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Abstract

This paper is concerned with Schrodinger equations whose principal operators are
homogeneous elliptic. When the corresponding level hypersurface is convex, we show the
LP-L1 estimate of the solution operator in the free case. This estimate, combined with the
results of fractionally integrated groups, allows us to further obtain the L? estimate of solutions
for the initial data belonging to a dense subset of L7 in the case of integrable potentials.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we take interest in [”, 1<p< oo, estimates of solutions for the
following Schrodinger equation:

% = (iP(D) + V)u, u(0,-) = upeL”(R"), (%)
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where D = —i(0/0x, ...,0/0xy), P : R" >R is a homogeneous elliptic polynomial of
order m (m must be even, except n = 1), and V is a suitable potential function. In the
sequel, we may assume without loss of generality that P(£) >0 for £#0. Otherwise, we
have P(&) <0 for £#£0, for which the following hypersurface 2 should be replaced by

{¢eR"| P(¢) = —1}.

In order to obtain I/ estimates of the solution of (x), we will first treat L/—L7

estimates of ¢”(”) which is the solution operator of (x) with ¥ = 0. To this end, we
need to consider the compact hypersurface

5 = {¢eR' P() = 1},

When the Gaussian curvature of X is nonzero everywhere, it is known that [/—L4
estimates of e"P) (1#0) can be deduced from Miyachi [12]. In fact, Miyachi gave
some remarks on these estimates in a more general case where P is a positive and
smooth homogeneous function, provided the nonvanishing Gaussian curvature on X.
Also, dropping the homogeneity of P, Balabane and Emami-Rad [4] studied these
estimates under a suitable nondegenerate condition. However, one can check that the
nondegenerate condition is equivalent to the nonzero Gaussian curvature if P is
homogeneous.

As we know, the nonvanishing Gaussian curvature plays a crucial rule in
estimating many oscillatory integrals [16]. This is the reason why one needs such a
condition in [4,12]. However, there exist many hypersurfaces X~ whose Gaussian
curvatures may vanish at some points (although we have observed that if m = 2 then
2 has nonzero Gaussian curvature everywhere under our assumptions on P). These
examples are easily available, for instance, the hypersurfaces X associated with
polynomials &' + --- + & (m=4,6,...) or & + 6518 + &,

On the other hand, an important subclass of hypersurfaces with vanishing
Gaussian curvature at some points is the class of convex hypersurfaces of finite type
[5]. The main purpose of this paper is to investigate the I estimate of the solution of
(*) when X is a convex hypersurface of finite type. Roughly speaking, this means that
P allows to be degenerate on a subset of R”.

This paper is organized as follows.

In Section 2, we study I7—L? estimates of the solution operator /"P) (¢#0) and

the resolvent operator (4 — iP(D))f1 (Re 4#0) when 2 is a convex hypersurface of
finite type. The method used is quite different from those in the previous papers
[4,12], due to the nature of the vanishing Gaussian curvature. Our proof depends
heavily on a decay estimate for the kernels .# ! (e*'F), in which we need to use a
powerful theorem in [5]. Since the proof is involved and very technical, we will
present it in Section 3.

In Section 4, we show that the operator iP(D)+ V with suitable integrable
potential 7 generates an integrated group on L”(R"). As we know, the semigroup of
operators is a useful abstract tool to treat Cauchy problems. However, the Cauchy
problem (x) in L?(R") (p#2) cannot be treated by classical semigroups of operators
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(i.e. Cp-semigroups). In fact, the Schrédinger operator iP(D) generates C-
semigroups in L”(R") if and only if p = 2 (see [10,12]). Thus, several generalizations
of Cy-semigroups, such as smooth distribution semigroups [3], integrated semigroups
[1,9], and regularized semigroups [7,8] were introduced and applied to different
general differential operators [9,18]. In our case, we use fractionally integrated groups
to deal with the Cauchy problem (x) in L”(R"), which will lead to better results than
using smooth distribution semigroups (see [3]). Moreover, when P is nondegenerate,
we will show how our results present an improvement over Theorems 2’ and 6 in [4].

Throughout this paper, ¥ denotes the hypersurface {£eR”"| P(¢) = 1}. Assume
that P: R"— [0, o0) is always a homogeneous elliptic polynomial of order m where
n=2, mis even and >4.

