonably assumed (Kout-
soyiannis et al., 1998) that both μ μ σ˜ ( ) = ( ) ( )s s s/d i d i d i and ξ ( )sd i do not
depend on the accumulation duration, and therefore μ μ˜ ( ) = ˜( )s sd i i

and ξ ξ( ) = ( )s sd i i for each = …d D1, , (see also Fig. 3.1). Let ρd

denote the dth accumulation duration in hours, for each
= …d D1, , . Then for the scale parameter we employ the re-

lationship given by Koutsoyiannis et al. (1998), with

σ
ρ σ

ρ κ
( ) =

( )
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s

s
,

3.1
sd i

d i
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which involves a ‘duration offset’ term κ( ) >s 0i and a ‘duration
exponent’ term η< ( ) ≤s0 1i . We denote this distribution by

μ σ ξ( ) ∼ [ ˜( ) ( ) ( )]s s s sY GEV , ,t d i i d i i, , and we assume independence
across years = …t T1, , and accumulation durations = …d D1, , .

The relationship in Eq. (3.1) was derived empirically by Kout-
soyiannis et al. (1998), who show that it is consistent with several
rainfall studies. It has been used successfully with other datasets
(Muller et al., 2008; Van de Vyver, 2015). Alternative empirical
relationships have been investigated by Garcia-Bartual and
Schneider (2001). Nadarajah et al. (1998) used an explicit multi-
variate model (in a non-spatial setting) for the maxima at different
accumulation durations, and showed that the ordering of rainfall
depths at increasing durations implies restrictions on the GEV
parameters. In particular, they showed that when μ̃ and ξ are
constant across durations, then σ σ≤d d1 2

whenever <d d1 2, which is
a relationship that is enforced by Eq. (3.1).
For our precipitation data, we performed an exploratory max-
imum likelihood analysis at each individual site in order to in-
vestigate the Koutsoyiannis et al. (1998) relationship. Fig. 3.1
shows parameter estimates at one particular pluviometer station;
we performed the same analysis independently for all sites that
had at least 20 years of observed annual maxima. We compared
the model fit using unconstrained parameters μ σ ξ( ˜ ), ,d d d for

= …d D1, , with the model fit under the constraints μ μ˜ = ˜d , ξ ξ=d ,
and sd defined by Eq. (3.1), for each duration = …d D1, , . Under
this constrained model there are five parameters in total, namely
μ σ ξ κ η( ˜ ), , , , . The histogram in Fig. 3.1 gives the deviance differ-
ences for each model comparison, and the associated chi-squared
quantiles for the corresponding likelihood ratio test. At the 5%
significance level, only about 10% of our sites show individual
significance, which is strong support for the use of Eq. (3.1) for our
data.

To specify the max-stable spatial dependence structure, we first
transform to residuals with a common marginal distribution. De-
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so that the marginal distribution of ( )sXt d i, is given by the standard
Fréchet distribution, where ( ( ) < ) = ( − )sX x xPr exp 1/t d i, . The joint
distribution of the ( )sXt d i, over the sites = …i N1, , is then mod-
eled as
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for each year t and duration d, where α ∈ ( ]0, 1 is a spatial de-
pendence parameter and (·)wk are kernel basis functions defined



Table 4.1
DIC values for several models (East¼Easting, North¼Northing, Elev¼Elevation).
The rows represent the covariates included in the expression βχ χX for each

χ μ σ ξ κ η∈ { ˜ }, , , , , as given in Eq. (3.5). The column headings give the vectors
containing the respective GEV parameters for each site. If a GEV parameter is not
contained in the column heading, then all covariates are included. For clarity, a
fixed additive constant has been removed from the DIC values, and the minimum
within each column is highlighted in bold.

μ̃ σ κ η, , ξ

East-North-Elev 24.9 24.9 24.9
East-North 56.8 22.7 54.9
East-Elev 74.2 45.6 21.9
North-Elev 84.3 27.6 49.7
East 31.8 51.7 50.7
North 56.1 34.7 24.3
Elev 94.1 41.3 33.0
Intercept Only 46.7 55.0 76.9
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for = …k K1, , , where Λ(·) is a kernel, τ > 0 is the kernel band-
width, and ∥·∥ is the Euclidean norm. The …v v, , K1 are a fixed set of
K locations that we specify on a regularly-spaced grid over the area
of interest. Using the above equation, it follows that ( ) ≥sw 0k i and

∑ ( ) == sw 1k
N

k i1 for all sites si. We employ the Gaussian kernel

Λ( ) ∝ ( − )u uexp /22 .
The specification of the number of grid locations K presents a

trade-off between computational burden and the accuracy of the
fit. The computational burden within the fitting algorithm in-
creases for increasing K, because if there are fewer grid locations
then there are fewer variables to update (see Appendix B). In our
application we define our grid so that = =K 14 1962 is approxi-
mately equal to the number of meteorological stations.

