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Hypermaps were introduced as an algebraic tool for the represen-
tation of embeddings of graphs on an orientable surface. Recently
a bijection was given between hypermaps and indecomposable
permutations; this sheds new light on the subject by connecting
a hypermap to a simpler object. In this paper, a bijection between
indecomposable permutations and labeled Dyck paths is proposed,
from which a few enumerative results concerning hypermaps and
maps follow. We obtain for instance an inductive formula for the
number of hypermaps with n darts, p vertices and q hyperedges;
the latter is also the number of indecomposable permutations
of Sn with p cycles and q left-to-right maxima. The distribution
of these parameters among all permutations is also considered.
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0. Introduction

Permutations and maps on surfaces have an old common history. Heffter [16] was probably the
first who mentioned the fact that any embedding of a graph on an orientable surface could be repre-
sented by a pair consisting of a permutation and a fixed point free involution; J.R. Edmonds [13] and
J. Youngs [29] gave in the early sixties a more precise presentation of this idea by showing how to
compute the faces of an embedding using the cycles of the product of the permutation and the fixed
point free involution, giving a purely combinatorial definition of the genus. A. Jacques [17] proved
that this could be generalized to any pair of permutations (called a hypermap in [4]), hence relaxing
the condition that the second one should be a fixed point free involution. He defined the genus of
a pair of permutations by a formula involving the number of their cycles and of that of their product.

W.T. Tutte [26] generalized these constructions by introducing a combinatorial object consisting of
three fixed point free involutions in order to represent embeddings in a nonorientable surface.
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The combinatorial representation allows one to obtain results on automorphisms of maps and
hypermaps, for instance A. Machí [20] obtained a combinatorial version of the Riemann–Hurwitz for-
mula for hypermaps. A coding theory of rooted maps by words [4] had also some extent for explaining
the very elegant formulas found by W.T. Tutte [25] for the enumeration of maps. In the same years
Jones and Singerman [18] settled some important algebraic properties of maps. Recently G. Gonthier
(see [15]), used hypermaps in giving a formal proof of the 4 color theorem. A survey of the combina-
torial and algebraic properties of maps and hypermaps is given in [5].

In 2004 P. Ossona de Mendez and P. Rosenstiehl [7] proved an important combinatorial result:
they constructed a bijection between (rooted) hypermaps and indecomposable permutations (also
called connected or irreducible). Indecomposable permutations are a central object in combinatorics
(see for instance [24, Problem 5.13]), they were considered in different contexts, and probably for the
first time by A. Lentin [19] while solving equations in the free monoid. They were also considered for
instance as a basis of a Hopf algebra defined by Malvenuto and Reutenauer (see [1] or [12]), and in
the enumeration of a certain kind of Feynman diagrams [6].

In this paper we present the Ossona–Rosenstiehl result in simpler terms and focus on the main
property of the bijection (which is not explicitly stated in [7]): the number of cycles and of left-to-
right maxima of the indecomposable permutation are equal to the number of vertices and hyperedges
of the rooted hypermap associated with it.

This property has some nice consequences for the enumeration: it allows one to give a formula
for the number of rooted hypermaps on n darts, or with n darts and p vertices. The property shows
that the number of indecomposable permutations of Sn with p cycles and q left-to-right maxima is
symmetric in p,q. By a straightforward argument this result can be generalized to all permutations,
answering a conjecture of Guo-Niu Han and D. Foata. We introduce a simple bijection between some
labeled Dyck paths and permutations which allows us to obtain a formula for the polynomials enu-
merating indecomposable permutations by the number of cycles and left-to-right maxima (hence of
hypermaps by vertices and hyperedges).

The paper is organized as follows: in Section 1, we give a few elementary results on indecompos-
able permutations focusing mainly on the parameters left-to-right maxima and cycles. Section 2 is
devoted to hypermaps and the bijection of P. Ossona de Mendez and P. Rosenstiehl. All the details
of the proof of correctness are in [7]; we give here the key points and some examples in order to
facilitate the reading of their paper. The main result of the present paper and consequences of this
bijection are given at the end of this section.

In Section 3 we recall some notions about Dyck paths and their labeling. We describe a bijection
between them and permutations and show the main properties of this bijection. In Section 4 we
introduce a family of polynomials enumerating permutations and derive a formula for the generating
function of the permutations with respect to the number of left-to-right maxima and cycles.

In the last section we restrict the hypermaps to be maps and permutations to be fixed point free
involutions, obtaining in a simpler way some old enumeration formulas for them (see [2,28]).

1. Indecomposable permutations

In this section we give some notation and recall some basic results on permutations. Then we shall
focus on indecomposable permutations, often also called connected permutations.

1.1. Definition and counting formula

Permutations are the central object of this paper. We shall express them in two ways either as
sequences, or as sets of cycles.

The set of all permutations (i.e. the symmetric group) on {1,2, . . . ,n} will be denoted by Sn . The
notation of a permutation as a sequence is:

α = a1,a2, . . . ,an.

In this setting, ai is the image of i by α, also denoted α(i).
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Definition 1. A permutation θ = a1,a2, . . . ,an is decomposable, if there exists p < n such that for all i,
1 � i � p:

1 � ai � p,

it is called indecomposable otherwise.