2. [P-L7 Estimates for Schrodinger equations without potentials

We start with the concept of finite type. S denotes the smooth hypersurface
{EeR"| p(&) = 0}, where pe C*(R") and V¢p(£)#0 for £€S. We say that S is of
finite type if any one-dimensional tangent line has at most a finite order of contact
with S. The precise definition is as follows.

S"~! denotes the unit sphere in R”. Let

V= Z n;0/0x; for n = (n, co,) €S
=1

which is the directional derivative in direction #, and let V,{ be the jth power of this
derivative.

Definition 2.1. Let k be an integer. The smooth hypersurface S is of type k if there
exists a constant § >0 such that

k
ZW/,- (&)|=6 for (eS and neS" .
J=1

Moreover, we say that S is convex if
Sc{neR"| {n =& Vp(&)) =0} for LeS
or

Sc{neR"| {n—-¢&,Ve(&)) <0} for LeS.

It is clear that k=2, and that if S is of type k it is also of type k'(>k). For the
hypersurface ¥ (i.e. {EeR"| P(¢) = 1}), since

(¢, VP(E)) =mP() =m  for (e,
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it follows that VP(&) #0 for £€ X, and thus X is smooth. Also, a simple computation
leads to

m _ . n—1
Vy)(P(&) — 1) =m!lP(n) for {eX and neS" .
Hence, we have

Proposition 2.2. X is a smooth compact hypersurface of type less than or
equal to m.

A simple example of polynomials whose level hypersurface 2 is of type m is
'+ -+ & (m=4,6,...). We notice that there exist polynomials P whose level
hypersurfaces X are of type k(<m). For example, when P(¢) = f(f + 55%53 + ig, the
corresponding hypersurface X is of type 4, but m = 6.

We now turn to the Cauchy problem (x) with 7 = 0. In this case, for every initial
data upe ¥ (R") (the Schwartz space), the solution is given by

u(t,) = e"Puy = 77 1(e") % uy,

Uits inverse, and Z ~!(¢"F) is
itP(D)

where % (or *) denotes the Fourier transform, %
understood in the distributional sense. Therefore, to obtain I/—L7 estimates of e
(t#0), the key result is to show estimates of the kernels % ! (e*'?).

In the sequel, denote by p’ the conjugate index of p, and || - ||;,_;, the norm in
L (L7, L?) (the space of all bounded linear operators from L to L9). Let

m—=2  (m—k)n-1)

hom e K) = S =D T m 1)

for 2<k<m,

©=n/h(m,n,k), and q(p) = q(m,n,k, p) where

1 1 1
+— for 1<p<?2.

gimnk,p) Ty

We first remark that when 2<k<m,

2(m—1) 2n(m —1)
m—2 m—2

Since m=4, it follows that te(2,3n|. Next, we remark that

1 1 1 1
—>—+—>— for 1<p<?2
2 ,L-p ,Clpl p/
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and thus 2<gq(p)<p'. Moreover, denote by I, (1<p<2) the following subset of
[2, 0]:

(¢(p), ] if 1<p<7,
p(2—17)\ .
I, = <Q(P)aﬁ if 7<p<2,
{2} if p=2.

Theorem 2.3. Suppose X is a convex hypersurface of type k. Then F '(e*'")e
C*(R") and

(F ) (x) = O(x ") as x| - 0.

The proof is lengthy and is given in the next section.

Theorem 2.4. Suppose X is a convex hypersurface of type k. If pe[1,2] and qeI,, then
there exists a constant C>0 such that

|\e"P<D>||U,_U<C\z|%<5’1l’) for 1#0.
Proof. By Theorem 2.3, % !(e*")eL*(R") for s>t. Since P is homogeneous,
one has
F ™) (x) = || " F (P (1| x)  for t#0 and xeR”,
and thus
1771l = ™17 P | < Cle ™™ for 1220,

where the constant C is independent of . The remainder of the proof will be divided
into several steps.

Step 1. When 1<p<7’ and %<q< o0, it follows from Young’s inequality that

n(l 1
||eitP(D)||U7Lq<||g7_l(eitp)”b\,<C|[|m(q 1’> for t#0,

where % =1+ é — 117’ which implies s> 7.