We assign Gaussian spatial processes to the parameters of the
Generalized Extreme Value (GEV) distribution. Let μ̃, σ , ξ , κ and η
denote vectors containing the respective GEV parameters at each
site. For example, μ μ μ˜ = [ ˜( ) … ˜( )]s s, , N1 . For each χ μ σ ξ κ η∈ { ˜ }, , , ,
we therefore take

χ β Σ( ) ∼ ( ) ( )χ χ χ χh XMVN , , 3.5

where β β β β= ( … )χ χ χ χ χ
, , , n

T
,0 ,1 , is a column vector of parameters,

and Xχ is a N by +χn 1 design matrix. The function χ( )χh represents
a componentwise transformation and is used to ensure that the
GEV parameters are transformed to a suitable range of values.
Thus, we take χ χ( ) =χh for χ μ ξ∈ { ˜ }, , χ χ( ) = ( )χh log for χ σ κ∈ { },
and χ χ χ( ) = ( ( − ))χh log / 1 for χ η= . We use an exponential corre-
lation function, which gives covariance matrix entries

Σ δ λ[ ] = ( − ∥ − ∥ ) = … ( )χ χ χs s i j Nexp / , , 1, , , 3.6ij i j

where δ >χ 0 and λ >χ 0 are the sill and the range respectively. The
range parameter provides an indication of the distance beyond
which the correlation between the values of a given GEV para-
meter at different spatial locations drops to a negligible level.

The above framework defines the density χ ϕπ( | )χ for
χ μ σ ξ κ η∈ { ˜ }, , , , , with ϕ β δ λ= ( )χ χ χ χ, , . The spatial dependence in
the model defined by Eqs. (3.2) and (3.3) is therefore derived from
two sources. Firstly, spatial dependence is derived through the
parameters α and τ. Secondly, spatial dependence is induced
through the latent Gaussian process specifications for the GEV
parameters, as given in Eqs. (3.5) and (3.6). When α¼1 we obtain
the standard latent variable model, where the ( )sXt d i, are in-
dependent, and the ( )sYt d i, are conditionally independent given the
vectors μ̃, σ , ξ , κ and η. In the α¼1 case, the only spatial de-
pendence is that which is induced by integration over μ̃, σ , ξ , κ
and η. The full model defined by Eqs. (3.2) and (3.3) includes both
forms of spatial dependence, and it permits straightforward pre-
diction at ungauged sites (see Appendix B).

The model given above permits an exact Bayesian analysis
using the following construction, based on Stephenson (2009). Let

= { = … = … }A A t T k K: 1, , , 1, ,t k, be independent random vari-
ables distributed according to the positive stable distribution (see
Appendix A) with index equal to the spatial dependence para-
meter α. Also, define

∑θ ( ) = ( )
( )
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α
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Reich and Shaby (2012) show that ( )sYt d i, are then conditionally
independent, with
μ σ ξ( )| ∼ [ ˜*( ) * ( ) *( )] ( )s A s s sY GEV , , 3.8t d i
ind

t i t d i i, ,

where the GEV parameters of the conditional distribution are
defined by
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This formulation permits Bayesian inference using standard Mar-
kov chain Monte Carlo techniques (Hastings, 1970) to simulate
from the posterior distribution of the parameters and to perform
spatial prediction at observed (gauged) or unobserved (ungauged)
sites. It also allows us to easily incorporate missing values; if ( )sYt d i,
is missing we simply omit the corresponding term from the like-
lihood function. Let Y represent the dataset of all rainfall maxima.
The posterior density is then proportional to