Hence a permutation θ = a1,a2, . . . ,an is indecomposable if for any p < n the left factor sub-
sequence a1,a2, . . . ,ap contains at least one a j > p. Equivalently, θ is indecomposable if for p < n,
there is no initial interval [1, . . . , p] fixed by θ , or no union of a subset of the set of cycles equal
to [1, . . . , p]. For instance, 3,1,2,5,4 is a decomposable permutation of S5, while any permutation
α = a1,a2, . . . ,an for which a1 = n is indecomposable.

Let cn be the number of indecomposable permutations of Sn . The following formula is well known,
and is obtained by noting that any decomposable permutation can be written as the concatenation of
an indecomposable permutation of length p < n and a permutation of length n − p on {p + 1, . . . ,n}:

cn = n! −
n−1∑
p=1

cp(n − p)!.

From this formula we obtain the first values of the number of indecomposable permutations which
are:

1,1,3,13,71,461,3447, . . . .

1.2. Left-to-right maxima and cycles

Let α = a1,a2, . . . ,an be a permutation, i is the index of a left-to-right maximum if a j < ai for all
1 � j < i.

For any α, 1 is the index of a left-to-right maximum, and k such that ak = n also is, hence the
number of left-to-right maxima of a permutation α is equal to 1 if and only if a1 = n.

1.2.1. Bijection
The following algorithm describes a bijection from the set of permutations having k cycles to the

set of permutations having k left-to-right maxima. It is often called the First fundamental transform
and is extensively used for the determination of permutation statistics (see [14]).

To obtain the transform β from α, write the cycles Γ1,Γ2, . . . ,Γk of the permutation α, such that
the first element of each cycle Γi is the maximum among the elements of Γi . Then reorder the Γi
in such a way that the first elements of the cycles appear in increasing order, and finally, delete the
parenthesis around the cycles obtaining β as a sequence.

For instance, let α = 4,7,2,1,3,6,5,9,8, then we write

α = (1,4)(2,7,5,3)(6)(8,9)

putting the maximum at the beginning of each cycle and reordering the cycles gives:

α = (4,1)(6)(7,5,3,2)(9,8)

hence

β = 4,1,6,7,5,3,2,9,8.

Proposition 1. The permutation α is decomposable if and only if its first fundamental transform β is.

Proof. If α is decomposable, then for some p < n the subset {1,2, . . . , p} is the union of cycles of α.
Hence the left factor b1,b2, . . . ,bp of β , is a permutation of {1,2, . . . , p} proving the decomposability
of β . The proof of the converse is obtained by similar arguments. �
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Corollary. The number of indecomposable permutations with k cycles is equal to the number of indecompos-
able permutations with k left-to-right maxima.

Remark. It is customary for permutations to consider in an obvious manner left-to-right minima,
right-to-left maxima and right-to-left minima. Consider for a permutation a1,a2, . . . ,an , the reverse
an,an−1, . . . ,a1 and the complement n + 1 − a1,n + 1 − a2, . . . ,n + 1 − an; these operations show
that the statistics for these four parameters are equal. However this is not true for indecomposable
permutations. For instance, the numbers of indecomposable permutations of S4 with k = 1,2,3,4
left-to-right minima are 0, 7, 5, 1, respectively, and those with the same number of left-to-right
maxima are 6,6,1,0. Nevertheless the operation α → α−1 transforms an indecomposable permuta-
tion into an indecomposable permutation, showing that the number of indecomposable permutations
of Sn with k left-to-right maxima (resp. minima) is equal to the number of indecomposable permu-
tations of Sn with k right-to-left minima (resp. maxima).

1.2.2. Enumeration
It is well known that the number of permutations sn,k of Sn having k cycles is equal to the coeffi-

cient of xk in the polynomial:

An(x) = x(x + 1)(x + 2) · · · (x + n − 1).

These numbers are the unsigned Stirling numbers of the first kind.

Proposition 2. The number cn,k of indecomposable permutations of Sn (n > 1) with k cycles (or with k left-
to-right maxima) is given by each one of the following formulas:

cn,k = sn,k −
n−1∑
p=1

min(k,p)∑
i=1

cp,i sn−p,k−i, cn,k =
n−1∑
p=1

min(k,p)∑
i=1

pcp,i sn−p−1,k−i .

Proof. The first formula follows from the observation that a decomposable permutation of Sn with k
cycles is the concatenation of an indecomposable permutation of S p with i cycles and a permutation
of Sn−p with k − i cycles.

For the second, observe that the deletion of n from its cycle in an indecomposable permutation α
of Sn with k cycles gives a (possibly decomposable) permutation with k cycles; since if n was alone in
its cycle then α would have been decomposable. Conversely, let β be any permutation with k cycles
written as the concatenation of an indecomposable permutation θ on {1,2, . . . , p} (with p � n) and
a permutation β ′ on {p + 1, . . . ,n − 1} having respectively i and k − i cycles. When inserting n in
any position of the cycles of θ one gets an indecomposable permutation with k cycles. The formula
follows from the fact that there are exactly p places where n can be inserted, since inserting n in a
cycle of β ′ gives a decomposable permutation. �

Let Cn(x) = ∑n−1
k=1 cn,kxk; the equalities become

Cn(x) = An(x) −
n−1∑
p=1

An−p(x)C p(x), Cn(x) =
n−1∑
p=1

p An−1−p(x)C p(x).