Step 2. Since P(D) is self-adjoint in L?(R"), ||"?P)||,. ,» = 1 for =0 by Stone’s
theorem. When 1<p<2 and ¢(p)<g<p', we deduce from the Riesz—Thorin
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interpolation theorem that

1.1

itp( )| 2/pH itP(D ||2/1’L2\C|t|"’< f’) for 1#0,

1
| itP(D ||Ll

™ 1 po <

(' -2)

where s = 2—>1.
P—q

Step 3. When I<p<t and ¢(p)<g<oo, we notice q(p)<zfl_”p. Since
L2(R") = L' (R") 4+ L=(R") for 1<s <5, <s3< 00, the desired estimate is a direct

consequence of the conclusions in Steps 1 and 2.

Step 4. When r’<p<2 and ¢(p )<q{<’7< %) we put /4 =22 \where poell, )

p—7 p(2—po)
(2—
such that ¢<7 2 p7t) = T, A simple computation leads to
- 11— n A
q q(p) 4(po) 2

Consequently, there exists a unique go > ¢(po) such thaté = lq‘—o” +4. Also,ll) = lp;(f +4
The desired estimate now can be deduced from the Riesz—Thorin interpolation
theorem and the conclusion in Step 1. [

The subsequent theorem deals with LP—L7 estimates of the resolvent of iP(D).

Theorem 2.5. Suppose X is a convex hypersurface of type k. If pe(1,2], qel,, and

117 — $<%, then there exists a constant C>0 such that

11
(. iP(D)) ||, Lq\C|Re/1|’”(” ) for Re 10,

Proof. For Re >0 and f€.%(R"), one has

(A—iP(D)"'f =7 ((A—iP)"'f)
_ /w e—/ltg:—l(eitPf”)d[
0

0
:/ e PO g
0

It follows therefore from Theorem 2.4 that
0 ﬂ(l_l)
1= i) <€ [ e Mol g
0

— C[Re M%(fl”?l/)"
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For Re 1<0 and f€ % (R"), one has
(A—iP(D))"'f = (=i +iP(D))"'f = /0 " ey
and thus the desired estimate follows from Theorem 2.4. [
Since p'el, for pe(l,2], we have

Corollary 2.6. Suppose Z is a convex hypersurface of type k. If pe[l,2] then

. n 1,2)
o, <) o s o

If, in addition, p>-2-, then

n+m’

_n(2 1),y
[(4 = iP(D)) ||, <C|Re A m(p ) for Re 2+0.

3. The proof of Theorem 2.3

By our assumptions on P, ¢ := P!/ is a positive and smooth homogeneous
function of degree 1, and X = {feR"| (&) =1}. Let 9eC*(R) such that
suppp |1, c0) and ¢(¢) = 1 for t>2. Obviously, in order to estimate Z!(e'")
(similarly for #~!(e~7)), it suffices to estimate 7 !((¢po¢)er) (cf. [4, p. 363)).
Consider the integral

K.(x) = / e OIHFLITICD ¢ (1)) dy

i e

_ ” —et+it" n—1 —_ _do i .
/0 e t (p(l)( Z|V¢(C)|d (f)) dt for ¢>0,

where r = |x|, x=rn, and do is the induced surface measure on X. We will
show that

7 ((ped)e”)(x) = (2m) " lim K,(x)

uniformly for x in compact subsets of R”, and K, (x) decays as |x| "™"% From this
we have 7 ' ((po)e'”) e C(R") since it is clear that K, e C(R").

Denote by II the Gaussian map

V(/ﬁ(é) Esnfl.

CEETH0)
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Since X is a compact convex hypersurface, IT is a homeomorphism from X to S"~!.
Given neS"! let ¢, = IT"'(+n). Then

Vo) d(Ey) 1
|v¢<+>5f> Vo TV

Noting that +# is the outward unit normal to 2 at ¢, by Theorem B in [5] (also
cf. [6]) we have

<, §+>—+<

PR, . ) . ]
/ |V¢( >| (5) - eli<ﬂ,€+>H+(}L) +eli<”’<’>H_(;t) +H, (}) for 1>0.