∏μ σ ξ κ η χ ϕ ϕα τ π α π π π α τ( | ˜ ) ( | ) ( | ) ( ) ( )
( )χ

χ χY A AL , , , , , , , , ,
3.12

⎪ ⎪
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⎨
⎩

⎫
⎬
⎭

where (·)L is the likelihood function and π α( | )A is the density
function for A (see Appendix B). The product in Eq. (3.12) is over
χ μ σ ξ κ η∈ { ˜ }, , , , . The functions ϕπ( )χ and π α τ( ), are independent
prior density functions as defined in Appendix B. The density
π α( | )A , cannot be computed in closed form, but we can introduce a
further set of variables = { = … = … }B B t T k K: 1, , , 1, ,t k, such

that π α( | )A is equal to ∫ π α( | )A B B, d , and where the joint density
π α( | )A B, can be easily computed. We can then replace π α( | )A by
π α( | )A B, within Eq. (3.12). See Appendix B for details.
4. Results

We initially conducted a series of small Markov chain Monte
Carlo simulations in order to assist with the selection of covariates
within the linear terms βχ χX for each χ μ σ ξ κ η∈ { ˜ }, , , , , as given by
Eq. (3.5). Table 4.1 displays the Deviance Information Criteria (DIC)
of Spiegelhalter et al. (2002) for several different models. The exact
derivation of these DIC values is given in Appendix B. The largest
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model under consideration was the use of Easting, Northing (UTM
Zone 56 Southern; EPSG:32756) and Elevation covariates for each
χ μ σ ξ κ η∈ { ˜ }, , , , . We examined possible simplifications for μ, ξ
and (σ κ η, , ); the parameters σ , κ and η were taken as a unit since
they all appear in the Koutsoyiannis et al. (1998) relationship in
Eq. (3.1).

Table 4.1 shows that Easting, Northing and Elevation are cer-
tainly all needed for μ. There is some suggestion that a simpler
model would be sufficient for other parameters. For the shape
parameter ξ , the Elevation covariate may not be needed, and for σ ,
κ and η, the Northing covariate may not be needed. However the
evidence is not strong, with DIC differences of only 3.0 and
2.2 respectively from the full model, and therefore we continue
with the full model for our main analysis.

The posterior means of the model parameters and their 95%
credible intervals are provided in Table 4.2. Previous literature on
Bayesian hierarchical models for spatial extremes (Sang and Gel-
fand, 2010; Davison et al., 2012) suggests that it is not possible to
learn from the data simultaneously about the sill δχ and range λχ
parameters, however we found that for χ μ σ ξ∈ { ˜ }, , our data
provided clear information on both. This is probably due to the fact
that, unlike previous studies, our model combines rainfall ex-
tremes across many accumulation durations. For χ κ η∈ { }, there
appears to be some minor identifiability issues. Preliminary ana-
lysis with simpler latent variable models suggests that λκ and λη
should be the largest of the range parameters and so we fix these
at 15 km. This is consistent with the work of Lehmann et al. (2013).
There were also identifiability issues between α and τ. Preliminary
analysis suggested that τ should be much smaller than λκ or λη, and
so this was fixed to 5 km.

The regression coefficients associated with Easting, Northing
and Elevation generally have credible intervals that either include
zero or are close to zero. The main exception is for the scale
parameter s which increases with larger easting values, towards
the coast. There is some evidence that η is larger at lower eleva-
tions for inland areas, and there is some indication that the shape
parameter ξ may be larger at lower elevations. Estimates for the
range parameters λχ indicate a minimal correlation distance for ξ,
with an increasing correlation distance for μ̃ and s. The estimate
for α indicates a moderate level of spatial dependence in addition
to that implied by the latent specifications on the GEV parameters.

A comparison of the estimates in Table 4.2 with those obtained
from the simpler (i.e. with α¼1) latent variable model (not dis-
played) shows that there is little or no change in the Easting,
Northing and Elevation regression coefficient estimates. The range
parameters are slightly smaller than those obtained from the la-
tent variable model. The most notable difference is in the intercept
terms for the parameters μ̃ and ξ. The ξ parameter is larger and
the μ̃ parameter is smaller than for the latent variable model. This
means that the incorporation of the max-stable process depen-
dence structure has generally led to heavier tailed marginal dis-
tributions across the study location.

Fig. 4.1 shows the marginal prior and posterior densities of the
parameters λσ and λξ. The parameter λσ was the largest estimated
range parameter, whereas λξ was the smallest. The marginal pos-
terior densities are displayed using a histogram of MCMC samples.
The marginal prior densities are the same for both parameters. The
data gives clear information on these range parameters, as both
posterior densities are far more precise than the prior. The pos-
terior densities display a similar asymmetric shape that is typical
of range parameters.