Indecomposable Stirling numbers. The first values of the numbers cn,k of indecomposable permuta-
tions of Sn with k cycles, for 2 � n � 7, are given in the table below; these numbers might be called
indecomposable Stirling numbers of the first kind since they count indecomposable permutations by
their number of cycles.

1
2 1
6 6 1

24 34 12 1
120 210 110 20 1
720 1452 974 270 30 1
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2. Hypermaps

In this section we recall some elementary facts about hypermaps, state the main result of P. Ossona
de Mendez and P. Rosenstiehl and give a simplified proof of it.

2.1. Definition

Let B be a finite set, the elements of it being called darts. In the sequel we will take B =
{1,2, . . . ,n}.

Definition 2. A hypermap is given by a pair of permutations (σ ,α), acting on B such that the group
they generate is transitive on B .

The transitivity condition can be translated in simple combinatorial terms, remarking that it is
equivalent to the connectivity of the graph Gσ ,α with vertex set B and edge set:

E =
⋃
b∈B

{
b,α(b)

} ⋃
b∈B

{
b, σ (b)

}
.

The cycles of σ are called the vertices of the hypermap while the cycles of α are called its hyper-
edges.

An example of hypermap with 3 vertices and three hyperedges is given by

σ = (1,2,3)(4,5,6)(7,8,9), α = (1,6,7)(2,5,8)(3,4,9).

Hypermaps have been introduced, as a generalization of combinatorial maps, for the representation
of embeddings of hypergraphs in surfaces, showing that the cycles of α−1σ can be considered as
representing a kind of faces, and defining a genus in a formula like Euler’s for maps. In this paper we
will not consider hypermaps as a topological embedding but as the very simple object consisting of a
pair of permutations generating a transitive subgroup of Sn .

2.2. Labeled, unlabeled and rooted hypermaps

In enumerative combinatorics it is customary to consider labeled objects and unlabeled ones. Since
in the above definition of hypermaps we consider the elements of B as distinguishable numbers, they
should be called labeled hypermaps.

As an example, the number of labeled hypermaps with 3 darts is 26, since among the 36 pairs of
permutations on {1,2,3} there are 10 which do not generate a transitive group. These are given by
(where ε is the identity and τi, j the transposition exchanging i and j):

• σ = ε and α = τi, j i �= j ∈ {1,2,3} or α = ε (4 pairs)
• σ = τi, j and α = ε or α = σ (2 pairs for each of the 3 transpositions).

Two hypermaps (σ ,α) and (σ ′,α′) are isomorphic if there exists a permutation φ such that:

φ−1αφ = α′, φ−1σφ = σ ′.

The set of unlabeled hypermaps is the quotient of the set of labeled ones by the isomorphism relation.
For instance the number of unlabeled hypermaps with 3 darts is 7. Representatives of the 7 isomor-
phism classes are given below:

H1 H2 H3 H4 H5 H6 H7

σ (1,2,3) (1,2,3) (1,2,3) (1,2,3) (1,2)(3) (1)(2,3) (1)(2)(3)

α (1,2,3) (1,3,2) (1,2)(3) (1)(2)(3) (1,2,3) (1,3)(2) (1,2,3)



R. Cori / Journal of Combinatorial Theory, Series A 116 (2009) 1326–1343 1331
In general, the enumeration of unlabeled objects is difficult and the formulas one obtains are com-
plicated. Thus, intermediate objects are introduced: the rooted ones, this is done by selecting one
element, the root, in the object, and considering isomorphisms which fix the root. For hypermaps
we select here n as the root, two labeled hypermaps (σ ,α) and (σ ′,α′) being isomorphic as rooted
hypermaps if there exists φ such that:

φ−1αφ = α′, φ−1σφ = σ ′, φ(n) = n.

Such a φ will be called a rooted isomorphism. There are 13 different rooted hypermaps with 3 darts,
to the 7 above we have to add these below, which are isomorphic to one of the previous ones but for
which the isomorphism φ is not a rooted isomorphism.

H8 H9 H10 H11 H12 H13

σ (1,2,3) (1,2,3) (1)(2,3) (1)(2,3) (1,2)(3) (1)(2,3)

α (1,3)(2) (1)(2,3) (1,3,2) (1,2,3) (1,3)(2) (1,2)(3)

In the sequel we will denote by hn the number of rooted hypermaps with n darts.

Proposition 3. The number of labeled hypermaps with n darts is equal to

(n − 1)!hn.

Proof. Since there are (n − 1)! permutations φ such that φ(n) = n, we only have to prove that for a
hypermap (σ ,α) and a φ such that φ(n) = n if

φ−1αφ = α, φ−1σφ = σ

then φ is the identity. But this follows from the fact that for such an isomorphism φ, φ(a) = a implies
φ(σ (a)) = σ(a), φ(α(a)) = α(a) and from the transitivity of the group generated by σ and α. �
2.3. Bijection

The following algorithm is a slightly modified version of that of P. Ossona de Mendez and P. Rosen-
stiehl in [7]:

2.3.1. Algorithm OMR
Let θ = a1,a1,a2, . . . ,an+1 be an indecomposable permutation. A pair of permutations (σ ,α) is

associated with θ through the following algorithm:

• Determine the indexes of the left-to-right maxima of θ (recall that these are the indexes
i1, i2, . . . , ik satisfying j < ip ⇒ a j < aip ). Note that i1 = 1 and aik = n + 1.