Here H. € C*((0, 0)),
[H (D] < a7V for jeN,
and
|H (2)|<Cii7 for jeN,

where Nog =Nu{0} and constants C; depend only on the hypersurface X.
Hence,

o0
_ / e—st+it’”+itr<n,§+> tn—l qD(l)H+(tV) dt
0
o0
+ / e*é‘t“ril‘m“v'itl’(?].é, > tnfl (p(l)H_ (ﬂ') dt
0

o0
+ / e o (£ H o (1) dt
0
=Ji+ 5+ J5

In the remainder of this section, for the sake of convenience, we will denote by C a
generic constant independent of r, ¢ and e.
We consider first the integral J5. It is obvious that

|J§’|<C/ N o) dr< oD,
1

Since r = |x|, it follows from the dominated convergence theorem that J§ (¢—0)

converges uniformly for x in compact subsets of R"\{0}, and decays as |x| "%,

where we notice that h(m,n, k)<n.
Next, consider the integral J§. Let

u(t) = —st + it + itr . €, ),
o(t) = 0 p() Ho (1)
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for t>0. Since u/(1)#0 for t>0, we can define Dyf = —gf’ and D.f = (gf)’ for
feC'((0, 0)), where g = —1/u'. By induction on j we find that

j
gty =>" a7 (1) for jeNy,
1=l

where constants ¢; depend only on / and m, and /y € Ny such that [y >//(m — 1). Since
there exists a constant ¢> 1 such that ¢~' <|V¢(&)|<c for £€X, we have

lg(O)] =1/ (D]<1/rn, &> = [Vo(&L)|/r<e/r for 1>0.
Also, |g(t)|<L =™ for 1>0. Hence,
g (1)|<Cr't7 for jeN.
On the other hand, one sees

d ‘
W(HAW))‘SCZ_J(W)(”')/k for jeNy,

and thus by Leibniz’s formula
[o) ()| < G~ n=D/kgmrtn=1=n=D/k - for jeNy. (3.1)
Since it is not hard to show

D;ZU = Z a“g(a]) ...g(a/>v(“/+l) for ]eN7

where the sum runs over all oc:(ocl,...,oszrl)eNfl such that |¢| =; and
0<o < -+ <u, it follows that

|(D/v)(1)| < Cr==D/ky=n=l=n=D/k " for je N, (3.2)

where we used the notation D% = v. Noting that Dle" = e" we have
ﬁ:A w%mm@mz/ (D) (1) dt.

0

Consequently,
‘JH < Cr*n*(”l*l)/k /UJ t*l*(nfl)/k dt< Crfnf(nfl)/k.
1

Thus, the dominated convergence theorem yields that J§ converges uniformly for x

in compact subsets of R"\{0}, and decays as |x| """,
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We now consider the integral J5. In this case, we put

u(t) = —st +it" — it7,
v(t) = "o (t)H _(tr)

for t>0, where
F=—ri{né > =r/[V( )l

Since 1y = (r/m)l/ m=1) is the unique critical point of the oscillatory integral Jz,

we write
2ty t()/2
J5 = / / / (1) dt
2ty l() 0

':JZI +J§72 +J23.

From integration by parts one gets

(2[0 n—1 o0
T = Z v)(21t0) / (D) (1) dt.
2

/:0 fo
Since
|/ ()| =mt" ™ —F= (2" — DF= 2" = 1)r/c for =24
and since
| ()| =mt" " — F=m(1 =27 for t>21,
the estimate (3.2) still holds for #>2¢,. Hence,

n—1
|J§ | ‘ < Cr! Z rfjf(nf1)/k(2lo)fj+n717(n71)/k
J=0

+ C/OC anf(nfl)/ktflf(nfl)/k dt
2

to
n—1

< Cr(nfmfm(nfl)/k)/(mfl) Z rfjm/(mfl)‘
Jj=0
But

(n—m—-—mmn—1)/k)/(m—1)< — h(m,n, k),
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J5, converges uniformly for x in compact subsets of R"\{0}, and decays as
x| "R - Singe |/ (1) = Cim~! and = Cr for 0<1<1,/2, a slight modification of the
above method leads to the same conclusion for J5 ;. We omit the details.