For additional information regarding the Markov chain Monte
Carlo procedure and additional model diagnostics, see Appendix B.
In particular, Fig. B2 in Appendix B gives posterior estimates of
cumulative distribution functions for several sites and several
accumulation durations, and compares these estimates with their
empirical counterparts.

Fig. 4.2 gives maps of marginal rainfall return levels (i.e. iso-
hyetal maps) for a return period of 50 years, for three different
accumulation durations. They are derived using the method given
in Appendix B. The maps show that larger return levels are typi-
cally estimated near coastal areas. The larger values near the cities
of Sydney and Wollongong may also be a consequence of having
relatively few coastal observation stations outside of these loca-
tions (see Fig. 2.1). The spatial pattern is fairly similar across the
different accumulation durations, although at longer durations the
return levels appear to be relatively larger in the south of the
observation area.

A key model output is the intensity-duration-frequency (IDF)
curves that can be derived at any location of interest, either gauged or
ungauged. An IDF curve shows intensity plotted against duration for
any particular return period frequency, typically displayed on a log-
log scale. At gauged locations, the posterior distribution of any return
period at a given duration can be calculated using the MCMC samples
for the GEV parameters at that site. IDF curves were produced at all
N¼182 sites (see Fig. 2.1) using a 20-year return period, and were
compared to those produced using the standard latent variable
model. Fig. 4.3 displays the IDF curves for two sites: Blacktown, which
is fairly close to Sydney, and Jenolan, which is at a similar latitude but
is much further inland. For most sites, the intensity values were si-
milar or larger than those produced from the latent variable model,
which is a consequence of the larger intercept on the shape para-
meter. The Jenolan site in Fig. 4.3 is a typical example of this behavior.
However there were some exceptions, such as with Blacktown, where
intensities were lower than the latent variable model.

We also examined IDF curves for the model that has no spatial
dependence of any type (not shown), but still uses Eq. (3.1) to
combine information across accumulation durations. The behavior
of these IDF curves relative to the two spatial models can differ for
different sites, but they generally give lower intensities than our
model. In many cases the model with no spatial dependence yields
similar IDF curves to the standard latent variable model.

All IDF curves produced from the models were smooth, which
is a consequence of the parametric relationship in Eq. (3.1). IDF
curves produced by separate estimation at each accumulation
duration generally appear less smooth than those given here. Our
explicit model formulation allows us to produce pointwise 95%
credible intervals for the IDF curves, as displayed in Fig. 4.3. For
gauged sites, the width of these intervals is largely due to the
length of the history of observations at that site. For ungauged
locations the intervals are typically wider, particularly for those
locations that are far away from any gauged site. For most sites the
interval widths for our model are slightly larger than for the latent
variable model (see Fig. 4.3), and this seems to more genuinely
reflect the variability that exists in the rainfall data.
5. Discussion

Our model makes the most of the limited amount of available
observations, effectively pooling them together through the spatial
process and the combining of rainfall data at different accumula-
tion durations.

We have illustrated the simultaneous modeling of rainfall data
over space and accumulation durations, all within a max-stable
process framework. This allows the derivations of model in-
ferences, such as IDF curves, at both gauged and ungauged loca-
tions. In addition, it can be used to produce spatial inferences such
as isohyetal maps (e.g. Fig. 4.2) and depth-area-duration curves. It
also provides measures of uncertainty, such as 95% credible in-
tervals, for any feature of interest. Our model estimates a large



Table 4.2
Bayesian estimates of model parameters. Posterior means are given in the center of each list, with 95% credible interval limits given on either side. Parameters without
credible interval limits are fixed, namely λ λ= =κ η 15 km and τ = 5 km. Easting, Northing and Elevation covariates were approximately standardized.