• Let σ1 be the permutation split into cycles as:

σ1 = (1,2, . . . , i2 − 1)(i2, i2 + 1, . . . , i3 − 1) · · · (ik, . . . ,n + 1).

• The permutations α and σ are obtained from θ and σ1, respectively, by deleting n + 1 from their
cycles (observe that the lengths of these cycles are not less than 2).

We will denote by Ψ (θ) the pair of permutations (σ ,α) obtained from θ by means of the algo-
rithm OMR.

Example. Consider the indecomposable permutation

θ = 6,5,7,4,2,10,3,8,9,1
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then the indexes of the left-to-right maxima are 1,3,6 giving

σ1 = (1,2)(3,4,5)(6,7,8,9,10).

Since θ = (1,6,10)(2,5)(3,7)(4)(8)(9) we have

σ = (1,2)(3,4,5)(6,7,8,9), α = (1,6)(2,5)(3,7)(4)(8)(9).

Theorem 1. The above algorithm yields a bijection Ψ between the set of indecomposable permutations on Sn+1
and the set of rooted hypermaps with darts 1,2, . . . ,n. Moreover for (σ ,α) = Ψ (θ), α and θ have the same
number of cycles and the number of cycles of σ is equal to the number of left-to-right maxima of θ .

The key point in the proof of this theorem is the following characterization of the smallest ele-
ments of the cycles of the permutation σ given by the algorithm:

Lemma 1. A hypermap (σ ,α) is such that there exists an indecomposable permutation θ satisfying

Ψ (θ) = (σ ,α)

if and only if:

• The permutation σ has cycles consisting of consecutive integers in increasing order:

σ = (1,2, . . . , i2 − 1)(i2, i2 + 1, . . . , i3 − 1) · · · (ik, ik + 1, . . . ,n).

• The set of right-to-left minima of α−1 is the union of {i1, i2, . . . , ik−1} and a (possibly empty) subset of
the interval [ik, ik + 1, . . . ,n].

Proof. Suppose that (σ ,α) satisfy the conditions above, consider the notation of α = a1,a2, . . . ,an as
a sequence and let

θ = a1,a2, . . .aik−1,n + 1,aik+1, . . . ,an,aik .

Then θ(ik) = n + 1 and θ(n + 1) = α(ik), hence the indexes of the left-to-right maxima of θ are
i1, i2, . . . , ik giving Ψ (θ) = (σ ,α).

Conversely let θ be an indecomposable permutation and let = Ψ (θ) = (σ ,α), then:

(1) By the definition of Ψ the cycle of σ containing n is (ik, . . . ,n).
(2) For any permutation θ , the indexes i1, i2, . . . , ik of the left-to-right maxima are exactly the right-

to-left minima of θ−1. Deleting n + 1 from its cycle in θ in order to obtain α has the following
effect on the sequence b1,b2, . . . ,bn+1 representing θ−1: bi = n + 1 is replaced by bn+1. Clearly,
i1, i2, . . . , ik−1 are still right-to-left minima in the sequence obtained by this transformation since
they are smaller than bn+1. �

2.3.2. Proof of Theorem 1
(1) The pair of permutations (σ ,α) defines a hypermap.
Consider a cycle (ip, ip + 1, . . . , ip+1 − 1) of σ with p < k, then α(ip) = θ(ip) is a left-to-right

maximum of θ and the next one is α(ip+1), hence θ(i) < θ(ip) for ip < i < ip+1 and for i < ip . Since
θ is indecomposable this implies θ(ip) = α(ip) � ip+1. We have thus observed that for any cycle Γp

of σ , which does not contain n, there is an element (namely ip) such that α(ip) is in another cycle
of σ whose smallest element is greater than the smallest element of Γp ; this observation clearly
implies the transitivity of the group generated by (σ ,α).

(2) Let θ and θ ′ two different indecomposable permutations then Ψ (θ) and Ψ (θ ′) are nonisomor-
phic as rooted hypermaps.
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• Suppose that there exists a rooted isomorphism φ between Ψ (θ) = (σ ,α) and Ψ (θ ′) = (σ ′,α′),
then the cycles of σ and σ ′ containing n have the same length, since φ(n) = n and σ ′ = φ−1σφ

implies:

σ i(n) = n ⇔ σ ′ i(n) = n.

• Hence ik and i′k′ the smallest elements of the cycles of σ and σ ′ containing n are equal, and
φ(i) = i for all ik � i � n.

• By Lemma 1, ik−1 is equal to α−1( j) for the maximal j in [ik, . . . ,n] such that α−1( j) /∈ [ik, . . . ,n].
But since φ(i) = i for i ∈ [ik, . . . ,n] we have

α−1(�) /∈ [ik, . . . ,n] ⇔ α′−1(�) /∈ [ik, . . . ,n].
Hence α′−1( j) /∈ [ik, . . . ,n], and i′k−1 = α′−1( j). Moreover the cycles of σ and σ ′ containing re-
spectively ik−1 and i′k′−1 have the same length, giving ik−1 = i′k′−1 and φ(i) = i for all ik−1 � i � n.

• By repeating the above argument for all the ip we conclude that φ is the identity.

(3) For any hypermap (σ ,α) there exists an indecomposable permutation θ such that (σ ,α) and
Ψ (θ) are isomorphic as rooted hypermaps.

