

Available at WWW.MATHEMATICSWEB.ORG POWERED BY SCIENCE @DIRECT.

Journal of Functional Analysis 208 (2004) 122-139

http://www.elsevier.com/locate/jfa

Convex hypersurfaces and *L^p* estimates for Schrödinger equations

Quan Zheng,^{a,b,*} Xiaohua Yao,^{a,c} and Dashan Fan^{a,d}

^a Department of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China

^b Center for Optimal Control and Discrete Mathematics, Huazhong Normal University, Wuhan 430079, People's Republic of China

^cDepartment of Mathematics, Lanzhou University, Lanzhou 730000, People's Republic of China

^d Department of Mathematics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

Received 7 November 2002; revised 20 March 2003; accepted 25 March 2003

Communicated by G. Pisier

Abstract

This paper is concerned with Schrödinger equations whose principal operators are homogeneous elliptic. When the corresponding level hypersurface is convex, we show the $L^p - L^q$ estimate of the solution operator in the free case. This estimate, combined with the results of fractionally integrated groups, allows us to further obtain the L^p estimate of solutions for the initial data belonging to a dense subset of L^p in the case of integrable potentials. © 2003 Elsevier Inc. All rights reserved.

MSC: primary 35J10; secondary 42B10, 47D62

Keywords: Schrödinger equation; L^p estimate; Convex hypersurface; Finite type; Integrated group

1. Introduction

In this paper, we take interest in L^p , $1 \le p < \infty$, estimates of solutions for the following Schrödinger equation:

$$\frac{\partial u}{\partial t} = (iP(D) + V)u, \quad u(0, \cdot) = u_0 \in L^p(\mathbf{R}^n), \tag{*}$$

^{*}Corresponding author.

E-mail addresses: qzheng@hust.edu.cn (Q. Zheng), yaoxiaohua@hust.edu.cn (X. Yao), fan@csd.uwm.edu (D. Fan).

where $D = -i(\partial/\partial x_1, ..., \partial/\partial x_n)$, $P : \mathbb{R}^n \to \mathbb{R}$ is a homogeneous elliptic polynomial of order *m* (*m* must be even, except n = 1), and *V* is a suitable potential function. In the sequel, we may assume without loss of generality that $P(\xi) > 0$ for $\xi \neq 0$. Otherwise, we have $P(\xi) < 0$ for $\xi \neq 0$, for which the following hypersurface Σ should be replaced by

$$\{\xi \in \mathbf{R}^n | P(\xi) = -1\}.$$

In order to obtain L^p estimates of the solution of (*), we will first treat $L^p - L^q$ estimates of $e^{itP(D)}$, which is the solution operator of (*) with V = 0. To this end, we need to consider the compact hypersurface

$$\Sigma = \{ \xi \in \mathbf{R}^n | P(\xi) = 1 \}.$$

When the Gaussian curvature of Σ is nonzero everywhere, it is known that $L^{p}-L^{q}$ estimates of $e^{itP(D)}$ $(t \neq 0)$ can be deduced from Miyachi [12]. In fact, Miyachi gave some remarks on these estimates in a more general case where P is a positive and smooth homogeneous function, provided the nonvanishing Gaussian curvature on Σ . Also, dropping the homogeneity of P, Balabane and Emami-Rad [4] studied these estimates under a suitable nondegenerate condition. However, one can check that the nondegenerate condition is equivalent to the nonzero Gaussian curvature if P is homogeneous.

As we know, the nonvanishing Gaussian curvature plays a crucial rule in estimating many oscillatory integrals [16]. This is the reason why one needs such a condition in [4,12]. However, there exist many hypersurfaces Σ whose Gaussian curvatures may vanish at some points (although we have observed that if m = 2 then Σ has nonzero Gaussian curvature everywhere under our assumptions on P). These examples are easily available, for instance, the hypersurfaces Σ associated with polynomials $\xi_1^m + \cdots + \xi_n^m$ ($m = 4, 6, \ldots$) or $\xi_1^4 + 6\xi_1^2\xi_2^2 + \xi_2^4$.

On the other hand, an important subclass of hypersurfaces with vanishing Gaussian curvature at some points is the class of convex hypersurfaces of finite type [5]. The main purpose of this paper is to investigate the L^p estimate of the solution of (*) when Σ is a convex hypersurface of finite type. Roughly speaking, this means that P allows to be degenerate on a subset of \mathbf{R}^n .

This paper is organized as follows.

In Section 2, we study $L^p - L^q$ estimates of the solution operator $e^{itP(D)}$ $(t \neq 0)$ and the resolvent operator $(\lambda - iP(D))^{-1}$ (Re $\lambda \neq 0$) when Σ is a convex hypersurface of finite type. The method used is quite different from those in the previous papers [4,12], due to the nature of the vanishing Gaussian curvature. Our proof depends heavily on a decay estimate for the kernels $\mathscr{F}^{-1}(e^{\pm iP})$, in which we need to use a powerful theorem in [5]. Since the proof is involved and very technical, we will present it in Section 3.

In Section 4, we show that the operator iP(D) + V with suitable integrable potential V generates an integrated group on $L^p(\mathbf{R}^n)$. As we know, the semigroup of operators is a useful abstract tool to treat Cauchy problems. However, the Cauchy problem (*) in $L^p(\mathbf{R}^n)$ ($p \neq 2$) cannot be treated by classical semigroups of operators (i.e. C_0 -semigroups). In fact, the Schrödinger operator iP(D) generates C_0 -semigroups in $L^p(\mathbb{R}^n)$ if and only if p = 2 (see [10,12]). Thus, several generalizations of C_0 -semigroups, such as smooth distribution semigroups [3], integrated semigroups [1,9], and regularized semigroups [7,8] were introduced and applied to different general differential operators [9,18]. In our case, we use fractionally integrated groups to deal with the Cauchy problem (*) in $L^p(\mathbb{R}^n)$, which will lead to better results than using smooth distribution semigroups (see [3]). Moreover, when P is nondegenerate, we will show how our results present an improvement over Theorems 2' and 6 in [4].

Throughout this paper, Σ denotes the hypersurface $\{\xi \in \mathbf{R}^n | P(\xi) = 1\}$. Assume that $P : \mathbf{R}^n \to [0, \infty)$ is always a homogeneous elliptic polynomial of order *m* where $n \ge 2$, *m* is even and ≥ 4 .

2. L^p-L^q Estimates for Schrödinger equations without potentials

We start with the concept of finite type. S denotes the smooth hypersurface $\{\xi \in \mathbf{R}^n | \phi(\xi) = 0\}$, where $\phi \in C^{\infty}(\mathbf{R}^n)$ and $\nabla \phi(\xi) \neq 0$ for $\xi \in S$. We say that S is of finite type if any one-dimensional tangent line has at most a finite order of contact with S. The precise definition is as follows.