In order to deal with J5,, set w(f) =" — (7 and v(r) is defined as in J5 -
Obviously,

2ty

lim J5, = Jp, = / ™ Wo(r) dt
e—0 ’ [0/2

uniformly for x in compact subsets of R"\{0}. It remains to show that J>, decays
as |x| ") et y = (r—t9)/ty, which maps [fy/2,2t] onto [—1/2,1], and
let A =m(m — 1)77. Then

D) =y + 1)) ~ (1)

1
— 1 m _ _ 1
pp— 1)((y+ )" —my—1)
1 m m l
_m(m—l)/z;<l >y for ye[-1/2,1].
Consequently,
O"(y) = (y+ 1)"2=2>" for ye|—1/2,1]
and

1
Jry = toein;(to)/ e[/LCD(y)U([O(y_’_ 1)) dy.
—1/2

It follows thus from van der Corput’s theorem (cf. [16, p. 334]) that
1
|J2,2‘< Cl_l/zlo ‘U(zlo)| +/ |lol)/<l()(y + 1))| dy)
—1/2

<Ct(1)m/2<|v(2l0)|+ sup |tou’(t)|>.

t0/2<1<21
Since (3.1), in which H, is replaced by H_, still holds,

|J2 2| < CV_(”_I)/k[gim/zf(nfl)/k < Cr—h(m,n‘k)

as desired.
Finally, we only need to show that K;(x) converges uniformly for x in some
neighborhood of the origin. Let U be the ball {xeR"||x|<m/2M}, where M is a
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constant such that || <M for £€X. For a given xe U, let
u(t) = —st+it" +it{x, &y for t=1.

Then

Since
W ()] = [me™ " + x, E [ =mem ™ — Mx|[>(m/2)" =m)2,

as in the case of the estimate of J{ we obtain

o0
/ DLy di| < C,
1

and therefore the claim follows.
Moreover, an analogous method as above leads to

D*F ey = 771 (et PO)e C(R")  for aeNy,
ie. 7 1(et?)e C*(R") and

DX (e*))(x) = O(|x| ") (x| 00)  for aeNg,

4. I7 Estimates for Schrodinger equations

It was Balabane and Emami-Rad [4] who first applied smooth distribution
semigroups to higher order Schrodinger equations, and showed the L? estimate of
solutions. Arendt and Kellermann [2] showed that a smooth distribution semigroup
is equivalent to an integrally integrated semigroup. However, it is known that the
fractionally integrated semigroup is a generalization of the integrally integrated
semigroup and is a more suitable tool for elliptic differential operators in L”(R")
(cf. [9,17]). We start with its definition.

Definition 4.1. Let 4 be a linear operator on a Banach space X and f>0. Then a
strongly continuous family 7 :[0,00)—>%(X) is called a p-times integrated
semigroup on X with generator A4 if there exist constants C,w>=>0 such that
[|T(2)|| < Ce” for 120, (w, o0)=p(A4) (the resolvent set of 4), and

0
(/I—A)_lx:/lﬁ/ e "T(t)xdt for i>w and xeX.
0
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If 4 and — A both are generators of f-times integrated semigroups on X, we say A4
is the generator of a f-times integrated group on X.

Here is a sufficient condition for an operator to be the generator of integrated
semigroups, which is due to Hieber [9, p. 30] (see [2] for a special case).

Lemma 4.2. Let A be a linear operator on a Banach space X. Suppose there exist

constants C,w>=0 and y> — 1 such that for Re >, iep(A) and ||( — A)~'||<
C|A". Then A generates a B-times integrated semigroup on X, where f>7 + 1.

Assume that the operator P(D) has maximal domain in the distributional sense on
L?’(R") (1<p< ), and thus it is closed and densely defined. It is known that
D(P(D)) = W™#(R") for 1 <p<co. The following Lemma 4.3(a) can be found in
[9,17], and Lemma 4.3(b) follows from Lemma 4.3(a) and Definition 4.1,
immediately.

1_1

Lemma 4.3. Let 1<p< oo and f>n, = n|§—1—7.

(a) iP(D) generates a B-times integrated group T(t) (teR) on L (R"), and
1Tl <l for teR.
(b) {AeC|Re A#0} < p(iP(D)) on L?(R"), and
(2 = iP(D)) 1, <ClAP/|IRe )T for Re 270.

Let V' be a measurable function defined on R”. We consider V" as a multiplication
operator on LP(R") with D(V)={fel’(R")|Vfel”(R")}. The domain of
iP(D)+V is D(P(D))nD(V). Denote by I, (1<p<2), the following subset of
[1, 0]:

!
{p,zf_pp if 1<p<r,
1 2 _ /
IP (M’ 4 > if T/<p<27
2—-p 2-p
{oo} if p=2,

where t = n/h(m,n, k) and h(m,n, k) is defined as in Section 2.