It suffices to show that there exists an isomorphism φ such that the hypermap (σ ′,α′) =
(φ−1σφ,φ−1αφ) satisfies the conditions of Lemma 1. We have to find among all the conjugates
of σ one in which the cycles consist of consecutive integers and such that the smallest elements in
each cycle are the right-to-left minima of the conjugate of α−1. For that we write down the cycles
Γ1,Γ2, . . . , Γk of σ in a specific order, then we will write σ ′ (having the same numbers of cycles of
each length as σ and with cycles consisting of consecutive numbers in increasing order) above σ in
such a way that cycles of the same length correspond. The automorphism φ is then obtained by the
classical construction for conjugates of a permutation (see for instance [23, Chapter 3]).

Since φ(n) = n, Γk = (z j1 , z j2 , . . . , z jk ) should be the cycle of σ containing n, it has to be written
so that z jk = n. In order to find which cycle is Γk−1 we use Lemma 1: the first element of this
cycle should correspond to a right-to-left minima of α′−1, hence this element is the first among
α−1(z jk ),α

−1(z jk−1 ), . . . ,α
−1(z j1 ) which is not in Γk , such an element existing by the transitivity of

the group generated by {σ ,α}. We continue by computing the image under α−1 of the elements
already written down, taken from right to left; when an element α−1(zi) = u1, not written down
is obtained, the whole cycle of σ containing u1 is written with u1 at the beginning. The algorithm
terminates when all {1,2, . . . ,n} are obtained, and this termination is also a consequence of the
transitivity of the group generated by {σ ,α}.

To end we write σ ′ above σ in such a way that the elements 1,2, . . . ,n appear in that order with
the lengths of cycles corresponding to those of Γ1,Γ2, . . . ,Γk , and the isomorphism φ is determined.
Then α′ is obtained by α′ = φ−1αφ.

2.3.3. Example
We give an example of a hypermap H = (σ ,α) and the computation of the hypermap H ′ = (σ ′,α′)

such that H and H ′ are isomorphic as rooted hypermaps and there exists θ satisfying Ψ (θ ′) = (σ ′,α′).
We take for this example, the hypermap obtained by exchanging vertices and hyperedges in the hy-
permap considered above:

σ = (1,6)(2,5)(3,7)(4)(8)(9), α = (1,2)(3,4,5)(6,7,8,9).

We begin the list of cycles by Γ6 = (9), then since α−1(9) = 8 after two steps the list consists of

(8)(9).

Now since α−1(8) = 7, the list grows

(7,3)(8)(9)
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then α−1(3) = 5 gives:

(5,2)(7,3)(8)(9).

Then, since α−1(7) = 6:

(6,1)(5,2)(7,3)(8)(9).

We end by α−1(2) = 1,α−1(5) = 4 and obtain finally

(4)(6,1)(5,2)(7,3)(8)(9).

Aligning with

(1)(2,3)(4,5)(6,7)(8)(9)

we obtain φ = 4,6,1,5,2,7,3,8,9; then we have

σ ′ = φ−1σφ = (1)(2,3)(4,5)(6,7)(8)(9), α′ = φ−1αφ = (3,5)(7,1,4)(2,6,8,9).

To obtain θ ′ we remark that the last cycle of σ is of length 1, hence the position of 10 in the sequence
representing θ should be one place before the end, giving from α′ = 4,6,5,7,3,8,1,9,2:

θ ′ = 4,6,5,7,3,8,1,9,10,2.

2.4. Main results

Corollary 1. The number of rooted hypermaps with n darts is equal to cn+1 , the number of those with n darts
and k vertices is cn+1,k.

We also obtain another proof of a result of J.D. Dixon [10].

Corollary 2. The probability pn that a pair of permutations randomly chosen among the permutations in Sn

generates a transitive group is:

pn = 1 − 1

n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 11542

n6
− 16241

n7
− 194973

n8
+ O

(
1

n9

)
.

Proof. We have seen that the number of labeled hypermaps with n darts is (n − 1)!cn+1; hence the
probability tn is

(n − 1)!cn+1

n!n! = cn+1

nn! .

In [3] L. Comtet proves that the number of indecomposable permutations cn of Sn satisfies

cn

n! = 1 − 2

n
− 1

(n)2
− 1

(n)3
− 19

(n)4
− 110

(n)5
− 745

(n)6
− 5752

(n)7
− 49775

(n)8
+ O

(
1

476994

)

where (n)k = n(n − 1) · · · (n − k + 1). Replacing n by n + 1 gives the result. �
The following theorem answers positively a conjecture of Guo-Niu Han and D. Foata.1

Theorem 2. The number of permutations of Sn with p cycles and q left-to-right maxima is equal to the number
of permutations of Sn with q cycles and p left-to-right maxima.

1 Personal communication.
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Fig. 1. A labeled Dyck path.

Proof. We define a bijection Φ between these two subsets. Let θ be an indecomposable permutation
with p cycles and q left-to-right maxima, we define Φ(θ) as Ψ −1(α′, σ ′) where Ψ (θ) = (σ ,α), and
(α′, σ ′) is the unique hypermap isomorphic to (α,σ ) as a rooted hypermap and such that there exists
an indecomposable permutation θ ′ satisfying Ψ (θ ′) = (α′, σ ′).

Clearly, θ ′ has the same numbers of cycles and left-to-right maxima as θ . Then Φ is a bijection
among indecomposable permutations having the desired property.