 \mathbf{S}^{n-1} denotes the unit sphere in \mathbf{R}^n . Let

$$abla_{\eta} = \sum_{j=1}^{n} \eta_j \partial / \partial x_j \quad \text{for } \eta = (\eta_1, \dots, \eta_n) \in \mathbf{S}^{n-1}.$$

which is the directional derivative in direction η , and let ∇_{η}^{j} be the *j*th power of this derivative.

Definition 2.1. Let k be an integer. The smooth hypersurface S is of type k if there exists a constant $\delta > 0$ such that

$$\sum_{j=1}^{k} |\nabla_{\eta}^{j} \phi(\xi)| \ge \delta \quad \text{for } \xi \in S \text{ and } \eta \in \mathbf{S}^{n-1}.$$

Moreover, we say that S is convex if

$$S \subset \{\eta \in \mathbf{R}^n | \langle \eta - \xi, \nabla \phi(\xi) \rangle \ge 0\}$$
 for $\xi \in S$

or

$$S \subset \{\eta \in \mathbf{R}^n | \langle \eta - \xi, \nabla \phi(\xi) \rangle \leq 0\}$$
 for $\xi \in S$.

It is clear that $k \ge 2$, and that if S is of type k it is also of type k'(>k). For the hypersurface Σ (i.e. $\{\xi \in \mathbf{R}^n | P(\xi) = 1\}$), since

$$\langle \xi, \nabla P(\xi) \rangle = mP(\xi) = m \text{ for } \xi \in \Sigma,$$

it follows that $\nabla P(\xi) \neq 0$ for $\xi \in \Sigma$, and thus Σ is smooth. Also, a simple computation leads to

$$abla_{\eta}^{m}(P(\xi)-1) = m!P(\eta) \quad \text{for } \xi \in \Sigma \text{ and } \eta \in \mathbf{S}^{n-1}.$$

Hence, we have

Proposition 2.2. Σ is a smooth compact hypersurface of type less than or equal to m.

A simple example of polynomials whose level hypersurface Σ is of type *m* is $\xi_1^m + \cdots + \xi_n^m$ ($m = 4, 6, \ldots$). We notice that there exist polynomials *P* whose level hypersurfaces Σ are of type $k(\langle m \rangle)$. For example, when $P(\xi) = \xi_1^6 + 5\xi_1^2\xi_2^4 + \xi_2^6$, the corresponding hypersurface Σ is of type 4, but m = 6.

We now turn to the Cauchy problem (*) with V = 0. In this case, for every initial data $u_0 \in \mathscr{S}(\mathbf{R}^n)$ (the Schwartz space), the solution is given by

$$u(t,\cdot)=e^{itP(D)}u_0\coloneqq\mathscr{F}^{-1}(e^{itP})\ast u_0,$$

where \mathscr{F} (or ^) denotes the Fourier transform, \mathscr{F}^{-1} its inverse, and $\mathscr{F}^{-1}(e^{itP})$ is understood in the distributional sense. Therefore, to obtain $L^p - L^q$ estimates of $e^{itP(D)}$ $(t \neq 0)$, the key result is to show estimates of the kernels $\mathscr{F}^{-1}(e^{\pm iP})$.

In the sequel, denote by p' the conjugate index of p, and $|| \cdot ||_{L^p - L^q}$ the norm in $\mathscr{L}(L^p, L^q)$ (the space of all bounded linear operators from L^p to L^q). Let

$$h(m,n,k) = \frac{m-2}{2(m-1)} + \frac{(m-k)(n-1)}{k(m-1)} \text{ for } 2 \leq k \leq m,$$

 $\tau = n/h(m, n, k)$, and q(p) = q(m, n, k, p) where

$$\frac{1}{q(m,n,k,p)} = \frac{1}{\tau p} + \frac{1}{\tau' p'} \quad \text{for } 1 \leq p < 2.$$

We first remark that when $2 \leq k \leq m$,

$$\frac{2(m-1)}{m-2} \leqslant \tau \leqslant \frac{2n(m-1)}{m-2}$$

Since $m \ge 4$, it follows that $\tau \in (2, 3n]$. Next, we remark that

$$\frac{1}{2} \! > \! \frac{1}{\tau p} \! + \! \frac{1}{\tau' p'} \! > \! \frac{1}{p'} \quad \text{for } 1 \! \leqslant \! p \! < \! 2$$

and thus 2 < q(p) < p'. Moreover, denote by I_p $(1 \le p \le 2)$ the following subset of $[2, \infty]$:

$$I_{p} = \begin{cases} (q(p), \infty] & \text{if } 1 \leq p < \tau', \\ \left(q(p), \frac{p(2 - \tau')}{p - \tau'}\right) & \text{if } \tau' \leq p < 2, \\ \{2\} & \text{if } p = 2. \end{cases}$$

Theorem 2.3. Suppose Σ is a convex hypersurface of type k. Then $\mathscr{F}^{-1}(e^{\pm iP}) \in C^{\infty}(\mathbb{R}^n)$ and

$$(\mathscr{F}^{-1}(e^{\pm iP}))(x) = O(|x|^{-h(m,n,k)}) \quad as \ |x| \to \infty.$$

The proof is lengthy and is given in the next section.

Theorem 2.4. Suppose Σ is a convex hypersurface of type k. If $p \in [1, 2]$ and $q \in I_p$, then there exists a constant C > 0 such that

$$||e^{itP(D)}||_{L^p-L^q} \leq C|t|^{\frac{n}{m}\left(\frac{1}{q}-\frac{1}{p}\right)} \quad \text{for } t \neq 0.$$

Proof. By Theorem 2.3, $\mathscr{F}^{-1}(e^{\pm iP}) \in L^{s}(\mathbb{R}^{n})$ for $s > \tau$. Since P is homogeneous, one has

$$\mathscr{F}^{-1}(e^{itP})(x) = |t|^{-n/m} \mathscr{F}^{-1}(e^{itP/|t|})(|t|^{-1/m}x) \text{ for } t \neq 0 \text{ and } x \in \mathbf{R}^n,$$

and thus

$$||\mathscr{F}^{-1}(e^{itP})||_{L^{s}} = |t|^{-n/ms'} ||\mathscr{F}^{-1}(e^{itP/|t|})||_{L^{s}} \leq C|t|^{-n/ms'} \text{ for } t \neq 0,$$

where the constant C is independent of t. The remainder of the proof will be divided into several steps.

Step 1. When $1 \le p < \tau'$ and $\frac{\tau'p}{\tau'-p} < q \le \infty$, it follows from Young's inequality that

$$||e^{itP(D)}||_{L^p-L^q} \leq ||\mathscr{F}^{-1}(e^{itP})||_{L^s} \leq C|t|^{\frac{n}{m}\left(\frac{1}{q}-\frac{1}{p}\right)} \text{ for } t \neq 0,$$

where $\frac{1}{s} = 1 + \frac{1}{q} - \frac{1}{p}$, which implies $s > \tau$.