Theorem 4.4. Let V = Vi + V, with V;e L% (R") for some s;je (2, ] (j=1,2).

(a) If s;el, for some pe[1,2], then iP(D) + V generates a f-times integrated group
on L7(R"), where f>n, + 1.

(b) If s 1y, for some pe(2, c©), then an extension of iP(D) + V', i.e. (—iP(D) + V)
generates a f-times integrated group on LP(R"), where f>n, + 1.
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Proof. Since iP(D)+ V and —(iP(D) + V) satisfy the same assumptions, it suffices
to show that iP(D) + V generates a f-times integrated semigroup on L”(R").

We consider first the case 1<p<2. Let qi/:}]—sl/ (j =1,2). Then s;e ) implies
giel, (I, is defined in Section 2). So we obtain by Theorem 2.5 and Hélder’s
inequality that

V(1- iP(D))_1| JTENTES Z ||V||L"/;Lv||(i - iP(D))_1| Lr—LY%
j=12
" 1
SCY Wil ReA™T
j=12

In view of va, — 1<0, there exists w>1 such that

1V (4= iP(D)™"]

o <1/2 for Rei>w.

Consequently, Aep(iP(D)+ V') and

(A—iP(D) = V) = (A—iP(D))"" Y (V(h—iP(D)").
Jj=0

This implies by Lemma 4.3(b) that

1(2 = iP(D) = V)| 1y p < 20102 = iP(D)) Iy

<C

;L ny+e

for Re A>w,

where ¢€ (0, f — n,—1). It follows now from Lemma 4.2 that iP(D) + V generates
a f-times integrated semigroup on L”(R").

Next, we consider the case 2<p< oco. From the proof of (a) one sees that
—iP(D) + V is densely defined on L (R"), and thus (—iP(D) + V)* exists and is
densely defined on L7(R"). It is easy to check iP(D) + V = (—iP(D) + V)". Also, an
adjointness argument implies

1( = (=iP(D) + 7)) lpp-pp = (= (—iP(D) + V)| -

Since s;€1,, and ny = ny, this leads to the same estimate as in the case 1 <p<2. It

follows therefore from Lemma 4.2 that (—iP(D) + V)" generates a f-times integrated
semigroup on [”(R"). [O
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When 2<p< oo, we rewrite I, as

¢ /
(M, T ) if 2<p<r,
I = p_2 p_2
v p T ,
ﬁ,p 2 lf ‘C<p<OO.

From this and the subsequent proposition one sees that it is not always true that
iP(D)+ V = (—iP(D) + V)" in Theorem 4.3(b), so is such situation in [4, Theorem
6]. This means that the operator iP(D) + V in [4, Theorem 6] should be replaced by
(—=iP(D) + V)" for p>2.

Proposition 4.5. Let 1 <p< o and I:<s< 0.
@) If Ve L*(R") and s=p, then W™P(R") <= D(V) and V is a compact operator from
wme(R") to LP(R").
(b) If VeL*(R") and s=max{p,p'}, then iP(D) + V = (—iP(D) + V)" on L7 (R").
(c) If L<s<p, then there exists Ve L*(R") such that W"?(R")nD(V) = {0}.

Proof. (a)is a direct consequence of Theorem 10.2 in [15, p. 147], in which condition
(5) is satisfied. Since p(P(D))#® on L7 (R"), (b) follows from (a) and Theorem 6.1 in
[15, p. 94]. To show (c), we will modify slightly an example in [14, p. 60]. Let

f(x) = |x|™"” for |x|<1 and = 0 for |x|>1. Define
e .
=> 27f(x—q) for xeR",
where {aj}jil = Q" (Q denotes the set of all rational numbers). Then

o0
V<Y 270 =)l = 1l < o0
j=1

If 0£ge W™P(R")nD(V), one has ge C(R") by Sobolev’s embedding theorem.
Thus, |g(x)|>¢>0 in some open subset Q<R". Taking a;€ Q yields

/n [V (x)g(x)[ dx>2_””c/’/ » |x —oy] " dx = oo for small §>0,

which contradicts ge D(V). O
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Set I, = I, [p, ) for pe(2, o0 ). Then I) = 0 for p>2 + 7’ and

2-1) 7 .
‘lu, tp if 2<p<4 -7/,
I/ P—2 P—2
I 7'p
{p,p_2> if 4—7<p<2+7.