Now a decomposable permutation β can be written as the concatenation of k indecomposable
ones:

β = θ1θ2 · · · θk.

Define Φ(β) by

Φ(β) = Φ(θ1)Φ(θ2) · · ·Φ(θk)

with an obvious convention on the numbering of the elements on which the θi act. Clearly Φ(β) has
also as many cycles as β has left-to-right maxima and as many left-to-right maxima as β has cycles,
completing the proof. �
3. A bijection with labeled Dyck paths

The bijection described below will allow us to obtain a formula for the number of indecomposable
permutations with a given number of cycles and of left-to-right maxima.

3.1. Dyck paths and labeled Dyck paths

A Dyck path can be defined as a word w on the alphabet {a,b} where the number of occurrences
of the letter a (denoted by |w|a) is equal to the number of occurrences of the letter b, and such that
any left factor contains no more occurrences of the letter b than those of a. We write:

|w|a = |w|b and ∀w = w ′w ′′ |w ′|a � |w ′|b.
A Dyck path is primitive if it is not the concatenation of two Dyck paths or equivalently if it is

equal to aw ′b, where w ′ is a Dyck path. Such a path is usually drawn as a sequence of segments
in the cartesian plane starting at the point (0,0) and going from the point (x, y) to (x + 1, y + 1)

for each letter a and from the point (x, y) to (x + 1, y − 1) for each letter b. The conditions on the
occurrences of the letters translates in the fact that the path ends on the x axis and never crosses it.
The path aaabaabbbbaabb is drawn in Fig. 1.

Definition 3. A labeling of a Dyck path w consists in assigning integer labels to the occurrences of b,
obtaining a word f on the alphabet {a,b0,b1, . . . ,bi, . . .} satisfying the following conditions:

• The occurrence bi in f is preceded by an a if and only if i = 0.
• For each occurrence of bi in f ( f = gbih) with i > 0, i � |g|a − |g|b (where |g|b denotes∑

i�0 |g|bi ).
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Fig. 2. Partial representations.

3.2. From permutations to labeled Dyck paths

We associate a labeled Dyck path f with a permutation α by the algorithm described below. This
algorithm uses a partial representation of a permutation defined as follows

Definition 4. The partial representation of the permutation α at step i consists of the sequence of cy-
cles of α containing elements less than i and presented in increasing order of their smallest element.
In this representation only the elements less than i appear and the symbol — is written to replace all
the other elements of these cycles. The positions of the symbol — are called free positions.

For example, the partial representations of the permutation

α = (1,3,5,9)(2,7,6)(4,8)

at steps 3 and 7 are:

(1,−,−,−)(2,−,−) and (1,3,5,−)(2,−,6)(4,−).

In these representations we define the pivot as the smallest element less than i such that α(i) > i
and we number the free positions from 1 to p beginning immediately at the right of the pivot and
proceeding in cyclic order.

In the above example the pivots are respectively 1 and 2, and the numbering of free positions is
given in Fig. 2, where arrows indicate the pivots.

Algorithm Δ. This algorithm builds a labeled Dyck word w from a permutation α of Sn . It uses
partial representations of α and starts with an empty word w .

For each i in {1,2, . . . ,n} do

• If i is the smallest element in a cycle of length k, then open a new cycle in the partial repre-
sentation of α, with i as the first element and k − 1 free positions in it. Append the word akb0
to w .

• Else Determine the pivot of the partial representation and the numbering of the free positions;
let j be the numbering of the free position where i has to be inserted, append b j to w .

We will denote Δ(α) = w the labeled Dyck path associated with α by the above algorithm.

3.2.1. Example
For the permutation α considered above, the determination of the word w = Δ(α) is illustrated in

Fig. 3, where at each step of the algorithm the pivot is represented by an arrow pointing to it.
This gives w = w1 w2 · · · w9 where: w1 = aaaab0, w2 = aaab0, w3 = b1, w4 = aab0, w5 = b4,

w6 = b2, w7 = b1, w8 = b1, w9 = b1. Hence

Δ(α) = aaaab0aaab0b1aab0b4b2b1b1b1.

Note that the word w is a Dyck path since each cycle of the permutation is considered for the
first time by its smallest element, creating an excess of k − 1 for the number of occurrences of the a’s
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Fig. 3. Associating a labeled Dyck path to a permutation.

with respect to those of the b’s. A letter b is written for each other element of the cycle, so that there
cannot be an excess of the number of occurrences of b’s compared to that of a’s.

Δ is a bijection since from a labeled Dyck path w one can obtain the permutation α from w in an
obvious way reading the word w from left to right and building the partial representation of α each
time a letter b0 is read.

Inverse algorithm. Let w be a labeled Dyck path:

• If the ith occurrence of b in w is b0 let k be the number of occurrences of a immediately before
it, then open a new cycle of length k with i as first element and k − 1 free positions in it.

• If the ith occurrence of a b is labeled bp , with p > 0, then insert i in the pth free position of the
opened cycles starting from the pivot.

3.3. Characterization

Theorem 3. Let α be a permutation and w = Δ(α), then:

• The number of cycles in α is equal to the number of occurrences of b0 in w.
• The permutation α is indecomposable if and only if the word w is primitive.
• If the permutation α is indecomposable, then the number of left-to-right maxima of α is equal to the

number of occurrences of b1 in w.