Step 2. Since P(D) is self-adjoint in $L^2(\mathbb{R}^n)$, $||e^{itP(D)}||_{L^2-L^2} = 1$ for $t \ge 0$ by Stone's theorem. When $1 \le p < 2$ and $q(p) < q \le p'$, we deduce from the Riesz-Thorin

126

interpolation theorem that

$$||e^{itP(D)}||_{L^p - L^q} \leq ||e^{itP(D)}||_{L^1 - L^s}^{1 - 2/p'}||e^{itP(D)}||_{L^2 - L^2}^{2/p'} \leq C|t|^{\frac{n}{m}\left(\frac{1}{q} - \frac{1}{p}\right)} \quad \text{for } t \neq 0,$$

where $s = \frac{q(p'-2)}{p'-q} > \tau$.

Step 3. When $1 \leq p < \tau'$ and $q(p) < q \leq \infty$, we notice $q(p) < \frac{\tau'p}{\tau'-p}$. Since $L^{s_2}(\mathbf{R}^n) \subset L^{s_1}(\mathbf{R}^n) + L^{s_3}(\mathbf{R}^n)$ for $1 \leq s_1 \leq s_2 \leq s_3 \leq \infty$, the desired estimate is a direct consequence of the conclusions in Steps 1 and 2.

Step 4. When $\tau' \leq p < 2$ and $q(p) < q < \frac{p(2-\tau')}{p-\tau'}$, we put $\lambda = \frac{2(p-p_0)}{p(2-p_0)}$, where $p_0 \in [1, \tau')$ such that $q < \frac{2}{\lambda} < \frac{p(2-\tau')}{p-\tau'}$. A simple computation leads to

$$\frac{\lambda}{2} < \frac{1}{q} < \frac{1}{q(p)} = \frac{1-\lambda}{q(p_0)} + \frac{\lambda}{2}$$

Consequently, there exists a unique $q_0 > q(p_0)$ such that $\frac{1}{q} = \frac{1-\lambda}{q_0} + \frac{\lambda}{2}$. Also, $\frac{1}{p} = \frac{1-\lambda}{p_0} + \frac{\lambda}{2}$. The desired estimate now can be deduced from the Riesz-Thorin interpolation theorem and the conclusion in Step 1. \Box

The subsequent theorem deals with $L^p - L^q$ estimates of the resolvent of iP(D).

Theorem 2.5. Suppose Σ is a convex hypersurface of type k. If $p \in [1, 2]$, $q \in I_p$, and $\frac{1}{p} - \frac{1}{q} < \frac{m}{n}$, then there exists a constant C > 0 such that

$$||(\lambda - iP(D))^{-1}||_{L^p - L^q} \leq C |\operatorname{Re} \lambda|^{\frac{n}{m} \left(\frac{1}{p} - \frac{1}{q}\right) - 1} \quad for \ \operatorname{Re} \lambda \neq 0.$$

Proof. For $\operatorname{Re} \lambda > 0$ and $f \in \mathscr{S}(\mathbf{R}^n)$, one has

$$\begin{aligned} (\lambda - iP(D))^{-1}f &= \mathscr{F}^{-1}((\lambda - iP)^{-1}\hat{f}) \\ &= \int_0^\infty e^{-\lambda t} \mathscr{F}^{-1}(e^{itP}\hat{f}) dt \\ &= \int_0^\infty e^{-\lambda t} e^{itP(D)} f dt. \end{aligned}$$

It follows therefore from Theorem 2.4 that

$$\begin{aligned} ||(\lambda - iP(D))^{-1}||_{L^p - L^q} &\leq C \int_0^\infty e^{-(\operatorname{Re}\lambda)t} t^{\frac{n}{m}\left(\frac{1}{q} - \frac{1}{p}\right)} dt \\ &= C|\operatorname{Re}\lambda|^{\frac{n}{m}\left(\frac{1}{p} - \frac{1}{q}\right) - 1}. \end{aligned}$$

For Re $\lambda < 0$ and $f \in \mathscr{S}(\mathbf{R}^n)$, one has

$$(\lambda - iP(D))^{-1}f = -(-\lambda + iP(D))^{-1}f = \int_0^\infty e^{\lambda t} e^{-itP(D)}f \, dt,$$

and thus the desired estimate follows from Theorem 2.4. \Box

Since $p' \in I_p$ for $p \in [1, 2]$, we have

Corollary 2.6. Suppose Σ is a convex hypersurface of type k. If $p \in [1, 2]$ then

$$||e^{itP(D)}||_{L^p-L^{p'}} \leq C|t|^{\frac{n}{m}\left(1-\frac{2}{p}\right)} \quad for \ t \neq 0.$$

If, in addition, $p > \frac{2n}{n+m}$, then

$$||(\lambda - iP(D))^{-1}||_{L^p - L^{p'}} \leq C |\operatorname{Re} \lambda|^{-\frac{n}{m}\left(\frac{2}{p}-1\right)-1} \quad for \ \operatorname{Re} \ \lambda \neq 0.$$

3. The proof of Theorem 2.3

By our assumptions on P, $\phi := P^{1/m}$ is a positive and smooth homogeneous function of degree 1, and $\Sigma = \{\xi \in \mathbf{R}^n | \phi(\xi) = 1\}$. Let $\varphi \in C^{\infty}(\mathbf{R})$ such that $\sup \varphi \subset [1, \infty)$ and $\varphi(t) = 1$ for $t \ge 2$. Obviously, in order to estimate $\mathscr{F}^{-1}(e^{iP})$ (similarly for $\mathscr{F}^{-1}(e^{-iP})$), it suffices to estimate $\mathscr{F}^{-1}((\varphi \circ \phi)e^{iP})$ (cf. [4, p. 363]). Consider the integral

$$\begin{split} K_{\varepsilon}(x) &\coloneqq \int_{\mathbf{R}^n} e^{-\varepsilon \phi(y) + iP(y) + i\langle x, y \rangle} \varphi(\phi(y)) \, dy \\ &= \int_0^\infty e^{-\varepsilon t + it^m} t^{n-1} \varphi(t) \left(\int_{\Sigma} \frac{e^{itr\langle \eta, \xi \rangle}}{|\nabla \phi(\xi)|} \, d\sigma(\xi) \right) dt \quad \text{for } \varepsilon > 0, \end{split}$$

where r = |x|, $x = r\eta$, and $d\sigma$ is the induced surface measure on Σ . We will show that

$$\mathscr{F}^{-1}((\varphi \circ \phi)e^{iP})(x) = (2\pi)^{-n} \lim_{\varepsilon \to 0} K_{\varepsilon}(x)$$

uniformly for x in compact subsets of \mathbb{R}^n , and $K_{\varepsilon}(x)$ decays as $|x|^{-h(m,n,k)}$. From this we have $\mathscr{F}^{-1}((\varphi \circ \phi)e^{iP}) \in C(\mathbb{R}^n)$ since it is clear that $K_{\varepsilon} \in C(\mathbb{R}^n)$.

