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Abstract

This paper is concerned with Schrödinger equations whose principal operators are

homogeneous elliptic. When the corresponding level hypersurface is convex, we show the

Lp–Lq estimate of the solution operator in the free case. This estimate, combined with the

results of fractionally integrated groups, allows us to further obtain the Lp estimate of solutions

for the initial data belonging to a dense subset of Lp in the case of integrable potentials.
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1. Introduction

In this paper, we take interest in Lp; 1ppoN; estimates of solutions for the
following Schrödinger equation:

@u

@t
¼ ðiPðDÞ þ VÞu; uð0; �Þ ¼ u0ALpðRnÞ; ð�Þ
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where D ¼ �ið@=@x1;y; @=@xnÞ; P : Rn-R is a homogeneous elliptic polynomial of
order m (m must be even, except n ¼ 1), and V is a suitable potential function. In the
sequel, we may assume without loss of generality that PðxÞ40 for xa0: Otherwise, we
have PðxÞo0 for xa0; for which the following hypersurface S should be replaced by

fxARnj PðxÞ ¼ �1g:

In order to obtain Lp estimates of the solution of ð�Þ; we will first treat Lp–Lq

estimates of eitPðDÞ; which is the solution operator of ð�Þ with V ¼ 0: To this end, we
need to consider the compact hypersurface

S ¼ fxARnj PðxÞ ¼ 1g:

When the Gaussian curvature of S is nonzero everywhere, it is known that Lp–Lq

estimates of eitPðDÞ ðta0Þ can be deduced from Miyachi [12]. In fact, Miyachi gave
some remarks on these estimates in a more general case where P is a positive and
smooth homogeneous function, provided the nonvanishing Gaussian curvature on S:
Also, dropping the homogeneity of P; Balabane and Emami-Rad [4] studied these
estimates under a suitable nondegenerate condition. However, one can check that the
nondegenerate condition is equivalent to the nonzero Gaussian curvature if P is
homogeneous.
As we know, the nonvanishing Gaussian curvature plays a crucial rule in

estimating many oscillatory integrals [16]. This is the reason why one needs such a
condition in [4,12]. However, there exist many hypersurfaces S whose Gaussian
curvatures may vanish at some points (although we have observed that if m ¼ 2 then
S has nonzero Gaussian curvature everywhere under our assumptions on P). These
examples are easily available, for instance, the hypersurfaces S associated with

polynomials xm
1 þ?þ xm

n ðm ¼ 4; 6;yÞ or x41 þ 6x21x
2
2 þ x42:

On the other hand, an important subclass of hypersurfaces with vanishing
Gaussian curvature at some points is the class of convex hypersurfaces of finite type
[5]. The main purpose of this paper is to investigate the Lp estimate of the solution of
ð�Þ when S is a convex hypersurface of finite type. Roughly speaking, this means that
P allows to be degenerate on a subset of Rn:
This paper is organized as follows.

In Section 2, we study Lp–Lq estimates of the solution operator eitPðDÞ ðta0Þ and
the resolvent operator ðl� iPðDÞÞ�1 (Re la0) when S is a convex hypersurface of
finite type. The method used is quite different from those in the previous papers
[4,12], due to the nature of the vanishing Gaussian curvature. Our proof depends

heavily on a decay estimate for the kernels F�1ðe7iPÞ; in which we need to use a
powerful theorem in [5]. Since the proof is involved and very technical, we will
present it in Section 3.
In Section 4, we show that the operator iPðDÞ þ V with suitable integrable

potential V generates an integrated group on LpðRnÞ: As we know, the semigroup of
operators is a useful abstract tool to treat Cauchy problems. However, the Cauchy
problem ð�Þ in LpðRnÞ ðpa2Þ cannot be treated by classical semigroups of operators
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(i.e. C0-semigroups). In fact, the Schrödinger operator iPðDÞ generates C0-
semigroups in LpðRnÞ if and only if p ¼ 2 (see [10,12]). Thus, several generalizations
of C0-semigroups, such as smooth distribution semigroups [3], integrated semigroups
[1,9], and regularized semigroups [7,8] were introduced and applied to different
general differential operators [9,18]. In our case, we use fractionally integrated groups
to deal with the Cauchy problem ð�Þ in LpðRnÞ; which will lead to better results than
using smooth distribution semigroups (see [3]). Moreover, when P is nondegenerate,
we will show how our results present an improvement over Theorems 20 and 6 in [4].
Throughout this paper, S denotes the hypersurface fxARnj PðxÞ ¼ 1g: Assume

that P : Rn-½0;NÞ is always a homogeneous elliptic polynomial of order m where
nX2; m is even and X4:

2. Lp-Lq Estimates for Schrödinger equations without potentials

We start with the concept of finite type. S denotes the smooth hypersurface
fxARnj fðxÞ ¼ 0g; where fACNðRnÞ and rfðxÞa0 for xAS: We say that S is of
finite type if any one-dimensional tangent line has at most a finite order of contact
with S: The precise definition is as follows.