Proof. • Since each smallest element in a cycle inserts a b0 in w the number of cycles is equal to the
number of occurrences of b0.

• The permutation is decomposable if and only if there is no free place at a step before the very
end of the algorithm. But this exactly means that there is a left factor of w which is a Dyck path.

• The smallest element i of a cycle of length greater than 1 of a permutation α cannot be a left-
to-right maximum of α since i < ai . If a fixed point j of α is a left-to-right maximum then j = a j
and ai < j for i < j implies that {a1, . . . ,a j−1} = {1,2, . . . , j − 1} showing that α is decomposable.
Moreover an occurrence of b1 corresponds to an element written immediately after the pivot, at
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some step of the algorithm; this element is the image of the pivot which is the smallest element
already considered with a free position after it; then it gives rise to a left-to-right maximum. �
Corollary 3. The number of indecomposable permutations of Sn with p cycles and q left-to-right maxima,
hence the number of hypermaps with n darts, p vertices and q hyperedges, is equal to the number of primitive
labeled Dyck paths of length 2n with p occurrences of b0 and q occurrences of b1 .

3.4. Permutations by numbers of left-to-right maxima and right-to-left minima

In [22], E. Roblet and X.G. Viennot define a bijection similar to Δ, between permutations and
another kind of labeled Dyck paths. Their labeling is on the alphabet {a,b1,b2, . . . ,bi, . . .} and such
that if w ′ is a labeled Dyck word, in their definition, then:

• Each occurrence of bi in w ′ (such that w ′ = gbih) satisfies 1 � i � |g|a − |g|b moreover i = 1 if
g ends with an a.

Let us denote by w ′ = Δ′(α) the labeled Dyck path obtained from the permutation α by the
bijection of E. Roblet and X.G. Viennot. The main feature of the bijection (see [22, Theorem 5]) is that
the number of right-to-left minima of α is equal to the number of factors ab1 in w ′ (often called the
peaks of the Dyck path). Moreover the number of left-to-right maxima in α is equal to the number of
occurrences of bk (w ′ = gbkh) such that k = |g|a − |g|b . As for the bijection Δ, α is indecomposable
if and only if w ′ is a primitive Dyck word.

Note that an occurrence of b1 preceded by an a in w ′ may correspond to both a left-to-right
maximum and right-to-left minimum of α if |g|a − |g|b = 1, but this cannot happen if α is indecom-
posable.

Corollary 4. The number of permutations of Sn with p left-to-right maxima and q cycles is equal to the number
of permutations of Sn with p left-to-right maxima and q right-to-left minima.

Proof. We first show that this is true for indecomposable permutations. Let θ be an indecomposable
permutation and let w = Δ′(θ), then replace each occurrence of b1 in w preceded by an a by b0 and
each occurrence of bi (w = gbkh) not preceded by an a by b j , where j = |g|a −|g|b + 1 − i. Denote w ′
the word such obtained, it satisfies the conditions of Definition 3, then θ ′ = Δ−1(w ′) is well defined.
θ ′ has as many left-to-right maxima as θ and as many cycles as θ has right-to-left minima, hence this
gives the result for indecomposable permutations.

In order to complete the proof for all permutations it suffices to use the same argument as in the
end of Theorem 2. �
Remark. Note that this corollary gives another proof of the symmetry of the statistics for the number
of cycles, and number of left-to-right maxima. Indeed, this symmetry is clear for the parameters
left-to-right maxima and right-to-left minima since they are exchanged by the inverse operation on
permutations.

4. Bivariate polynomials associated to Dyck paths

In this section we introduce two polynomials whose construction is very similar to an operation
introduced by P. Deleham (see [9]) which he called the Δ-operator.

4.1. Polynomial associated to a given Dyck path

A factor ab in a Dyck path is often called a peak. We go back to the labeled Dyck paths considered
in Section 3, and associate a polynomial L(w) in two variables x, y with a Dyck path w as follows:



R. Cori / Journal of Combinatorial Theory, Series A 116 (2009) 1326–1343 1339
Fig. 4. The polynomial associated with the Dyck path aabaabbbbaabb.

Fig. 5. The computation of polynomial L3.

Definition 5. Let w be a Dyck path of length 2n and let w ′
1b, w ′

2b, . . . , w ′
nb be the left factors of w

ending with an occurrence of b, that is w = w ′
ibw ′′

i .
The polynomial L(w) is the product of binomials ui associated with each w ′

i by the following rule:

• If w ′
i ends with a, then ui = x,

• else ui = y + hi , where hi is given by hi = |w ′
ib|a − |w ′

ib|b .

Remark that the number of possible values of i in bi for a labeling of w is hi + 1, hence L(1,1) is
exactly the number of possible labelings of w .

An example of a polynomial associated with a Dyck path is given in Fig. 4.

Proposition 4. The polynomial L(w) = xp ∑n
i=1 ai yi associated with a Dyck path w is such that p is the

number of factors ab in w, and ai is the number of labelings of w such that i occurrences of b are labeled b1 .