Denote by Π the Gaussian map

$$\xi \in \Sigma \mapsto \frac{\nabla \phi(\xi)}{|\nabla \phi(\xi)|} \in \mathbf{S}^{n-1}.$$

128

Since Σ is a compact convex hypersurface, Π is a homeomorphism from Σ to \mathbf{S}^{n-1} . Given $\eta \in \mathbf{S}^{n-1}$, let $\xi_{\pm} = \Pi^{-1}(\pm \eta)$. Then

$$\langle \eta, \xi_{\pm} \rangle = \pm \left\langle \frac{\nabla \phi(\xi_{\pm})}{|\nabla \phi(\xi_{\pm})|}, \xi_{\pm} \right\rangle = \pm \frac{\phi(\xi_{\pm})}{|\nabla \phi(\xi_{\pm})|} = \pm \frac{1}{|\nabla \phi(\xi_{\pm})|},$$

Noting that $\pm \eta$ is the outward unit normal to Σ at ξ_{\pm} , by Theorem B in [5] (also cf. [6]) we have

$$\int_{\Sigma} \frac{e^{i\lambda\langle\eta,\xi\rangle}}{|\nabla\phi(\xi)|} \, d\sigma(\xi) = e^{i\lambda\langle\eta,\xi_+\rangle} H_+(\lambda) + e^{i\lambda\langle\eta,\xi_-\rangle} H_-(\lambda) + H_\infty(\lambda) \quad \text{for } \lambda > 0.$$

Here $H_{\pm} \in C^{\infty}((0, \infty))$,

$$|H_{\pm}^{(j)}(\lambda)| \leq C_j \lambda^{-j-(n-1)/k}$$
 for $j \in \mathbf{N}_0$,

and

$$|H_{\infty}(\lambda)| \leq C_j \lambda^{-j}$$
 for $j \in \mathbb{N}$,

where $\mathbf{N}_0 = \mathbf{N} \cup \{0\}$ and constants C_j depend only on the hypersurface Σ . Hence,

$$\begin{split} K_{\varepsilon}(x) &= \int_{0}^{\infty} e^{-\varepsilon t + it^{m} + itr\langle \eta, \xi_{+} \rangle} t^{n-1} \varphi(t) H_{+}(tr) \, dt \\ &+ \int_{0}^{\infty} e^{-\varepsilon t + it^{m} + itr\langle \eta, \xi_{-} \rangle} t^{n-1} \varphi(t) H_{-}(tr) \, dt \\ &+ \int_{0}^{\infty} e^{-\varepsilon t + it^{m}} t^{n-1} \varphi(t) H_{\infty}(tr) \, dt \\ &\coloneqq J_{1}^{\varepsilon} + J_{2}^{\varepsilon} + J_{3}^{\varepsilon}. \end{split}$$

In the remainder of this section, for the sake of convenience, we will denote by C a generic constant independent of r, t and ε .

We consider first the integral J_3^{ε} . It is obvious that

$$|J_3^{\varepsilon}| \leq C \int_1^{\infty} t^{n-1} (tr)^{-(n+1)} dt \leq Cr^{-(n+1)}.$$

Since r = |x|, it follows from the dominated convergence theorem that J_3^{ε} ($\varepsilon \to 0$) converges uniformly for x in compact subsets of $\mathbb{R}^n \setminus \{0\}$, and decays as $|x|^{-h(m,n,k)}$, where we notice that $h(m, n, k) \leq n$.

Next, consider the integral J_1^{ε} . Let

$$\begin{cases} u(t) = -\varepsilon t + it^m + itr\langle \eta, \xi_+ \rangle, \\ v(t) = t^{n-1}\varphi(t)H_+(tr) \end{cases}$$

for t>0. Since $u'(t)\neq 0$ for t>0, we can define $D_{\#}f = -gf'$ and $D_{*}f = (gf)'$ for $f \in C^{1}((0, \infty))$, where g = -1/u'. By induction on j we find that

$$g^{(j)}(t) = \sum_{l=l_0}^{j} a_l t^{l(m-1)-j} g(t)^{l+1}$$
 for $j \in \mathbf{N}_0$,

where constants a_l depend only on l and m, and $l_0 \in \mathbb{N}_0$ such that $l_0 \ge j/(m-1)$. Since there exists a constant c > 1 such that $c^{-1} \le |\nabla \phi(\xi)| \le c$ for $\xi \in \Sigma$, we have

$$|g(t)| = 1/|u'(t)| \leq 1/r \langle \eta, \xi_+ \rangle = |\nabla \phi(\xi_+)|/r \leq c/r$$
 for $t > 0$.

Also, $|g(t)| \leq \frac{1}{m} t^{1-m}$ for t > 0. Hence,

$$|g^{(j)}(t)| \leq Cr^{-1}t^{-j} \quad \text{for } j \in \mathbf{N}_0.$$

On the other hand, one sees

$$\left|\frac{d^{j}}{dt^{j}}(H_{+}(tr))\right| \leqslant Ct^{-j}(tr)^{-(n-1)/k} \quad \text{for } j \in \mathbf{N}_{0},$$

and thus by Leibniz's formula

$$|v^{(j)}(t)| \leq Cr^{-(n-1)/k} t^{-j+n-1-(n-1)/k} \quad \text{for } j \in \mathbf{N}_0.$$
(3.1)

Since it is not hard to show

$$D^{j}_{*}v = \sum_{\alpha} a_{\alpha}g^{(\alpha_{1})}\cdots g^{(\alpha_{j})}v^{(\alpha_{j+1})} \text{ for } j \in \mathbf{N},$$

where the sum runs over all $\alpha = (\alpha_1, ..., \alpha_{j+1}) \in \mathbf{N}_0^{j+1}$ such that $|\alpha| = j$ and $0 \leq \alpha_1 \leq \cdots \leq \alpha_j$, it follows that

$$|(D_*^j v)(t)| \leq C r^{-j - (n-1)/k} t^{-j + n - 1 - (n-1)/k} \quad \text{for } j \in \mathbf{N}_0,$$
(3.2)

where we used the notation $D^0_*v = v$. Noting that $D^n_{\#}e^u = e^u$ we have

$$J_1^{\varepsilon} = \int_0^{\infty} (D_{\#}^n e^u)(t)v(t) \, dt = \int_0^{\infty} e^{u(t)} (D_{*}^n v)(t) \, dt$$

Consequently,

$$|J_1^{\varepsilon}| \leq Cr^{-n-(n-1)/k} \int_1^{\infty} t^{-1-(n-1)/k} dt \leq Cr^{-n-(n-1)/k}$$

Thus, the dominated convergence theorem yields that J_1^{ε} converges uniformly for x in compact subsets of $\mathbf{R}^n \setminus \{0\}$, and decays as $|x|^{-h(m,n,k)}$.

