On Composite Nonlinearities and the Decomposition Method

G. Adomian and R. Rach
Center for Applied Mathematics, University of Georgia, Athens, Georgia, 30602

Submitted by E. Stanley Lee

Abstract

Accurate, convergent, computable solutions using the decomposition method have been demonstrated in and papers for wide classes of nonlinear and/or stochastic differential, partial differential, or algebraic equations. It is shown specifically in this paper that composite nonlinearities of the form $N x=N_{0}\left(N_{1}\left(N_{2}(\cdots(x) \cdots)\right.\right.$ appearing in such equations where the N_{i} are nonlinear operators can also be handled with the Adomian A_{n} polynomials. 1986 Academic Press, Inc.

We begin with some formal definitions consistent with Adomian's notation in $[1,2]$. Let N represent a nonlinear operator and $N x$ a nonlinear term in an equation to be solved by decomposition. Terms such as $x^{2}, e^{x}, \sin x$, etc. are viewed as zeroth-order composite nonlinearities and will be written as $N x$, or preferably as $N_{0} u^{0}$, where $u^{0} \equiv x$, and expanded in Adomian's A_{n} polynomials [1], now identified as A_{n}^{0} to correspond to the N_{0} nonlinear operator. Thus $N_{0} u^{0}=\sum_{n=0}^{\infty} A_{n}^{0}$.

A first-order composite nonlinearity is defined as $\tilde{N}_{1} x=N_{0}\left(N_{1} u^{1}\right)$ or as $N_{0} N_{1} u^{1}$, where $u^{1}=x$ and $u_{0}=N_{1} u^{1} \quad$ with $\quad N_{0} u^{0}=\sum_{n-0}^{\infty} A_{n}^{0} \quad$ and $N_{1} u^{1}=\sum_{n=0}^{\infty} A_{n}^{1}$.

A second-order composite nonlinearity is $\tilde{N}_{2} x=N_{0} N_{1} N_{2} x$, or $N_{0}\left(N_{1}\left(N_{2} x\right)\right)$), where $N_{0} u^{0}-\sum_{n=0}^{\infty} A_{n}^{0}, u^{0}-N_{1} u^{1}-\sum_{n=0}^{\infty} A_{n}^{1}, u^{1}=N_{2} u^{2}=$ $\sum_{n=0}^{\infty} A_{n}^{2}$, and $u^{2}=x$. When the decomposition is carried out, $u^{0}=\sum_{n=0}^{\infty} u_{n}^{0}$, $u^{1}=\sum_{n=0}^{\infty} u_{n}^{1}, u^{2}=\sum_{n=0}^{\infty} u_{n}^{2}$.

A third-order composite nonlinearity is written $\tilde{N}_{3} x=$ $\left.N_{0}\left(N_{1}\left(N_{2}\left(N_{3} x\right)\right)\right)\right)=N_{0} N_{1} N_{2} N_{3} x \quad$ with $\quad N_{0} u^{0}=\sum_{n=0}^{\infty} A_{n}^{0}, \quad N_{1} u^{1}=$ $\sum_{n=0}^{\infty} A_{n}^{1}, N_{2} u^{2}=\sum_{n=0}^{\infty} A_{n}^{2}, N_{3} u^{3}=\sum_{n=0}^{\infty} A_{n}^{3}$, and $u^{3}=x$. By decomposition, $u^{0}=\sum_{n=0}^{\infty} u_{n}^{0}, u^{1}=\sum_{n=0}^{\infty} u_{n}^{1}, u^{2}=\sum_{n=0}^{\infty} u_{n}^{2}, u^{3}=\sum_{n=0}^{\infty} u_{n}^{3}$ with $u^{0}=N_{1} u^{1}$, $u^{1}=N_{2} u^{2}, u^{2}=N_{3} u^{3}$, and $u^{3}=x$.

In general, $N_{v} u^{v}=\sum_{n=0}^{\infty} A_{n}^{v}=u^{v \cdots 1}$ for $1 \leqslant v \leqslant m$ with $u^{m}=x$ and $u^{v}=\sum_{n=0}^{\omega} u_{n}^{v}$.