Combining Theorem 4.4 and Proposition 4.5(b) leads to

Theorem 4.6. Let 1<p<2+71 and V=V, +V, with V;eL9(R") for some
sjell',m (%, oo] (j=1,2). Then iP(D) + V generates a [-times integrated group on

L7 (R"), where f>n, + 1.
Corresponding to Corollary 2.6 we have

_p_
Corollary 4.7. Let 1<p<3,n,<m/2 and V € LIP=2l(R"). Then iP(D) + V generates a
p-times integrated group on LP(R"), where f>n, + 1.

In order to give L? estimates of the solution for Schrédinger equations we need
Straub’s fractional powers (cf. [13]). If a densely defined operator A is the generator

of a B-times integrated group T'() (teR) satisfying || T(¢)||< Ce®!!l (teR), then for
0,&>0 the fractional powers (w + 5iA)ﬁ *¢ are well-defined and their domains are
independent of 3> 0. We note that D((w + 6 + 4)"™) A D((w + 6 — 4)"**) for small

£>0 contains the dense subspace D(A#*1). The following result is a consequence of
Theorem 4.6 and Theorem 1.1 in [13].

Theorem 4.8. Suppose p, V and f satisfy the assumptions of Theorem 4.6. Then, there

exist constants C,w>0 such that for every data uge D((w + iP(D) + V)!) A D((w —

iP(D) — V)P), the Cauchy problem (x) has a unique solution ue C(R, L?(R")) and
[u(t, )], < Ce”M[ (@ iP(D) £ V) 'w|,  for 1R,

where we choose + (resp. —) if t=0 (resp. <0).

0¢;0¢;
curvature of X is nonzero everywhere (cf. [11]). In this case k =2, and thus

When P is nondegenerate (i.e. det(éﬂp(é)) #0 for £eR"\{0}), the Gaussian
nxn

h(m,n, k) = % In order to compare our results with those in [4] for homogeneous
polynomial P, we denote by I,(t) (resp. 1,’,(1)) the set I, (resp. Ip’) defined in Section 2

(resp. 4). As a direct consequence of Theorems 2.4 and 4.4(a) we have
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Corollary 4.9. Suppose P is nondegenerate. Let 1<p<2 and 7y ,(70)
(resp. sjel(t0) N (%, ©]), then the conclusion of Theorem 2.4 (resp. 4.4( )) is true.

We first note that for homogeneous polynomial P, the hypothesis (H2) in [4]
is equivalent to that P is nondegenerate. Thus, Corollary 4.9 improves the
corresponding Theorem 2’ and 6 in [4] in several respects:

(1) For fixed pell,2), the interval Iy(t0) is replaced by smaller (¢(t1,p),p'] in
2n(m—1
Theorem 2/, where q<11’p) = # + oy p mn—2(n—3n’)l+2'

q(t,p) (t>2) is strictly increasing. Since p'€l,(19) and 2<19<71y, I,(19) contains

cand 11 = In fact, it is clear that

properly (¢(t1,p),p']. Similarly, the interval ) (zo) is replaced by smaller [;* £, 2'1; ) in
Theorem 6.

(2) The hypothesis (H3'), i.e. n>3 4 2 is required in Theorems 2’ and 6, but not
in Corollary 4.9. For example, when n = 2,3 and m>4, one has n<3 + -5, and thus

Theorems 2’ and 6 cannot deal with such a case. However, in this case,
1,(t0) N (s 0] = I (7o), which means that for every pe[l,2], we can choose ¢ and
s;’s values such that the conclusion of Corollary 4.9 holds.

(3) We first note that p#1 in Theorems 2’ and 6, but it is admitted that p =1 in

Corollary 4.9. Furthermore it is requlred in Theorem 6 that p>-=% +1’ where ¢ is an

I,(to) N (2, ];A(Z) whrch is equrvalent to p>;——. It is easy to see that this is

naturally an improvement of the corresponding condltlon in Theorem 6.

(4) The conclusion in Theorem 6 (see its remark for homogenecous P) is that
iP(D) 4+ V generates a smooth distribution group on L?(R") of order f, which is
equivalent to a f-times integrated group on L?(R"), where 8 is an integer with
p>n, + 2. Our conclusion in Corollary 4.9 however admits that § is a real number
with f>n, + 1.
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