μ̃ log(s) ξ log(κ) logit(η)

Intercept 1.62, 1.7, 1.8 2.58, 2.68, 2.77 0.41, 0.46, 0.51 �2.58, �2.25, �1.92 0.59, 0.68, 0.78
Easting �0.31, �0.11, 0.1 0.28, 0.55, 0.81 �0.18, �0.05, 0.08 �0.36, 0.41, 1.2 �0.58, �0.36, �0.14
Northing 0.01, 0.1, 0.19 �0.33, �0.2, �0.08 �0.12, �0.07, �0.01 �0.81, �0.39, 0.02 �0.02, 0.1, 0.21
Elevation �0.03, 0.1, 0.23 �0.12, 0.05, 0.21 �0.24, �0.16, �0.07 �0.73, �0.21, 0.29 �0.4, �0.27, �0.14

δχ1/ 17.9, 24.6, 32.4 16.4, 24.9, 33.7 37, 51.9, 69.7 1.8, 2.5, 3.41 23.1, 30.6, 39.4

λχ 2.72, 4.52, 7.12 5.9, 9.76, 16.1 0.5, 2.25, 4.48 15 15

τ¼5, α¼0.39, 0.42, 0.45

Fig. 4.1. Histograms of MCMC samples for the marginal posterior density of λσ (left) and λξ (right). The curves denote the prior density functions.

Fig. 4.2. Isohyetal maps of marginal rainfall return levels (mm) for a return period of 50 years (i.e. ‘1-in-50 year’ events), at accumulation durations of five minutes (row one),
one hour (row two) and one day (row three). The middle column gives posterior mean estimates. The left and right columns give lower and upper limits of 95% posterior
probability intervals. The method of construction is detailed in Appendix B.
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Fig. B1. Cumulative quantile plots (first and third rows) and trace plots (second and forth rows) for the first 10,000 iterations of the Markov chain (including burn-in), for the
parameters βμ̃ (first two rows) and βσ (last two rows). The columns (from left to right) correspond to the intercept and the Easting, Northing and Elevation covariates. The
cumulative quantile plots show the quantiles at 2.5%, 50% and 97.5%.

Fig. 4.3. Intensity-Duration-Frequency (IDF) curves on a log-log scale for a 20-year return period, at two different sites. The blue IDF curve is derived from the model of
Section 3. The red IDF curve is derived from the standard latent variable model where α¼1, so that the spatial dependence arises only through the Gaussian processes on the
GEV parameters. The shaded regions represent pointwise 95% credible intervals.
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number of parameters from a relatively limited number of ob-
servations; although three parameters in the general formulation
of Section 3 were fixed, the remainder used relatively unin-
formative prior distributions.

The hierarchical model that we present here can be extended in
a number of ways if this is deemed necessary for any given rainfall
dataset. For example, if non-stationarity is present in the annual
maxima, then time varying parameters can be incorporated into
the framework. Additional covariates such as additional spatial
and topographic characteristics can be easily incorporated if such
information is available for the study area. Higher-order terms in
the GEV parameter specifications could also improve the fit.

The method provided here is more computationally complex
and computationally time consuming than the standard latent
variable model, which assumes conditional independence. The
latent variable model requires one N by N positive definite matrix
inversion for each update of the parameter λχ , for each
χ μ σ ξ κ η∈ { ˜ }, , , , . In addition, our method requires updating the
variables At k, for each = …t T1, , and each = …k K1, , (see Ap-
pendix B). Together, the updates of λχ and At k, take up almost all
the computational time. For large N the updates of λχ are subject to
the “big N problem” of spatial statistics, for which there are a
number of proposed solutions (Rue and Held, 2005). For example,
Stephenson et al. (2015) use an intrinsic Markov random field
representation. The updates of At k, can be made faster by simply
reducing the number of grid locations K, but too few locations will
lead to a poor fit. The adjustment of the algorithm to improve both



Fig. B2. The smooth curves show fitted cumulative distribution functions for annual rainfall maxima at accumulation durations of five minutes (row one), one hour (row
two), one day (row three) and one week (row four), for each of three pluviometer stations. The sites are Sydney Airport AMO (column one), Richmond RAAF (column two)
and Taralga Post Office (column three). The locations are as given in the plots. The dashed lines give the limits of pointwise 95% posterior probability intervals. The step
functions give the corresponding empirical estimates.
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the speed and the mixing properties is an ongoing issue. For fur-
ther discussion, see Appendix B.

The computational complexity of the proposed method and the
standard latent model is far greater than simply assuming in-
dependence and fitting each site separately. This independence
approach loses the pooling of spatial information, but if inference
is only needed on marginal characteristics and the spatial de-
pendence is known to be weak, then simpler methods may be
suitable for some applications.