An nth order composite nonlinearity will be written

$$
\begin{gathered}
\tilde{N}_{m}(x)=N_{0}\left(N_{1}\left(N_{2}\left(\cdots\left(N_{m-2}\left(N_{m-1}\left(N_{m}(x)\right)\right) \cdots\right)\right)\right)=N_{0}\left(u^{0}\right)=\sum A_{n}^{0}\right. \\
N_{1}\left(u^{1}\right)=\sum A_{n}^{1}=u^{0} \\
N_{2}\left(u^{2}\right)=\sum A_{n}^{2}=u^{1} \\
\vdots \\
N_{v}\left(u^{v}\right)=\sum A_{n}^{v}=u^{v-1} \\
\vdots \\
N_{m-1}\left(u^{m-1}\right)=\sum A_{n}^{m-1}=u^{m-2} \\
N_{m}\left(u^{m}\right)=\sum A_{n}^{m}=u^{m-1} \text { with } u^{m} \equiv x
\end{gathered}
$$

so that the u 's are the variables of substitution. Equivalently, $\widetilde{N}_{m}(x)=N_{0} \cdot N_{1} \cdot N_{2} \cdot \cdots \cdot N_{m-1} \cdot N_{m}(x)$, i.e., a composition of operators. The objective is to determine the A_{n} polynomials as functions of the x_{n} 's, i.e., $A_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=N x$.

For an m th-order composite nonlinearity, we get

$$
\begin{aligned}
A_{n}^{0}= & A_{n}^{0}\left(A_{0}^{1}\left(A_{0}^{2}\left(A_{0}^{3}\left(\cdots\left(A_{0}^{v}\left(\cdots\left(A_{0}^{m}\left(x_{0}\right)\right) \cdots\right)\right) \cdots\right)\right)\right), \cdots,\right. \\
& A_{n}^{1}\left(A_{0}^{2}\left(A_{0}^{3}\left(\cdots\left(A_{0}^{v}\left(\cdots A_{0}^{m}\left(x_{0}\right)\right) \cdots\right)\right) \cdots\right)\right), \cdots, \\
& A_{n}^{2}\left(A_{0}^{3}\left(\cdots\left(A_{0}^{v}\left(\cdots\left(A_{0}^{m}\left(x_{0}\right)\right) \cdots\right)\right) \cdots\right), \cdots,\right. \\
& A_{n}^{3}\left(\cdots \left(A_{0}^{v}\left(\cdots\left(A_{0}^{m}\left(x_{0}\right)\right) \cdots\right), \cdots,\right.\right. \\
& \left.\left.\left.\left.A_{n}^{v}\left(\cdots\left(A_{0}^{m}\left(x_{0}\right), \cdots, A_{n}^{m}\left(x_{0}, \cdots, x_{n}\right)\right) \cdots\right)\right) \cdots\right)\right)\right),
\end{aligned}
$$

Example. First order. $\tilde{N}_{1} x=e^{-\sin (x / 2)}=N_{0}\left(N_{1} x\right)$. Let $N_{0} u^{0}=e^{-u^{0}}=$ $\sum_{n=0}^{\infty} A_{n}^{0}\left(u_{0}^{0}, u_{1}^{0}, \ldots, u_{n}^{0}\right) \quad$ and $\quad N_{1} u^{1}=\sin \left(u^{1} / 2\right)$, where $\quad u^{1}=x \quad$ and $u^{0}=\sum_{n=0}^{\infty} u_{n}^{0}=N_{1} x=\sin (x / 2)$. Calculating the A_{n}^{0} polynomials for the $N_{0} u^{0}$ term [1, 2]:

$$
\begin{aligned}
& A_{0}^{0}=e^{-u_{0}^{0}} \\
& A_{1}^{0}=e^{-u_{0}^{0}}\left(-u_{1}^{0}\right) \\
& A_{2}^{0}=e^{-u_{0}^{0}}\left(-u_{2}^{0}+\left(\frac{1}{2}\right)\left(u_{1}^{0}\right)^{2}\right) \\
& A_{3}^{0}=e^{-u_{0}^{0}}\left(-u_{3}^{0}+u_{1}^{0} u_{2}^{0}-\left(\frac{1}{6}\right)\left(u_{1}^{0}\right)^{3}\right)
\end{aligned}
$$