Sn�1 denotes the unit sphere in Rn: Let

rZ ¼
Xn

j¼1
Zj@=@xj for Z ¼ ðZ1;y; ZnÞASn�1;

which is the directional derivative in direction Z; and let r j
Z be the jth power of this

derivative.

Definition 2.1. Let k be an integer. The smooth hypersurface S is of type k if there
exists a constant d40 such that

Xk

j¼1
jr j

ZfðxÞjXd for xAS and ZASn�1:

Moreover, we say that S is convex if

SCfZARnj/Z� x;rfðxÞSX0g for xAS

or

SCfZARnj/Z� x;rfðxÞSp0g for xAS:

It is clear that kX2; and that if S is of type k it is also of type k0ð4kÞ: For the
hypersurface S (i.e. fxARnj PðxÞ ¼ 1g), since

/x;rPðxÞS ¼ mPðxÞ ¼ m for xAS;
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it follows that rPðxÞa0 for xAS; and thus S is smooth. Also, a simple computation
leads to

rm
Z ðPðxÞ � 1Þ ¼ m!PðZÞ for xAS and ZASn�1:

Hence, we have

Proposition 2.2. S is a smooth compact hypersurface of type less than or

equal to m:

A simple example of polynomials whose level hypersurface S is of type m is
xm
1 þ?þ xm

n ðm ¼ 4; 6;yÞ: We notice that there exist polynomials P whose level

hypersurfaces S are of type kðomÞ: For example, when PðxÞ ¼ x61 þ 5x21x
4
2 þ x62; the

corresponding hypersurface S is of type 4, but m ¼ 6:
We now turn to the Cauchy problem ð�Þ with V ¼ 0: In this case, for every initial

data u0ASðRnÞ (the Schwartz space), the solution is given by

uðt; �Þ ¼ eitPðDÞu0 :¼ F�1ðeitPÞ � u0;

where F (or 4) denotes the Fourier transform, F�1 its inverse, and F�1ðeitPÞ is
understood in the distributional sense. Therefore, to obtain Lp–Lq estimates of eitPðDÞ

ðta0Þ; the key result is to show estimates of the kernels F�1ðe7iPÞ:
In the sequel, denote by p0 the conjugate index of p; and jj � jjLp�Lq the norm in

LðLp;LqÞ (the space of all bounded linear operators from Lp to Lq). Let

hðm; n; kÞ ¼ m � 2

2ðm � 1Þ þ
ðm � kÞðn � 1Þ

kðm � 1Þ for 2pkpm;

t ¼ n=hðm; n; kÞ; and qð pÞ ¼ qðm; n; k; pÞ where

1

qðm; n; k; pÞ ¼
1

tp
þ 1

t0p0 for 1ppo2:

We first remark that when 2pkpm;

2ðm � 1Þ
m � 2

ptp
2nðm � 1Þ

m � 2
:

Since mX4; it follows that tAð2; 3n�: Next, we remark that

1

2
4

1

tp
þ 1

t0p04
1

p0 for 1ppo2
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and thus 2oqð pÞop0: Moreover, denote by Ip (1ppp2) the following subset of

½2;N�:

Ip ¼

ðqð pÞ;N� if 1ppot0;

qð pÞ; pð2� t0Þ
p � t0

� �
if t0ppo2;

f2g if p ¼ 2:

8>>><
>>>:

Theorem 2.3. Suppose S is a convex hypersurface of type k: Then F�1ðe7iPÞA
CNðRnÞ and

ðF�1ðe7iPÞÞðxÞ ¼ Oðjxj�hðm;n;kÞÞ as jxj-N:

The proof is lengthy and is given in the next section.

Theorem 2.4. Suppose S is a convex hypersurface of type k: If pA½1; 2� and qAIp; then

there exists a constant C40 such that

jjeitPðDÞjjLp�LqpCjtj
n
m

1
q
�1

p

� 	
for ta0:

Proof. By Theorem 2.3, F�1ðe7iPÞALsðRnÞ for s4t: Since P is homogeneous,
one has

F�1ðeitPÞðxÞ ¼ jtj�n=mF�1ðeitP=jtjÞðjtj�1=m
xÞ for ta0 and xARn;

and thus

jjF�1ðeitPÞjjLs ¼ jtj�n=ms0 jjF�1ðeitP=jtjÞjjLspCjtj�n=ms0 for ta0;

where the constant C is independent of t: The remainder of the proof will be divided
into several steps.