We now consider the integral J_2^{ε} . In this case, we put

$$\begin{cases} u(t) = -\varepsilon t + it^m - it\overline{r}, \\ v(t) = t^{n-1}\varphi(t)H_-(tr) \end{cases}$$

for t > 0, where

$$ar{r} \coloneqq -r \langle \eta, \xi_{-} \rangle = r/|
abla \phi(\xi_{-})|.$$

Since $t_0 := (\bar{r}/m)^{1/(m-1)}$ is the unique critical point of the oscillatory integral J_2^{ε} , we write

$$J_{2}^{\varepsilon} = \left\{ \int_{2t_{0}}^{\infty} + \int_{t_{0}/2}^{2t_{0}} + \int_{0}^{t_{0}/2} \right\} e^{u(t)} v(t) dt$$

$$\coloneqq J_{2,1}^{\varepsilon} + J_{2,2}^{\varepsilon} + J_{2,3}^{\varepsilon}.$$

From integration by parts one gets

$$J_{2,1}^{\varepsilon} = -\frac{e^{u(2t_0)}}{u'(2t_0)} \sum_{j=0}^{n-1} (D_*^j v)(2t_0) + \int_{2t_0}^{\infty} e^{u(t)} (D_*^n v)(t) dt$$

Since

$$|u'(t)| \ge mt^{m-1} - \bar{r} \ge (2^{m-1} - 1)\bar{r} \ge (2^{m-1} - 1)r/c$$
 for $t \ge 2t_0$

and since

$$|u'(t)| \ge mt^{m-1} - \bar{r} \ge m(1 - 2^{1-m})t^{m-1}$$
 for $t \ge 2t_0$,

the estimate (3.2) still holds for $t \ge 2t_0$. Hence,

$$\begin{aligned} |J_{2,1}^{\varepsilon}| &\leq Cr^{-1} \sum_{j=0}^{n-1} r^{-j-(n-1)/k} (2t_0)^{-j+n-1-(n-1)/k} \\ &+ C \int_{2t_0}^{\infty} r^{-n-(n-1)/k} t^{-1-(n-1)/k} dt \\ &\leq Cr^{(n-m-m(n-1)/k)/(m-1)} \sum_{j=0}^{n-1} r^{-jm/(m-1)}. \end{aligned}$$

But

$$(n-m-m(n-1)/k)/(m-1) \leqslant -h(m,n,k),$$

 $J_{2,1}^{\varepsilon}$ converges uniformly for x in compact subsets of $\mathbb{R}^n \setminus \{0\}$, and decays as $|x|^{-h(m,n,k)}$. Since $|u'(t)| \ge Ct^{m-1}$ and $\ge Cr$ for $0 < t \le t_0/2$, a slight modification of the above method leads to the same conclusion for $J_{2,3}^{\varepsilon}$. We omit the details.

In order to deal with $J_{2,2}^{\varepsilon}$, set $w(t) = t^m - t\overline{r}$ and v(t) is defined as in $J_{2,1}^{\varepsilon}$. Obviously,

$$\lim_{\varepsilon \to 0} J_{2,2}^{\varepsilon} = J_{2,2} \coloneqq \int_{t_0/2}^{2t_0} e^{iw(t)} v(t) dt$$

uniformly for x in compact subsets of $\mathbb{R}^n \setminus \{0\}$. It remains to show that $J_{2,2}$ decays as $|x|^{-h(m,n,k)}$. Let $y = (t - t_0)/t_0$, which maps $[t_0/2, 2t_0]$ onto [-1/2, 1], and let $\lambda = m(m-1)t_0^m$. Then

$$\begin{split} \Phi(y) &\coloneqq \frac{1}{\lambda} (w(t_0(y+1)) - w(t_0)) \\ &= \frac{1}{m(m-1)} ((y+1)^m - my - 1) \\ &= \frac{1}{m(m-1)} \sum_{l=2}^m \binom{m}{l} y^l \quad \text{for } y \in [-1/2, 1]. \end{split}$$

Consequently,

$$\Phi''(y) = (y+1)^{m-2} \ge 2^{2-m}$$
 for $y \in [-1/2, 1]$

and

$$J_{2,2} = t_0 e^{iw(t_0)} \int_{-1/2}^1 e^{i\lambda\Phi(y)} v(t_0(y+1)) \, dy.$$

It follows thus from van der Corput's theorem (cf. [16, p. 334]) that

$$|J_{2,2}| \leq C\lambda^{-1/2} t_0 \left(|v(2t_0)| + \int_{-1/2}^1 |t_0 v'(t_0(y+1))| \, dy \right)$$

$$\leq C t_0^{1-m/2} \left(|v(2t_0)| + \sup_{t_0/2 \leq t \leq 2t_0} |t_0 v'(t)| \right).$$

Since (3.1), in which H_+ is replaced by H_- , still holds,

$$|J_{2,2}| \leq Cr^{-(n-1)/k} t_0^{n-m/2-(n-1)/k} \leq Cr^{-h(m,n,k)},$$

as desired.

Finally, we only need to show that $K_{\varepsilon}(x)$ converges uniformly for x in some neighborhood of the origin. Let U be the ball $\{x \in \mathbf{R}^n | |x| \leq m/2M\}$, where M is a

constant such that $|\xi| \leq M$ for $\xi \in \Sigma$. For a given $x \in U$, let

$$u(t) = -\varepsilon t + it^m + it \langle x, \xi \rangle$$
 for $t \ge 1$.

Then

$$K_{\varepsilon}(x) = \int_{\Sigma} \left(\int_{1}^{\infty} e^{u(t)} t^{n-1} \varphi(t) dt \right) \frac{d\sigma(\xi)}{|\nabla \phi(\xi)|}$$

Since

$$|u'(t)| \ge |mt^{m-1} + \langle x, \xi \rangle| \ge mt^{m-1} - M|x| \ge (m/2)t^{m-1} \ge m/2,$$

as in the case of the estimate of J_1^{ε} we obtain

$$\left|\int_{1}^{\infty} e^{u(t)} t^{n-1} \varphi(t) \, dt\right| \leq C,$$

and therefore the claim follows.