(If we omit the identifier superscript, we are dealing with $N u=e$ " $=$ $\sum_{n=0}^{\infty} A_{n}$, where $A_{0}=e^{-u_{0}}, A_{1}=e^{u_{0}}\left(-u_{1}\right)$, etc.) Now calculating the A_{n} for $N_{1} x$, i.e., A_{n}^{1}, we have

$$
\begin{aligned}
A_{0}^{1}= & \sin \left(x_{0} / 2\right) \\
A_{1}^{1}= & \left(x_{1} / 2\right) \cos \left(x_{0} / 2\right) \\
A_{2}^{1}= & \left(x_{2} / 2\right) \cos \left(x_{0} / 2\right)-\left(x_{1}^{2} / 8\right) \sin \left(x_{0} / 2\right) \\
A_{3}^{1}= & \left(x_{3} / 2\right) \cos \left(x_{0} / 2\right)-\left(x_{1} x_{2} / 4\right) \sin \left(x_{0} / 2\right) \\
& -\left(x_{1}^{3} / 48\right) \cos \left(x_{0} / 2\right)
\end{aligned}
$$

Since $N_{0} u^{0}=\sum_{n=0}^{\infty} A_{n}^{0}$, and $u^{0}=N_{1} x=\sum_{n=0}^{\infty} A_{n}^{1}=\sum_{n=0}^{\infty} u_{n}^{0}$

$$
\begin{aligned}
& u_{0}^{0}=A_{0}^{1}=\sin \left(x_{0} / 2\right) \\
& u_{1}^{0}=A_{1}^{1}=\left(x_{1} / 2\right) \cos \left(x_{0} / 2\right) \\
& u_{2}^{0}=A_{2}^{1}=\left(x_{2} / 2\right) \cos \left(x_{0} / 2\right)-\left(x_{1}^{2} / 8\right) \sin \left(x_{0} / 2\right)
\end{aligned}
$$

Now $N_{0} u^{0}=e^{-u^{0}}=\sum_{n=0}^{\infty} A_{n}^{0}=A_{0}^{0}+A_{1}^{0}+\cdots=e^{-u_{0}^{0}}-u_{1}^{0} e^{-u_{0}^{0}}+\cdots$. Thus, now dropping the unnecessary superscript,

$$
\begin{aligned}
& A_{0}=e^{-\sin \left(x_{0} / 2\right)} \\
& A_{1}=-\left(x_{1} / 2\right) \cos \left(x_{0} / 2\right) e^{-\sin \left(x_{0} / 2\right)}
\end{aligned}
$$

Any algebraic, differential, or partial differential equation in Adomian's standard form which contains a nonlinear term $e^{-\sin x / 2}$ is now solved by decomposition [1,2].

Example. Second order: $\tilde{N}_{2} x=e^{-\sin ^{2}(x / 2)}$. Let $N_{0} u^{0}=e^{-u^{0}}=\sum_{n=0}^{\infty} A_{n}^{0}$, $N_{1} u^{1}=\left(u^{1}\right)^{2}=\sum_{n=0}^{\infty} A_{n}^{1}=u^{0}=\sum_{n=0}^{\infty} u_{n}^{0}$, and $\quad N_{2} u^{2}=N_{2} x=\sin (x / 2)=$ $\sum^{\infty} A_{n}^{2}=u^{1}=\sum_{n=0}^{\infty} u_{n}^{1}$. The A_{n}^{0} were specified in the previous example. The A_{n}^{1} are given by

$$
\begin{aligned}
& A_{0}^{1}=\left(u_{0}^{1}\right)^{2} \\
& A_{1}^{1}=2 u_{0}^{1} u_{1}^{1} \\
& A_{2}^{1}=\left(u_{1}^{1}\right)^{2}+2 u_{0}^{1} u_{2}^{1} \\
& A_{3}^{1}=2 u_{1}^{1} u_{2}^{1}+2 u_{0}^{1} u_{3}^{1}
\end{aligned}
$$

and the A_{n}^{2} are

$$
\begin{aligned}
& A_{0}^{2}=\sin \left(x_{0} / 2\right) \\
& A_{1}^{2}=\left(x_{1} / 2\right) \cos \left(x_{0} / 2\right) \\
& A_{2}^{2}=\left(x_{2} / 2\right) \cos \left(x_{0} / 2\right)-\left(x_{1}^{2} / 8\right) \sin \left(x_{0} / 2\right) \\
& A_{3}^{2}=\left(x_{3} / 2\right) \cos \left(x_{0} / 2\right)-\left(x_{1} x_{2} / 4\right) \sin \left(x_{0} / 2\right)-\left(x_{1}^{3} / 48\right) \cos \left(x_{0} / 2\right)
\end{aligned}
$$