Step 1. When 1ppot0 and t0p
t0�p

oqpN; it follows from Young’s inequality that

jjeitPðDÞjjLp�LqpjjF�1ðeitPÞjjLspCjtj
n
m

1
q
�1

p

� 	
for ta0;

where 1
s
¼ 1þ 1

q
� 1

p
; which implies s4t:

Step 2. Since PðDÞ is self-adjoint in L2ðRnÞ; jjeitPðDÞjjL2�L2 ¼ 1 for tX0 by Stone’s

theorem. When 1ppo2 and qð pÞoqpp0; we deduce from the Riesz–Thorin
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interpolation theorem that

jjeitPðDÞjjLp�LqpjjeitPðDÞjj1�2=p0

L1�Ls jjeitPðDÞjj2=p0

L2�L2pCjtj
n
m

1
q
�1

p

� 	
for ta0;

where s ¼ qð p0�2Þ
p0�q

4t:

Step 3. When 1ppot0 and qð pÞoqpN; we notice qð pÞo t0p
t0�p

: Since

Ls2ðRnÞCLs1ðRnÞ þ Ls3ðRnÞ for 1ps1ps2ps3pN; the desired estimate is a direct
consequence of the conclusions in Steps 1 and 2.

Step 4. When t0ppo2 and qð pÞoqopð2�t0Þ
p�t0 ; we put l ¼ 2ðp�p0Þ

pð2�p0Þ; where p0A½1; t0Þ
such that qo2

lo
pð2�t0Þ

p�t0 : A simple computation leads to

l
2
o
1

q
o

1

qð pÞ ¼
1� l
qð p0Þ

þ l
2
:

Consequently, there exists a unique q04qðp0Þ such that 1q ¼ 1�l
q0

þ l
2
: Also, 1

p
¼ 1�l

p0
þ l

2
:

The desired estimate now can be deduced from the Riesz–Thorin interpolation
theorem and the conclusion in Step 1. &

The subsequent theorem deals with Lp–Lq estimates of the resolvent of iPðDÞ:

Theorem 2.5. Suppose S is a convex hypersurface of type k: If pA½1; 2�; qAIp; and
1
p
� 1

q
om

n
; then there exists a constant C40 such that

jjðl� iPðDÞÞ�1jjLp�LqpCjRe lj
n
m

1
p
�1

q

� 	
�1

for Re la0:

Proof. For Re l40 and fASðRnÞ; one has

ðl� iPðDÞÞ�1f ¼F�1ððl� iPÞ�1 f̂ Þ

¼
Z

N

0

e�ltF�1ðeitPf̂ Þ dt

¼
Z

N

0

e�lteitPðDÞf dt:

It follows therefore from Theorem 2.4 that

jjðl� iPðDÞÞ�1jjLp�LqpC

Z
N

0

e�ðRe lÞtt
n
m

1
q
�1

p

� 	
dt

¼CjRe lj
n
m

1
p
�1

q

� 	
�1
:
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For Re lo0 and fASðRnÞ; one has

ðl� iPðDÞÞ�1f ¼ �ð�lþ iPðDÞÞ�1f ¼
Z

N

0

elte�itPðDÞf dt;

and thus the desired estimate follows from Theorem 2.4. &

Since p0AIp for pA½1; 2�; we have

Corollary 2.6. Suppose S is a convex hypersurface of type k: If pA½1; 2� then

jjeitPðDÞjjLp�Lp0pCjtj
n
m

1�2
p

� 	
for ta 0:

If, in addition, p4 2n
nþm

; then

jjðl� iPðDÞÞ�1jjLp�Lp0pCjRe lj
�n

m
2
p
�1

� 	
�1

for Re la0:

3. The proof of Theorem 2.3

By our assumptions on P; f :¼ P1=m is a positive and smooth homogeneous
function of degree 1, and S ¼ fxARnj fðxÞ ¼ 1g: Let jACNðRÞ such that

supp jC½1;NÞ and jðtÞ ¼ 1 for tX2: Obviously, in order to estimate F�1ðeiPÞ
(similarly for F�1ðe�iPÞ), it suffices to estimate F�1ððj3fÞeiPÞ (cf. [4, p. 363]).
Consider the integral

KeðxÞ :¼
Z
Rn

e�efðyÞþiPðyÞþi/x;ySjðfðyÞÞ dy

¼
Z

N

0

e�etþitm

tn�1jðtÞ
Z
S

eitr/Z;xS

jrfðxÞj dsðxÞ
� �

dt for e40;

where r ¼ jxj; x ¼ rZ; and ds is the induced surface measure on S: We will
show that