An anonymous referee suggested to us the potential to extend
the model so that the dependence structure also depends on the
accumulation duration. In particular, we could specify a dependence
parameter αd that depends on the accumulation duration d, in
which case we would define A as
{ = … = … = … }A t T k K d D: 1, , , 1, , , 1, ,t k d, , , and then Eq. (3.7)

would give θ ( )st d i, and hence μ̃*( )st i would become μ̃* ( )st d i, . It would
also be possible to impose a smoothness constraint on αd over the
duration d. The disadvantage of this approach is that A becomes a
three dimensional array, which could lead to impractical computa-
tion times for anything other than a small number of sites.
Appendix A. Positive stable distribution

Let X be distributed according to the positive stable distribu-
tion, with index α ∈ ( ]0, 1 . When α¼1, the positive stable dis-
tribution is degenerate at one. When α ∈ ( )0, 1 , the density func-
tion has support on the positive real line and can be expressed as
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for < <u0 1, a representation first given with minor typographical
errors by Ibragimov and Chernin (1959). It can be shown that the
integrand in Eq. (A.1) represents a bivariate density function with
positive stable and uniformly distributed marginal distributions.
Our use of positive stable random variables derives from the
simple form of the Laplace transform of the density function,
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which is given by

∫ ( ) ( − ) = ( − ) ( )
α

∞
f x xt x texp d exp . A.30
Appendix B. Model estimation and diagnostics

B.1. Model estimation

Model estimation is achieved through standard Markov chain
Monte Carlo (MCMC) simulations (Hastings, 1970) applied to the
posterior distribution of the parameters. The posterior density is
proportional to Eq. (3.12), with π α( | )A replaced by π α( | )A B, , as
discussed below that equation. This gives the expression
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for ξ*( ) ≠s 0i , where μ̃*( )st i , σ* ( )st d i, and ξ*( )si are defined in Section 3

and where λ λ= ( )+ max , 0 . If ξ*( ) =s 0i then Eq. (B.2) is defined in
the limit as ξ*( ) →s 0i .

The densities χ ϕπ( | )χ for χ μ σ ξ κ η∈ { ˜ }, , , , are multivariate nor-

mal densities as defined in Section 3, where ϕ β δ λ= ( )χ χ χ χ, , . The

density of the variables ( )A B, is given by

∏ ∏π α
α

α
( | ) =

−
( ) − ( )

( )

α
α α

= =

− ( − )
− ( − )A B

A
h B h B A,

1
exp ,

B.5t

T

k

K
t k

t k t k t k
1 1

,
1/ 1

, , ,
/ 1

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

with (·)h as defined in Eq. (A.2).
We define π α τ( ), using independent prior distributions, taking

α ∼ ( )Unif 0, 1 and τ ψ γ∼ ( )τ τGam , . For the ϕχ parameters we take

δ ψ γ∼ ( )χ δ δχ χ
InvGam , , λ ψ γ∼ ( )χ λ λχ χ

Gam , and β ∼ ( )χ 0 IMVN , 100

where I is the identity matrix. Following Banerjee et al. (2004), we
use weakly informative priors for δχ and λχ , setting the hyper-
parameters so that the distributions cover a reasonable range of
values as determined by an exploratory analysis.

The Markov chain Monte Carlo simulations are performed
using standard Metropolis-Hastings proposals (Hastings, 1970).
We individually update the spatial dependence parameters τ α( ), ,
the Generalized Extreme Value parameters μ σ ξ κ η( ˜ ), , , , , the range
parameters λχ and the variables ( )A B, using either normal, log-

normal or logit-normal proposal distributions. For example, if *At k,

is the log-normal proposal for At k, , then the acceptance ratio
simplifies to
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where the first term is the proposal ratio, the second term derives
from Eq. (B.5), and the third term derives from Eq. (B.2), with
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The parameters βχ and δχ have closed form conditional pos-
terior distributions, and so our proposals for these parameters
simulate from the posterior directly. In particular, the conditional
posterior distributions are given by
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B.2. Inference at ungauged sites