Now let us consider an equation using the first-order example previously considered with $\widetilde{N}_{1} x=e^{-\sin (x / 2)}$. Thus consider the equation

$$
x=(\pi / 2)+e^{\sin (x / 2)}
$$

Letting $x=\sum_{n=0}^{\infty} x_{n}$ we have

$$
\sum_{n=0}^{\infty} x_{n}=\pi / 2+N_{1} x
$$

where

$$
\begin{aligned}
& x_{0}=\pi / 2=1.570796327 \\
& x_{1}=e^{-\sin \left(x_{0} / 2\right)}=e^{-\sin (\pi / 4)}=0.4930686914 \\
& x_{2}=e^{-\sin \left(x_{0} / 2\right)}(-1)\left(\frac{x_{1}}{2} \cos \frac{x_{0}}{2}\right)=-0.0859547458 \\
& x_{3}=0.0480557892 \\
& x_{4}=-0.0293847366
\end{aligned}
$$

The sum ϕ_{5} of only five terms x_{0} to x_{4} is 1.99658132 which is correct within about $\frac{1}{4}$ of 1%. (One can see that the next term should add about 0.01 . If we guess $x=2$ and calculate the right side, we have $1.570796327+$ $0.431075951=2.00187228$.)

Now consider the second-order example with $x=k+\tilde{N}_{2} x$, where $k=\pi / 2$ and $\tilde{N}_{2} x=e^{-\sin ^{2}(x / 2)}=N_{0} N_{1} N_{2} x$. Using the A_{n} we have already written we now have

$$
\begin{aligned}
& A_{0}^{0}=e^{-u_{0}^{0}}=e^{-A_{0}^{1}}=e^{-\left(u_{0}^{1}\right)^{2}}=e^{-\left(A_{0}^{2}\right)^{2}}=e^{-\sin ^{2}\left(x_{0} / 2\right)} \\
& A_{1}^{0}=e^{-u_{0}^{0}}\left(-u_{1}^{0}\right)=e^{-\sin ^{2}\left(x_{0} / 2\right)}\left(-u_{1}^{0}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
u_{1}^{0} & =A_{1}^{1}=2 u_{0}^{1} u_{1}^{1}=2 A_{0}^{2} A_{1}^{2} \\
& =2 \sin \left(x_{0} / 2\right)\left(x_{1} / 2\right) \cos \left(x_{0} / 2\right)
\end{aligned}
$$

$$
\begin{aligned}
A_{1}^{0} & =-x_{1} \sin \left(x_{0} / 2\right) \cos \left(x_{0} / 2\right) e^{\sin ^{2}\left(x x_{0}\right)} \\
A_{2}^{0} & =e^{-u_{0}^{0}}\left(-u_{2}^{o}+\left(\frac{1}{2}\right)\left(u_{1}^{g}\right)^{2}\right) \\
u_{2}^{0} & =A_{2}^{1}=\left(u_{1}^{1}\right)^{2}+2 u_{0}^{1} u_{2}^{1} \\
u_{1}^{0} & =A_{1}^{1}=2 u_{0}^{1} u_{1}^{1} \\
u_{1}^{1} & =A_{1}^{2}=\left(x_{1} / 2\right) \cos \left(x_{0} / 2\right) \\
u_{0}^{1} & =A_{0}^{2} \sin \left(x_{0} / 2\right) \\
A_{2}^{0} & =e^{-u_{0}^{0}}\left(-\left\{\left(u_{1}^{1}\right)^{2}+2 u_{0}^{1} u_{2}^{1}\right\}+\left(\frac{1}{2}\right)\left(2 u_{0}^{1} u_{1}^{1}\right)^{2}\right) \\
& =e^{-u_{0}^{0}}\left(-\left(u_{1}^{1}\right)^{2}-2 u_{0}^{1} u_{2}^{1}+\left(\frac{1}{2}\right)\left(2 u_{0}^{1} u_{1}^{1}\right)^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
u_{1}^{1}= & A_{1}^{2}=\left(x_{1} / 2\right) \cos \left(x_{0} / 2\right) \\
u_{0}^{1}= & \sin \left(x_{0} / 2\right)=A_{0}^{2} \\
u_{2}^{1}= & A_{2}^{2}=\left(x_{2} / 2\right) \cos \left(x_{0} / 2\right)-\left(x_{1}^{2} / 8\right) \sin \left(x_{0} / 2\right) \\
A_{2}^{0}= & e^{-\sin ^{2}\left(x_{0} / 2\right)}\left\{-\left(x_{1}^{2} / 4\right) \cos ^{2}\left(x_{0} / 2\right)\right. \\
& -2\left(\sin \left(x_{0} / 2\right)\right)\left(\left(x_{2} / 2\right) \cos \left(x_{0} / 2\right)-\left(x_{1}^{2} / 8\right) \sin \left(x_{0} / 2\right)\right) \\
& \left.+2\left(\sin \left(x_{0} / 2\right)\right)^{2}\left(\left(x_{1} / 2\right) \cos \left(x_{0} / 2\right)\right)^{2}\right\}
\end{aligned}
$$