F�1ððj3fÞeiPÞðxÞ ¼ ð2pÞ�n lim
e-0

KeðxÞ

uniformly for x in compact subsets of Rn; and KeðxÞ decays as jxj�hðm;n;kÞ: From this

we have F�1ððj3fÞeiPÞACðRnÞ since it is clear that KeACðRnÞ:
Denote by P the Gaussian map

xAS/
rfðxÞ
jrfðxÞjAS

n�1:
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Since S is a compact convex hypersurface, P is a homeomorphism from S to Sn�1:

Given ZASn�1; let x7 ¼ P�1ð7ZÞ: Then

/Z; x7S ¼ 7
rfðx7Þ
jrfðx7Þj; x7
� �

¼ 7
fðx7Þ

jrfðx7Þj ¼ 7
1

jrfðx7Þj;

Noting that 7Z is the outward unit normal to S at x7; by Theorem B in [5] (also

cf. [6]) we haveZ
S

eil/Z;xS

jrfðxÞj dsðxÞ ¼ eil/Z;xþSHþðlÞ þ eil/Z;x�SH�ðlÞ þ HNðlÞ for l40:

Here H7ACNðð0;NÞÞ;

jHð jÞ
7 ðlÞjpCjl

�j�ðn�1Þ=k for jAN0;

and

jHNðlÞjpCjl
�j for jAN;

where N0 ¼ N,f0g and constants Cj depend only on the hypersurface S:
Hence,

KeðxÞ ¼
Z

N

0

e�etþitmþitr/Z;xþStn�1jðtÞHþðtrÞ dt

þ
Z

N

0

e�etþitmþitr/Z;x�Stn�1jðtÞH�ðtrÞ dt

þ
Z

N

0

e�etþitm

tn�1jðtÞHNðtrÞ dt

:¼ Je
1 þ Je

2 þ Je
3:

In the remainder of this section, for the sake of convenience, we will denote by C a
generic constant independent of r; t and e:
We consider first the integral Je

3: It is obvious that

jJe
3jpC

Z
N

1

tn�1ðtrÞ�ðnþ1Þ
dtpCr�ðnþ1Þ:

Since r ¼ jxj; it follows from the dominated convergence theorem that Je
3 (e-0)

converges uniformly for x in compact subsets of Rn
\f0g; and decays as jxj�hðm;n;kÞ;

where we notice that hðm; n; kÞpn:
Next, consider the integral Je

1: Let

uðtÞ ¼ �et þ itm þ itr/Z; xþS;

vðtÞ ¼ tn�1jðtÞHþðtrÞ

(
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for t40: Since u0ðtÞa0 for t40; we can define D#f ¼ �gf 0 and D�f ¼ ðgf Þ0 for
fAC1ðð0;NÞÞ; where g ¼ �1=u0: By induction on j we find that

gð jÞðtÞ ¼
Xj

l¼l0

alt
lðm�1Þ�jgðtÞlþ1 for jAN0;

where constants al depend only on l and m; and l0AN0 such that l0Xj=ðm � 1Þ: Since
there exists a constant c41 such that c�1pjrfðxÞjpc for xAS; we have

jgðtÞj ¼ 1=ju0ðtÞjp1=r/Z; xþS ¼ jrfðxþÞj=rpc=r for t40:

Also, jgðtÞjp1
m

t1�m for t40: Hence,

jgð jÞðtÞjpCr�1t�j for jAN0:

On the other hand, one sees

d j

dt j
ðHþðtrÞÞ

����
����pCt�jðtrÞ�ðn�1Þ=k for jAN0;

and thus by Leibniz’s formula

jvð jÞðtÞjpCr�ðn�1Þ=kt�jþn�1�ðn�1Þ=k for jAN0: ð3:1Þ

Since it is not hard to show

D j
�v ¼

X
a

aag
ða1Þ?gðajÞvðajþ1Þ for jAN;

where the sum runs over all a ¼ ða1;y; a jþ1ÞAN jþ1
0 such that jaj ¼ j and

0pa1p?paj ; it follows that

jðD j
�vÞðtÞjpCr�j�ðn�1Þ=kt�jþn�1�ðn�1Þ=k for jAN0; ð3:2Þ

where we used the notation D0
�v ¼ v: Noting that Dn

#eu ¼ eu we have

Je
1 ¼

Z
N

0

ðDn
#euÞðtÞvðtÞ dt ¼

Z
N

0

euðtÞðDn
�vÞðtÞ dt:

Consequently,

jJe
1jpCr�n�ðn�1Þ=k

Z
N

1

t�1�ðn�1Þ=k dtpCr�n�ðn�1Þ=k:

Thus, the dominated convergence theorem yields that Je
1 converges uniformly for x

in compact subsets of Rn
\f0g; and decays as jxj�hðm;n;kÞ:
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We now consider the integral Je
2: In this case, we put

uðtÞ ¼ �et þ itm � it%r;

vðtÞ ¼ tn�1jðtÞH�ðtrÞ

(

for t40; where

%r :¼ �r/Z; x�S ¼ r=jrfðx�Þj:

Since t0 :¼ ð%r=mÞ1=ðm�1Þ is the unique critical point of the oscillatory integral Je
2;

we write

Je
2 ¼

Z
N

2t0

þ
Z 2t0

t0=2

þ
Z t0=2

0

( )
euðtÞvðtÞ dt

:¼ Je
2;1 þ Je

2;2 þ Je
2;3:

From integration by parts one gets

Je
2;1 ¼ � euð2t0Þ

u0ð2t0Þ
Xn�1
j¼0

ðD j
�vÞð2t0Þ þ

Z
N

2t0

euðtÞðDn
�vÞðtÞ dt:

Since

ju0ðtÞjXmtm�1 � %rXð2m�1 � 1Þ%rXð2m�1 � 1Þr=c for tX2t0

and since

ju0ðtÞjXmtm�1 � %rXmð1� 21�mÞtm�1 for tX2t0;

the estimate (3.2) still holds for tX2t0: Hence,

jJe
2;1jpCr�1

Xn�1
j¼0

r�j�ðn�1Þ=kð2t0Þ�jþn�1�ðn�1Þ=k

þ C

Z
N

2t0

r�n�ðn�1Þ=kt�1�ðn�1Þ=k dt

pCrðn�m�mðn�1Þ=kÞ=ðm�1Þ
Xn�1
j¼0

r�jm=ðm�1Þ:

But

ðn � m � mðn � 1Þ=kÞ=ðm � 1Þp� hðm; n; kÞ;
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Je
2;1 converges uniformly for x in compact subsets of Rn

\f0g; and decays as

jxj�hðm;n;kÞ: Since ju0ðtÞjXCtm�1 and XCr for 0otpt0=2; a slight modification of the
above method leads to the same conclusion for Je

2;3: We omit the details.

In order to deal with Je
2;2; set wðtÞ ¼ tm � t%r and vðtÞ is defined as in Je

2;1:

Obviously,

lim
e-0

Je
2;2 ¼ J2;2 :¼

Z 2t0

t0=2

eiwðtÞvðtÞ dt

uniformly for x in compact subsets of Rn
\f0g: It remains to show that J2;2 decays

as jxj�hðm;n;kÞ: Let y ¼ ðt � t0Þ=t0; which maps ½t0=2; 2t0� onto ½�1=2; 1�; and
let l ¼ mðm � 1Þtm

0 : Then

FðyÞ :¼ 1

l
ðwðt0ðy þ 1ÞÞ � wðt0ÞÞ

¼ 1

mðm � 1Þððy þ 1Þm � my � 1Þ

¼ 1

mðm � 1Þ
Xm

l¼2

m

l

 !
yl for yA½�1=2; 1�:

Consequently,

F00ðyÞ ¼ ðy þ 1Þm�2
X22�m for yA½�1=2; 1�

and

J2;2 ¼ t0e
iwðt0Þ

Z 1

�1=2
eilFðyÞvðt0ðy þ 1ÞÞ dy:

It follows thus from van der Corput’s theorem (cf. [16, p. 334]) that

jJ2;2jpCl�1=2t0 jvð2t0Þj þ
Z 1

�1=2
jt0v0ðt0ðy þ 1ÞÞj dy

 !

pCt
1�m=2
0 jvð2t0Þj þ sup

t0=2ptp2t0

jt0v0ðtÞj
 !

:

Since (3.1), in which Hþ is replaced by H�; still holds,

jJ2;2jpCr�ðn�1Þ=kt
n�m=2�ðn�1Þ=k
0 pCr�hðm;n;kÞ;

as desired.
Finally, we only need to show that KeðxÞ converges uniformly for x in some

neighborhood of the origin. Let U be the ball fxARnj jxjpm=2Mg; where M is a
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constant such that jxjpM for xAS: For a given xAU ; let

uðtÞ ¼ �et þ itm þ it/x; xS for tX1:

Then

KeðxÞ ¼
Z
S

Z
N

1

euðtÞtn�1jðtÞ dt

� �
dsðxÞ
jrfðxÞj:

Since

ju0ðtÞjXjmtm�1 þ/x; xSjXmtm�1 � MjxjXðm=2Þtm�1
Xm=2;

as in the case of the estimate of Je
1 we obtainZ

N

1

euðtÞtn�1jðtÞ dt

����
����pC;

and therefore the claim follows.
Moreover, an analogous method as above leads to

DaF�1ðe7iPÞ ¼ F�1ðxae7iPðxÞÞACðRnÞ for aANn
0;

i.e. F�1ðe7iPÞACNðRnÞ and

DaðF�1ðe7iPÞÞðxÞ ¼ Oðjxj�hðm;n;kÞþjaj=ðm�1ÞÞ ðjxj-NÞ for aANn
0:

4. Lp Estimates for Schrödinger equations

It was Balabane and Emami-Rad [4] who first applied smooth distribution
semigroups to higher order Schrödinger equations, and showed the Lp estimate of
solutions. Arendt and Kellermann [2] showed that a smooth distribution semigroup
is equivalent to an integrally integrated semigroup. However, it is known that the
fractionally integrated semigroup is a generalization of the integrally integrated
semigroup and is a more suitable tool for elliptic differential operators in LpðRnÞ
(cf. [9,17]). We start with its definition.

Definition 4.1. Let A be a linear operator on a Banach space X and bX0: Then a
strongly continuous family T : ½0;NÞ-LðXÞ is called a b-times integrated
semigroup on X with generator A if there exist constants C;oX0 such that
jjTðtÞjjpCeot for tX0; ðo;NÞCrðAÞ (the resolvent set of A), and

ðl� AÞ�1x ¼ lb
Z

N

0

e�ltTðtÞx dt for l4o and xAX :
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If A and �A both are generators of b-times integrated semigroups on X ; we say A

is the generator of a b-times integrated group on X :

Here is a sufficient condition for an operator to be the generator of integrated
semigroups, which is due to Hieber [9, p. 30] (see [2] for a special case).

Lemma 4.2. Let A be a linear operator on a Banach space X : Suppose there exist

constants C;oX0 and gX� 1 such that for Re l4o; lArðAÞ and jjðl� AÞ�1jjp
Cjljg: Then A generates a b-times integrated semigroup on X ; where b4gþ 1:

Assume that the operator PðDÞ has maximal domain in the distributional sense on
LpðRnÞ (1ppoN), and thus it is closed and densely defined. It is known that
DðPðDÞÞ ¼ W m;pðRnÞ for 1opoN: The following Lemma 4.3(a) can be found in
[9,17], and Lemma 4.3(b) follows from Lemma 4.3(a) and Definition 4.1,
immediately.

Lemma 4.3. Let 1ppoN and b4np :¼ nj1
2
� 1

p
j:

(a) iPðDÞ generates a b-times integrated group TðtÞ ðtARÞ on LpðRnÞ; and

jjTðtÞjjLp�LppCjtjb for tAR:

(b) flACjRe la0gCrðiPðDÞÞ on LpðRnÞ; and

jjðl� iPðDÞÞ�1jjLp�LppCjljb=jRe ljbþ1 for Re la0:

Let V be a measurable function defined on Rn: We consider V as a multiplication
operator on LpðRnÞ with DðVÞ :¼ f fALpðRnÞj VfALpðRnÞg: The domain of
iPðDÞ þ V is DðPðDÞÞ-DðVÞ: Denote by I 0p (1ppp2), the following subset of

½1;N�:

I 0p ¼

p;
t0p
2� p

� �
if 1ppot0;

pð2� t0Þ
2� p

;
t0p
2� p

� �
if t0ppo2;

fNg if p ¼ 2;

8>>>>><
>>>>>:

where t ¼ n=hðm; n; kÞ and hðm; n; kÞ is defined as in Section 2.

Theorem 4.4. Let V ¼ V1 þ V2 with VjALsj ðRnÞ for some sjAðn
m
;N� ð j ¼ 1; 2Þ:

(a) If sjAI 0p for some pA½1; 2�; then iPðDÞ þ V generates a b-times integrated group

on LpðRnÞ; where b4np þ 1:

(b) If sjAI 0p0 for some pAð2;NÞ; then an extension of iPðDÞ þ V ; i.e. ð�iPðDÞ þ %VÞ�

generates a b-times integrated group on LpðRnÞ; where b4np þ 1:
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Proof. Since iPðDÞ þ V and �ðiPðDÞ þ VÞ satisfy the same assumptions, it suffices
to show that iPðDÞ þ V generates a b-times integrated semigroup on LpðRnÞ:
We consider first the case 1ppp2: Let 1

qj
¼ 1

p
� 1

sj
( j ¼ 1; 2). Then sjAI 0p implies

qjAIp (Ip is defined in Section 2). So we obtain by Theorem 2.5 and Hölder’s

inequality that

jjVðl� iPðDÞÞ�1jjLp�Lpp
X
j¼1;2

jjV jjLqj �Lp jjðl� iPðDÞÞ�1jjLp�L
qj

pC
X
j¼1;2

jjV jjLsj jRe lj
n

msj

�1
:

In view of n
msj

� 1o0; there exists oX1 such that

jjVðl� iPðDÞÞ�1jjLp�Lpp1=2 for Re l4o:

Consequently, lArðiPðDÞ þ VÞ and

ðl� iPðDÞ � VÞ�1 ¼ ðl� iPðDÞÞ�1
XN
j¼0

ðVðl� iPðDÞÞ�1Þ j:

This implies by Lemma 4.3(b) that

jjðl� iPðDÞ � VÞ�1jjLp�Lpp 2jjðl� iPðDÞÞ�1jjLp�Lp

pCjljnpþe for Re l4o;

where eAð0;b� np�1Þ: It follows now from Lemma 4.2 that iPðDÞ þ V generates

a b-times integrated semigroup on LpðRnÞ:
Next, we consider the case 2opoN: From the proof of (a) one sees that

�iPðDÞ þ %V is densely defined on Lp0 ðRnÞ; and thus ð�iPðDÞ þ %VÞ� exists and is

densely defined on LpðRnÞ: It is easy to check iPðDÞ þ VCð�iPðDÞ þ %VÞ�: Also, an
adjointness argument implies

jjðl� ð�iPðDÞ þ %VÞ�Þ�1jjLp�Lp ¼ jjð%l� ð�iPðDÞ þ %VÞÞ�1jjLp0�Lp0 :

Since sjAI 0p0 and np0 ¼ np; this leads to the same estimate as in the case 1opo2: It

follows therefore from Lemma 4.2 that ð�iPðDÞ þ %VÞ� generates a b-times integrated
semigroup on LpðRnÞ: &
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When 2opoN; we rewrite I 0p0 as

I 0p0 ¼

pð2� t0Þ
p � 2

;
t0p

p � 2

� �
if 2oppt;

p

p � 1
;
t0p

p � 2

� �
if topoN:

8>>><
>>>:

From this and the subsequent proposition one sees that it is not always true that

iPðDÞ þ V ¼ ð�iPðDÞ þ %VÞ� in Theorem 4.3(b), so is such situation in [4, Theorem
6]. This means that the operator iPðDÞ þ V in [4, Theorem 6] should be replaced by

ð�iPðDÞ þ %VÞ� for p42:

Proposition 4.5. Let 1opoN and n
m
osoN:

(a) If VALsðRnÞ and sXp; then W m;pðRnÞCDðVÞ and V is a compact operator from

W m;pðRnÞ to LpðRnÞ:
(b) If VALsðRnÞ and sXmaxfp; p0g; then iPðDÞ þ V ¼ ð�iPðDÞ þ %VÞ� on LpðRnÞ:
(c) If 1psop; then there exists VALsðRnÞ such that W m;pðRnÞ-DðVÞ ¼ f0g:

Proof. (a) is a direct consequence of Theorem 10.2 in [15, p. 147], in which condition

(5) is satisfied. Since rðPðDÞÞa| on Lp0 ðRnÞ; (b) follows from (a) and Theorem 6.1 in
[15, p. 94]. To show (c), we will modify slightly an example in [14, p. 60]. Let

f ðxÞ ¼ jxj�n=p for jxjp1 and ¼ 0 for jxj41: Define

VðxÞ ¼
XN
j¼1

2�j f ðx � ajÞ for xARn;

where fajgNj¼1 ¼ Qn (Q denotes the set of all rational numbers). Then

jjV jjLsp
XN
j¼1

2�jjj f ðx � ajÞjjLs ¼ jj f jjLsoN:

If 0agAW m;pðRnÞ-DðVÞ; one has gACðRnÞ by Sobolev’s embedding theorem.
Thus, jgðxÞjXc40 in some open subset OCRn: Taking ajAO yields

Z
Rn

jVðxÞgðxÞjp dxX2�npc p

Z
jx�aj jpd

jx � ajj�n
dx ¼ N for small d40;

which contradicts gADðVÞ: &
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Set I 0p ¼ I 0p0-½ p;NÞ for pAð2;NÞ: Then I 0p ¼ | for pX2þ t0 and

I 0p ¼

pð2� t0Þ
p � 2

;
t0p

p � 2

� �
if 2opp4� t0;

p;
t0p

p � 2

� �
if 4� t0opo2þ t0:

8>>><
>>>:

Combining Theorem 4.4 and Proposition 4.5(b) leads to

Theorem 4.6. Let 1ppo2þ t0 and V ¼ V1 þ V2 with VjALsj ðRnÞ for some

sjAI 0p-
n
m
;N

� �
ð j ¼ 1; 2Þ: Then iPðDÞ þ V generates a b-times integrated group on

LpðRnÞ; where b4np þ 1:

Corresponding to Corollary 2.6 we have

Corollary 4.7. Let 1ppp3; npom=2 and VAL
p

jp�2jðRnÞ: Then iPðDÞ þ V generates a

b-times integrated group on LpðRnÞ; where b4np þ 1:

In order to give Lp estimates of the solution for Schrödinger equations we need
Straub’s fractional powers (cf. [13]). If a densely defined operator A is the generator

of a b-times integrated group TðtÞ ðtARÞ satisfying jjTðtÞjjpCeojtj ðtARÞ; then for

d; e40 the fractional powers ðoþ d7AÞbþe are well-defined and their domains are

independent of d40: We note that Dððoþ dþ AÞbþeÞ-Dððoþ d� AÞbþeÞ for small
e40 contains the dense subspace DðA½b�þ1Þ: The following result is a consequence of
Theorem 4.6 and Theorem 1.1 in [13].

Theorem 4.8. Suppose p; V and b satisfy the assumptions of Theorem 4.6. Then, there

exist constants C;o40 such that for every data u0ADððoþ iPðDÞ þ VÞbÞ-Dððo�
iPðDÞ � VÞbÞ; the Cauchy problem ð�Þ has a unique solution uACðR;LpðRnÞÞ and

jjuðt; �ÞjjLppCeojtjjjðo7iPðDÞ7VÞbu0jjLp for tAR;

where we choose þ ðresp: �Þ if tX0 (resp: o0Þ:

When P is nondegenerate (i.e. det @2PðxÞ
@xi@xj

� 	
n�n

a0 for xARn
\f0g), the Gaussian

curvature of S is nonzero everywhere (cf. [11]). In this case k ¼ 2; and thus

hðm; n; kÞ ¼ nðm�2Þ
2ðm�1Þ: In order to compare our results with those in [4] for homogeneous

polynomial P; we denote by IpðtÞ (resp. I 0pðtÞ) the set Ip (resp. I 0p) defined in Section 2

(resp. 4). As a direct consequence of Theorems 2.4 and 4.4(a) we have
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Corollary 4.9. Suppose P is nondegenerate. Let 1ppp2 and t0 ¼ 2ðm�1Þ
m�2 : If qAIpðt0Þ

ðresp: sjAI 0pðt0Þ-ðn
m
;N�Þ; then the conclusion of Theorem 2.4 ðresp: 4:4ðaÞÞ is true.

We first note that for homogeneous polynomial P; the hypothesis (H2) in [4]
is equivalent to that P is nondegenerate. Thus, Corollary 4.9 improves the
corresponding Theorem 20 and 6 in [4] in several respects:
(1) For fixed pA½1; 2Þ; the interval Ipðt0Þ is replaced by smaller ðqðt1; pÞ; p0� in

Theorem 20; where 1
qðt;pÞ ¼ 1

tp
þ 1

t0p0 and t1 ¼ 2nðm�1Þ
mn�2n�3mþ2: In fact, it is clear that

qðt; pÞ ðt42Þ is strictly increasing. Since p0AIpðt0Þ and 2ot0ot1; Ipðt0Þ contains
properly ðqðt1; pÞ; p0�: Similarly, the interval I 0pðt0Þ is replaced by smaller ½ p

2�p
;
t0
1
p

2�p
Þ in

Theorem 6.

(2) The hypothesis (H30), i.e. n43þ 4
m�2 is required in Theorems 20 and 6, but not

in Corollary 4.9. For example, when n ¼ 2; 3 and mX4; one has np3þ 4
m�2; and thus

Theorems 20 and 6 cannot deal with such a case. However, in this case,
I 0pðt0Þ-ðn

m
;N� ¼ I 0pðt0Þ; which means that for every pA½1; 2�; we can choose q and

sj’s values such that the conclusion of Corollary 4.9 holds.

(3) We first note that pa1 in Theorems 20 and 6, but it is admitted that p ¼ 1 in

Corollary 4.9. Furthermore, it is required in Theorem 6 that p4 2c
cþ1; where c is an

integer with c4 n
m�1: However, the restriction of p in Corollary 4.9 is only caused by

I 0pðt0Þ- n
m
;N

� �
a|; which is equivalent to p4 2n

nþ2m�2: It is easy to see that this is

naturally an improvement of the corresponding condition in Theorem 6.
(4) The conclusion in Theorem 6 (see its remark for homogeneous P) is that

iPðDÞ þ V generates a smooth distribution group on LpðRnÞ of order b; which is
equivalent to a b-times integrated group on LpðRnÞ; where b is an integer with
b4np þ 2: Our conclusion in Corollary 4.9 however admits that b is a real number

with b4np þ 1:
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