Inferences can be made at any arbitrary ungauged site s in
addition to the N gauged sites si for = …i N1, , . This is required for
e.g. the isohyetal maps in Fig. 4.2, which were produced as follows.
Take for example ξ ξ ξ= [ ( ) … ( )]s s, , N1 . Each iteration of the Markov
chain simulation produces a realization of ξ and of βξ. Therefore
ξ β− ξ ξX gives N values that are modeled as a zero mean Gaussian

process. We construct a new matrix *ξX which now contains the
Easting, Northing and Elevation covariates for a grid of ungauged
locations. Hence *ξX has the same number of columns as Xξ, but
has as many rows as there are points in the grid. We then use the
realizations of δξ and λξ to simulate a conditional zero mean
Gaussian process over the ungauged locations, conditioning on the
N values ξ β− ξ ξX at sites si for = …i N1, , , and then adding the

mean β*ξ ξX . This generates ξ( )s on a grid of arbitrary sites, where
ξ ξ( ) = ( )s si whenever =s si. A similar process is performed for
each parameter vector μ σ ξ κ η( ˜ ), , , , and for each iteration of the
Markov chain. Posterior means and posterior probability intervals
can then be calculated in the usual manner, either for individual
parameters or for any function of the parameters, such as return
levels for any return period and for any accumulation duration.

B.3. MCMC output and model diagnostics

The DIC values given in Table 4.1 of Section 4 are given by

∑
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where the sum is over =M 5 000 Markov chain Monte Carlo
iterations obtained following a burn-in of 1000 iterations, and
where e.g. σ̄ is the componentwise mean σ∑ = M/j

M
j1 . This is the

standard DIC definition for hierarchical models, where A is not
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integrated out and is therefore included in the effective number of
parameters. The terms π α( | )A B, and χ ϕ ϕπ π∏ ( | ) ( )χ χ χ in Eq. (B.1)
correspond to lower levels of the hierarchy and are therefore
excluded.

The results presented in Section 4 were obtained from a Mar-
kov chain simulated for a total of 25,000 iterations, with the first
5000 iterations discarded. No thinning was used. In the most
general case, each iteration of the Markov chain provides realiza-
tions of the site specific parameters μ σ ξ κ η( ˜ ), , , , , the latent ma-
trices A and B, the dependence parameters α τ( ), and finally the
Gaussian process parameters β δ λ( )χ χ χ, , for each χ μ σ ξ κ η∈ { ˜ }, , , , .
Generally speaking, the site specific parameters and the latent
matrices are well-behaved, although it can be difficult to obtain
reasonable acceptance rates for all the parameters in A. The
parameters β δ λ( )χ χ χ, , and α τ( ), are more problematic. Even though
β δ( )χ χ, are simulated directly and therefore acceptance rates are
not an issue, some of the intercept parameters and δ λ( )χ χ, were
seen to have high auto-correlations and to be slow to converge.
This is shown in Fig. B1, which displays cumulative quantile plots
and trace plots for βμ̃ and βσ , for the first 10,000 iterations (in-
cluding burn-in). The intercept parameter for μ̃ is particularly slow
to converge, and similar issues arise for α τ( ), . This resulted in our
fixing of the parameters λκ , λη and τ in Section 4. The application of
the Markov chain convergence diagnostic of Heidelberger and
Welch (1983) showed that 85.8% of site specific parameters passed
the test, and 93.1% of the remaining parameters passed the test.
Almost all parameters that passed the convergence diagnostic test
also passed the Heidelberger and Welch (1983) run length diag-
nostic. For more information on output diagnostics for Markov
chains, see Brooks and Roberts (1998) and Cowles and Carlin
(1996). For Markov chain output diagnostics and Bayesian model
diagnostics in the context of extremes modeling, see Stephenson
(2016).

Fig. B2 is a model diagnostic which compares empirical cu-
mulative distribution estimates against fitted cumulative dis-
tribution functions derived from the model for four different ac-
cumulation durations, for each of three different sites. The dura-
tions are five minutes, one hour, one day and one week. The
pluviometer stations are Sydney Airport AMO (33.95°S, 151.17°E),
Richmond RAAF (33.60°S, 150.78°E) and Taralga Post Office
(34.40°S, 149.82°E). Sydney Airport AMO is near the upper red
cross in Fig. 2.1, and Richmond RAAF is approximately 60 km to
the north-west of this. Taralga Post Office is at a higher elevation,
about 125 km to the west of Wollongong. There are less available
data at Taralga, and there are fewer neighboring sites, and hence
the confidence intervals here are wider. The plots indicate that the
model provides a satisfactory fit to the data. Similar results are
achieved for other pluviometer stations and other durations.
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