Finally

$$
\begin{aligned}
A_{2}^{0}= & e^{-\sin ^{2}\left(x_{0} / 2\right)}\left\{\left(x_{1}^{2} / 4\right) \sin ^{2}\left(x_{0} / 2\right)-\left(x_{1}^{2} / 4\right) \cos ^{2}\left(x_{0} / 2\right)\right. \\
& \left.-x_{2} \sin \left(x_{0} / 2\right) \cos \left(x_{0} / 2\right)+\left(x_{1}^{2} / 2\right) \sin ^{2}\left(x_{0} / 2\right) \cos ^{2}\left(x_{0} / 2\right)\right\} \\
A_{3}^{0}= & e^{-u_{0}^{0}}\left(-u_{3}^{0}+u_{1}^{0} u_{2}^{0}-\left(\frac{1}{6}\right)\left(u_{1}^{0}\right)^{3}\right) \\
= & e^{-A_{0}^{1}}\left(-A_{3}^{1}+A_{1}^{1} A_{2}^{1}-\left(\left(\frac{1}{6}\right) A_{1}^{1}\right)^{3}\right)
\end{aligned}
$$

so that $x=\sum_{n=0}^{\infty} x_{n}$, where

$$
\begin{aligned}
& x_{0}=\pi / 2=1.570796327 \\
& x_{1}=e^{-\sin ^{2}\left(x_{0} / 2\right)}=0.999812126 \\
& x_{2}=-x_{1} \sin \left(x_{0} / 2\right) \cos \left(x_{0} / 2\right) e^{\left.-\sin ^{2} 1 x_{0} / 2\right)}=-0.0137009172
\end{aligned}
$$

etc., using the above A_{n}, and it does not appear worthwhile to go further; so a three-term approximation $\phi_{3}=2.58430937$. Check with $x=\phi_{3}$, $e^{-\sin ^{2}\left(\phi_{3} / 2\right)}=0.999491607$ so the right side is 2.57028793 .

It is easy to see now from the referenced work [1,2] and this paper that these results apply not only to algebraic equations but also to differential equations in the form $L y+N y=g(x)$, where $N y$ is a composite nonlinearity since we get $L^{-1} L y=L^{-1} g(x)-L^{-1} N y=L^{-1} g(x)-$ $L^{-1} \sum_{n=0}^{\infty} A_{n}$. If $L y=d y / d x$ and $y(0)=k$, for example, $y=\sum_{n=0}^{\infty} y_{n}=$ $k+L^{-1} g-L^{-1} \sum_{n=0}^{\infty} A_{n}$, where $y_{0}=k+L^{-1} g$, and $y_{n+1}=-L^{-1} A_{n}$ for $n \geqslant 0$ and the A_{n} are calculated by the methods discussed.

References

1. G. Adomian, "Stochastic Systems," Academic Press, New York, 1983.
2. G. Adomin, "Nonlinear Stochastic Operator Equations," Academic Press, Orlando/ San Diego, to be published.