Moreover, an analogous method as above leads to

$$D^{\alpha}\mathscr{F}^{-1}(e^{\pm iP}) = \mathscr{F}^{-1}(\xi^{\alpha}e^{\pm iP(\xi)}) \in C(\mathbf{R}^{n}) \quad \text{for } \alpha \in \mathbf{N}_{0}^{n},$$

i.e. $\mathscr{F}^{-1}(e^{\pm iP}) \in C^{\infty}(\mathbb{R}^n)$ and

$$D^{\alpha}(\mathscr{F}^{-1}(e^{\pm iP}))(x) = O(|x|^{-h(m,n,k) + |\alpha|/(m-1)}) \ (|x| \to \infty) \quad \text{for } \alpha \in \mathbf{N}_{0}^{n}.$$

4. L^p Estimates for Schrödinger equations

It was Balabane and Emami-Rad [4] who first applied smooth distribution semigroups to higher order Schrödinger equations, and showed the L^p estimate of solutions. Arendt and Kellermann [2] showed that a smooth distribution semigroup is equivalent to an integrally integrated semigroup. However, it is known that the fractionally integrated semigroup is a generalization of the integrally integrated semigroup and is a more suitable tool for elliptic differential operators in $L^p(\mathbb{R}^n)$ (cf. [9,17]). We start with its definition.

Definition 4.1. Let *A* be a linear operator on a Banach space *X* and $\beta \ge 0$. Then a strongly continuous family $T : [0, \infty) \rightarrow \mathscr{L}(X)$ is called a β -times integrated semigroup on *X* with generator *A* if there exist constants $C, \omega \ge 0$ such that $||T(t)|| \le Ce^{\omega t}$ for $t \ge 0$, $(\omega, \infty) \subset \rho(A)$ (the resolvent set of *A*), and

$$(\lambda - A)^{-1}x = \lambda^{\beta} \int_0^\infty e^{-\lambda t} T(t) x \, dt$$
 for $\lambda > \omega$ and $x \in X$.

If A and -A both are generators of β -times integrated semigroups on X, we say A is the generator of a β -times integrated group on X.

Here is a sufficient condition for an operator to be the generator of integrated semigroups, which is due to Hieber [9, p. 30] (see [2] for a special case).

Lemma 4.2. Let A be a linear operator on a Banach space X. Suppose there exist constants $C, \omega \ge 0$ and $\gamma \ge -1$ such that for $\operatorname{Re} \lambda > \omega$, $\lambda \in \rho(A)$ and $||(\lambda - A)^{-1}|| \le C|\lambda|^{\gamma}$. Then A generates a β -times integrated semigroup on X, where $\beta > \gamma + 1$.

Assume that the operator P(D) has maximal domain in the distributional sense on $L^p(\mathbf{R}^n)$ $(1 \le p < \infty)$, and thus it is closed and densely defined. It is known that $D(P(D)) = W^{m,p}(\mathbf{R}^n)$ for 1 . The following Lemma 4.3(a) can be found in [9,17], and Lemma 4.3(b) follows from Lemma 4.3(a) and Definition 4.1, immediately.

Lemma 4.3. Let $1 \le p < \infty$ and $\beta > n_p \coloneqq n |\frac{1}{2} - \frac{1}{p}|$. (a) iP(D) generates a β -times integrated group T(t) $(t \in \mathbf{R})$ on $L^p(\mathbf{R}^n)$, and

$$||T(t)||_{L^p-L^p} \leq C|t|^\beta \quad for \ t \in \mathbf{R}.$$

(b) $\{\lambda \in \mathbb{C} | \operatorname{Re} \lambda \neq 0\} \subset \rho(iP(D))$ on $L^p(\mathbb{R}^n)$, and

$$||(\lambda - iP(D))^{-1}||_{L^p - L^p} \leq C|\lambda|^{\beta} / |\operatorname{Re} \lambda|^{\beta+1} \quad for \; \operatorname{Re} \lambda \neq 0.$$

Let V be a measurable function defined on \mathbb{R}^n . We consider V as a multiplication operator on $L^p(\mathbb{R}^n)$ with $D(V) := \{f \in L^p(\mathbb{R}^n) | Vf \in L^p(\mathbb{R}^n)\}$. The domain of iP(D) + V is $D(P(D)) \cap D(V)$. Denote by I'_p $(1 \le p \le 2)$, the following subset of $[1, \infty]$:

$$I'_{p} = \begin{cases} \left[p, \frac{\tau'p}{2-p} \right) & \text{if } 1 \leq p < \tau', \\ \left(\frac{p(2-\tau')}{2-p}, \frac{\tau'p}{2-p} \right) & \text{if } \tau' \leq p < 2, \\ \{\infty\} & \text{if } p = 2, \end{cases}$$

where $\tau = n/h(m, n, k)$ and h(m, n, k) is defined as in Section 2.

Theorem 4.4. Let $V = V_1 + V_2$ with $V_j \in L^{s_j}(\mathbb{R}^n)$ for some $s_j \in (\frac{n}{m}, \infty]$ (j = 1, 2).

(a) If $s_j \in I'_p$ for some $p \in [1, 2]$, then iP(D) + V generates a β -times integrated group on $L^p(\mathbf{R}^n)$, where $\beta > n_p + 1$.

(b) If $s_j \in I'_{p'}$ for some $p \in (2, \infty)$, then an extension of iP(D) + V, i.e. $(-iP(D) + \overline{V})^*$ generates a β -times integrated group on $L^p(\mathbf{R}^n)$, where $\beta > n_p + 1$.

Proof. Since iP(D) + V and -(iP(D) + V) satisfy the same assumptions, it suffices to show that iP(D) + V generates a β -times integrated semigroup on $L^p(\mathbb{R}^n)$.

We consider first the case $1 \le p \le 2$. Let $\frac{1}{q_j} = \frac{1}{p} - \frac{1}{s_j}$ (j = 1, 2). Then $s_j \in I'_p$ implies $q_j \in I_p$ (I_p is defined in Section 2). So we obtain by Theorem 2.5 and Hölder's inequality that

$$\begin{split} ||V(\lambda - iP(D))^{-1}||_{L^{p} - L^{p}} &\leq \sum_{j=1,2} ||V||_{L^{q_{j}} - L^{p}} ||(\lambda - iP(D))^{-1}||_{L^{p} - L^{q_{j}}} \\ &\leq C \sum_{j=1,2} ||V||_{L^{s_{j}}} |\operatorname{Re} \lambda|^{\frac{n}{ms_{j}} - 1}. \end{split}$$

In view of $\frac{n}{ms_i} - 1 < 0$, there exists $\omega \ge 1$ such that

$$||V(\lambda - iP(D))^{-1}||_{L^p - L^p} \leq 1/2$$
 for $\operatorname{Re} \lambda > \omega$.

Consequently, $\lambda \in \rho(iP(D) + V)$ and

$$(\lambda - iP(D) - V)^{-1} = (\lambda - iP(D))^{-1} \sum_{j=0}^{\infty} (V(\lambda - iP(D))^{-1})^j.$$

This implies by Lemma 4.3(b) that

$$\begin{split} ||(\lambda - iP(D) - V)^{-1}||_{L^p - L^p} &\leq 2||(\lambda - iP(D))^{-1}||_{L^p - L^p} \\ &\leq C|\lambda|^{n_p + \varepsilon} \quad \text{for } \operatorname{Re} \lambda > \omega, \end{split}$$

where $\varepsilon \in (0, \beta - n_{p-1})$. It follows now from Lemma 4.2 that iP(D) + V generates a β -times integrated semigroup on $L^p(\mathbf{R}^n)$.

Next, we consider the case $2 . From the proof of (a) one sees that <math>-iP(D) + \overline{V}$ is densely defined on $L^{p'}(\mathbb{R}^n)$, and thus $(-iP(D) + \overline{V})^*$ exists and is densely defined on $L^p(\mathbb{R}^n)$. It is easy to check $iP(D) + V \subset (-iP(D) + \overline{V})^*$. Also, an adjointness argument implies

$$||(\lambda - (-iP(D) + \bar{V})^*)^{-1}||_{L^p - L^p} = ||(\bar{\lambda} - (-iP(D) + \bar{V}))^{-1}||_{L^{p'} - L^{p'}}.$$

Since $s_j \in I'_{p'}$ and $n_{p'} = n_p$, this leads to the same estimate as in the case $1 . It follows therefore from Lemma 4.2 that <math>(-iP(D) + \bar{V})^*$ generates a β -times integrated semigroup on $L^p(\mathbf{R}^n)$. \Box

When $2 , we rewrite <math>I'_{p'}$ as

$$I'_{p'} = \begin{cases} \left(\frac{p(2-\tau')}{p-2}, \frac{\tau'p}{p-2}\right) & \text{if } 2$$

From this and the subsequent proposition one sees that it is not always true that $iP(D) + V = (-iP(D) + \overline{V})^*$ in Theorem 4.3(b), so is such situation in [4, Theorem 6]. This means that the operator iP(D) + V in [4, Theorem 6] should be replaced by $(-iP(D) + \overline{V})^*$ for p > 2.

Proposition 4.5. Let $1 and <math>\frac{n}{m} < s < \infty$.

(a) If $V \in L^{s}(\mathbb{R}^{n})$ and $s \geq p$, then $W^{m,p}(\mathbb{R}^{n}) \subset D(V)$ and V is a compact operator from $W^{m,p}(\mathbb{R}^{n})$ to $L^{p}(\mathbb{R}^{n})$.

(b) If $V \in L^{s}(\mathbb{R}^{n})$ and $s \ge \max\{p, p'\}$, then $iP(D) + V = (-iP(D) + \overline{V})^{*}$ on $L^{p}(\mathbb{R}^{n})$. (c) If $1 \le s < p$, then there exists $V \in L^{s}(\mathbb{R}^{n})$ such that $W^{m,p}(\mathbb{R}^{n}) \cap D(V) = \{0\}$.

Proof. (a) is a direct consequence of Theorem 10.2 in [15, p. 147], in which condition (5) is satisfied. Since $\rho(P(D)) \neq \emptyset$ on $L^{p'}(\mathbf{R}^n)$, (b) follows from (a) and Theorem 6.1 in [15, p. 94]. To show (c), we will modify slightly an example in [14, p. 60]. Let $f(x) = |x|^{-n/p}$ for $|x| \le 1$ and = 0 for |x| > 1. Define

$$V(x) = \sum_{j=1}^{\infty} 2^{-j} f(x - \alpha_j) \quad \text{for } x \in \mathbf{R}^n,$$

where $\{\alpha_j\}_{j=1}^{\infty} = \mathbf{Q}^n$ (**Q** denotes the set of all rational numbers). Then

$$||V||_{L^s} \leq \sum_{j=1}^{\infty} 2^{-j} ||f(x-\alpha_j)||_{L^s} = ||f||_{L^s} < \infty.$$

If $0 \neq g \in W^{m,p}(\mathbf{R}^n) \cap D(V)$, one has $g \in C(\mathbf{R}^n)$ by Sobolev's embedding theorem. Thus, $|g(x)| \ge c > 0$ in some open subset $\Omega \subset \mathbf{R}^n$. Taking $\alpha_j \in \Omega$ yields

$$\int_{\mathbf{R}^n} |V(x)g(x)|^p dx \ge 2^{-np} c^p \int_{|x-\alpha_j| \le \delta} |x-\alpha_j|^{-n} dx = \infty \quad \text{for small } \delta > 0,$$

which contradicts $g \in D(V)$. \Box

136

Set $I'_p = I'_{p'} \cap [p, \infty)$ for $p \in (2, \infty)$. Then $I'_p = \emptyset$ for $p \ge 2 + \tau'$ and

$$I'_{p} = \begin{cases} \left(\frac{p(2-\tau')}{p-2}, \frac{\tau'p}{p-2}\right) & \text{if } 2$$

Combining Theorem 4.4 and Proposition 4.5(b) leads to

Theorem 4.6. Let $1 \le p < 2 + \tau'$ and $V = V_1 + V_2$ with $V_j \in L^{s_j}(\mathbb{R}^n)$ for some $s_j \in I'_p \cap \left(\frac{n}{m}, \infty\right]$ (j = 1, 2). Then iP(D) + V generates a β -times integrated group on $L^p(\mathbb{R}^n)$, where $\beta > n_p + 1$.

Corresponding to Corollary 2.6 we have

Corollary 4.7. Let $1 \le p \le 3$, $n_p < m/2$ and $V \in L^{\frac{p}{|p-2|}}(\mathbf{R}^n)$. Then iP(D) + V generates a β -times integrated group on $L^p(\mathbf{R}^n)$, where $\beta > n_p + 1$.

In order to give L^{ρ} estimates of the solution for Schrödinger equations we need Straub's fractional powers (cf. [13]). If a densely defined operator A is the generator of a β -times integrated group T(t) ($t \in \mathbf{R}$) satisfying $||T(t)|| \leq Ce^{\omega|t|}$ ($t \in \mathbf{R}$), then for $\delta, \varepsilon > 0$ the fractional powers $(\omega + \delta \pm A)^{\beta+\varepsilon}$ are well-defined and their domains are independent of $\delta > 0$. We note that $D((\omega + \delta + A)^{\beta+\varepsilon}) \cap D((\omega + \delta - A)^{\beta+\varepsilon})$ for small $\varepsilon > 0$ contains the dense subspace $D(A^{[\beta]+1})$. The following result is a consequence of Theorem 4.6 and Theorem 1.1 in [13].

Theorem 4.8. Suppose p, V and β satisfy the assumptions of Theorem 4.6. Then, there exist constants $C, \omega > 0$ such that for every data $u_0 \in D((\omega + iP(D) + V)^{\beta}) \cap D((\omega - iP(D) - V)^{\beta})$, the Cauchy problem (*) has a unique solution $u \in C(\mathbf{R}, L^p(\mathbf{R}^n))$ and

$$||u(t,\cdot)||_{L^p} \leq C e^{\omega|t|} ||(\omega \pm iP(D) \pm V)^{\beta} u_0||_{L^p} \quad for \ t \in \mathbf{R},$$

where we choose + (resp. -) if $t \ge 0$ (resp. <0).

When *P* is nondegenerate (i.e. $\det\left(\frac{\partial^2 P(\xi)}{\partial \xi_i \partial \xi_j}\right)_{n \times n} \neq 0$ for $\xi \in \mathbf{R}^n \setminus \{0\}$), the Gaussian curvature of Σ is nonzero everywhere (cf. [11]). In this case k = 2, and thus $h(m, n, k) = \frac{n(m-2)}{2(m-1)}$. In order to compare our results with those in [4] for homogeneous polynomial *P*, we denote by $I_p(\tau)$ (resp. $I'_p(\tau)$) the set I_p (resp. I'_p) defined in Section 2 (resp. 4). As a direct consequence of Theorems 2.4 and 4.4(a) we have

Corollary 4.9. Suppose P is nondegenerate. Let $1 \le p \le 2$ and $\tau_0 = \frac{2(m-1)}{m-2}$. If $q \in I_p(\tau_0)$ (resp. $s_j \in I'_p(\tau_0) \cap (\frac{n}{m}, \infty]$), then the conclusion of Theorem 2.4 (resp. 4.4(*a*)) is true.

We first note that for homogeneous polynomial P, the hypothesis (H2) in [4] is equivalent to that P is nondegenerate. Thus, Corollary 4.9 improves the corresponding Theorem 2' and 6 in [4] in several respects:

(1) For fixed $p \in [1, 2)$, the interval $I_p(\tau_0)$ is replaced by smaller $(q(\tau_1, p), p']$ in Theorem 2', where $\frac{1}{q(\tau, p)} = \frac{1}{\tau p} + \frac{1}{\tau' p'}$ and $\tau_1 = \frac{2n(m-1)}{mn-2n-3m+2}$. In fact, it is clear that $q(\tau, p)$ ($\tau > 2$) is strictly increasing. Since $p' \in I_p(\tau_0)$ and $2 < \tau_0 < \tau_1$, $I_p(\tau_0)$ contains properly $(q(\tau_1, p), p']$. Similarly, the interval $I'_p(\tau_0)$ is replaced by smaller $[\frac{p}{2-p}, \frac{\tau'_1 p}{2-p}]$ in Theorem 6.

(2) The hypothesis (H3'), i.e. $n > 3 + \frac{4}{m-2}$ is required in Theorems 2' and 6, but not in Corollary 4.9. For example, when n = 2, 3 and $m \ge 4$, one has $n \le 3 + \frac{4}{m-2}$, and thus Theorems 2' and 6 cannot deal with such a case. However, in this case, $I'_p(\tau_0) \cap (\frac{n}{m}, \infty] = I'_p(\tau_0)$, which means that for every $p \in [1, 2]$, we can choose q and s_j 's values such that the conclusion of Corollary 4.9 holds.

(3) We first note that $p \neq 1$ in Theorems 2' and 6, but it is admitted that p = 1 in Corollary 4.9. Furthermore, it is required in Theorem 6 that $p > \frac{2c}{c+1}$, where c is an integer with $c > \frac{n}{m-1}$. However, the restriction of p in Corollary 4.9 is only caused by $I'_p(\tau_0) \cap \left(\frac{n}{m}, \infty\right] \neq \emptyset$, which is equivalent to $p > \frac{2n}{n+2m-2}$. It is easy to see that this is naturally an improvement of the corresponding condition in Theorem 6.

(4) The conclusion in Theorem 6 (see its remark for homogeneous *P*) is that iP(D) + V generates a smooth distribution group on $L^p(\mathbb{R}^n)$ of order β , which is equivalent to a β -times integrated group on $L^p(\mathbb{R}^n)$, where β is an integer with $\beta > n_p + 2$. Our conclusion in Corollary 4.9 however admits that β is a real number with $\beta > n_p + 1$.

Acknowledgments

This project was supported by the National Natural Science Foundation of China and TRAPOYT of China.

References

- [1] W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987) 327–352.
- [2] W. Arendt, H. Kellermann, Integrated solutions of Volterra integro-differential equations and applications, in: G. Da Prato, M. Iannelli (Eds.), Volterra Integro-differential Equations in Banach Spaces and Applications, Longman, Harlow, 1989, pp. 21–51.
- [3] M. Balabane, H.A. Emami-Rad, Smooth distribution group and Schrödinger equation in L^p, J. Math. Anal. Appl. 70 (1979) 61–71.

- [4] M. Balabane, H.A. Emami-Rad, L^p estimates for Schrödinger evolution equations, Trans. Amer. Math. Soc. 292 (1985) 357–373.
- [5] J. Bruna, A. Nagel, S. Wainger, Convex hypersurfaces and Fourier transforms, Ann. Math. 127 (1988) 333–365.
- [6] M. Cowling, S. Disney, G. Maucceri, D. Müller, Damping oscillatory integrals, Invent. Math. 101 (1990) 237–260.
- [7] G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966) 223-248.
- [8] E.B. Davies, M.M.H. Pang, The Cauchy problem and a generalization of the Hille–Yosida theorem, Proc. London Math. Soc. 55 (1987) 181–208.
- [9] M. Hieber, Integrated semigroups and differential operators on L^p , Dissertation, Tübingen, 1989.
- [10] L. Hörmander, Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960) 93–140.
- [11] A. Miyachi, On some estimates for the wave equation in L^p and H^p , J. Fac. Sci. Univ. Tokyo 27 (1980) 331–354.
- [12] A. Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo 28 (1981) 267–315.
- [13] J. van Neerven, B. Straub, On the existence and growth of mild solutions of the abstract Cauchy problem for operators with polynomially bounded resolvent, Houston J. Math. 24 (1998) 137–171.
- [14] M. Schechter, Operator Methods in Quantum Mechanics, Elsevier, North-Holland, New York, 1981.
- [15] M. Schechter, Spectra of Partial Differential Operators, 2nd Edition, Elsevier, Amsterdam, 1986.
- [16] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993.
- [17] Q. Zheng, Abstract differential operators and Cauchy problems, Tübinger Berichte zur Funktionalanalysis 4 (1995) 273–280.
- [18] Q. Zheng, Y. Li, Abstract parabolic systems and regularized semigroups, Pacific J. Math. 182 (1998) 183–199.