Proof. The first part is immediate since each ui = x corresponds to a factor ab in w . For the second
part, note that the possible labelings bi of an occurrence of b not preceded by an a are such that
1 � i � |w ′b|a − |w ′|b = hi + 1. Since we have in this case ui = y + hi then y in ui may be interpreted
as the labeling b1 for that occurrence, the other labelings corresponding to the integer hi . �
4.2. Sum of the polynomials for all paths of a given length

Let Dn be the set of Dyck paths of length 2n and D ′
n the set of primitive Dyck paths of

length 2n; clearly D ′
n = aDn−1b. We consider the polynomials Ln(x, y) = ∑

w∈Dn
L(w) and L′

n(x, y) =∑
w∈D ′

n
L(w). An example of the polynomials associated with the five Dyck paths of length 6 and

allowing us to compute L3 = x3 + 3x2 y + xy2 + xy is given in Fig. 5.



1340 R. Cori / Journal of Combinatorial Theory, Series A 116 (2009) 1326–1343
Proposition 5. The polynomials Ln and L′
n satisfy the following relations for n > 1:

L′
n(x, y) = yLn−1(x, y + 1),

Ln(x, y) = L′
n(x, y) +

n−1∑
p=1

L′
p(x, y)Ln−p(x, y).

Proof. For the first relation note that the value of L(awb) is obtained from L(w) by replacing y + 1
for y and multiplying by y. To prove the second relation observe that a Dyck path of length 2n is
either primitive or the concatenation of a primitive Dyck path of length 2p where 1 � p < n and
another one (not necessarily primitive) of length 2n − 2p. �

The first few values of these polynomials are:

L1 = x, L′
1 = x, L′

2 = xy, L2 = xy + x2,

L′
3 = xy2 + x2 y + xy, L3 = x3 + xy2 + 3x2 y + xy,

L′
4 = xy3 + 3xy2 + 3y2x2 + 2xy + 3yx2 + yx3,

L4 = xy3 + 3xy2 + 6y2x2 + 2xy + 5yx2 + 6yx3 + x4.

Corollary 5. The coefficient of xp yq in the polynomial L′
n is the number of indecomposable permutations of Sn

with p cycles and q left-to-right maxima. Moreover, the polynomials L′
n are symmetric in x, y: for all n > 1 we

have

L′
n(x, y) = L′

n(y, x).

Proof. The first part is a direct consequence of Theorem 3 and Proposition 5. The symmetry of the
polynomials follows from the fact that the number of indecomposable permutations of Sn with p cy-
cles and q left-to-right maxima is equal to the number of indecomposable permutations of Sn having
q cycles and p left-to-right maxima. �
Corollary 6. The number of permutations of Sn having p cycles and q left-to-right maxima is the coefficient
of znxp yq in the power series:

1

1 − zL′
1 − z2L′

2 − z3L′
3 · · · .

5. Indecomposable fixed points free involutions and maps

A map is a pair of permutations σ ,α where α is a fixed point free involution. Maps may be consid-
ered as a subset of the set of hypermaps, but conversely a hypermap may be considered as a bipartite
map [27]. Maps are an important combinatorial and algebraic tool for dealing with embeddings of
graphs in surfaces (see [13,26]) they are sometimes called rotation system as in [21].

5.1. Fixed point free involutions

A fixed point free involution is permutation where all cycles have length 2, the number of fixed
point free involutions of S2m is the double factorial:

(2m − 1)!! = (2m − 1)(2m − 3) · · · (3)(1) = (2m)!
m!2m

.

As expected, an indecomposable fixed point free involution is a fixed point free involution which is in-
decomposable as a permutation. The number im of indecomposable fixed point free involutions of S2m
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satisfies the following inductive relation, which is very similar to that satisfied by the indecomposable
permutations.

Proposition 6.

im = (2m − 1)!! −
m−1∑
p=1

ip(2m − 2p − 1)!!.

Proof. A decomposable fixed point free involution of S2m can be written as the concatenation of
an indecomposable fixed point free involution of S2p (1 < p < m) and a fixed point free involution
of S2m−2p . �
5.2. Bijection

The bijection between rooted hypermaps and indecomposable permutations specializes for maps
and fixed point free involutions as follows.

Proposition 7. There exist a bijection Ψ ′ between the set of indecomposable fixed point free involutions on
1,2, . . . ,2m + 2 and the set of rooted maps on 1,2, . . . ,2m. Moreover for (σ ,α) = Ψ ′(θ), the number of
cycles of σ is equal to the number of left-to-right maxima of θ .

Proof. The bijection Ψ associates with an indecomposable fixed point free involution θ of S2m+2 a
hypermap (σ ′,α′) such that α′ has m cycles of length 2 and 1 cycle of length 1. The element in
this cycle is j = θ(2m + 2), clearly this j is not a left-to-right maxima of θ . Consider the pair of
permutations (σ ,α) obtained by deleting j from its cycle in σ ′ and deleting the cycle of length 1
in α, then renumbering the darts by φ(i) = i − 1 for i > j. Then (σ ,α) is a map. �

Note that this construction was described in detail by P. Ossona de Mendez and P. Rosenstiehl
(see [8]).

Corollary 7. The number of rooted maps with m edges is equal to im+1 , and the number of maps with n vertices
and m edges is equal to the number of indecomposable fixed point free involutions with n left-to-right maxima.

5.3. Involutions and Dyck paths

Theorem 3 specializes for fixed-point free involutions as follows:

Proposition 8. Let θ be a fixed point free involution of S2m and w the labeled Dyck path associated with it
then:

• The length of w is 4m and there are m factors of aab0 in w.
• The fixed point free involution θ is indecomposable if and only if the word w is primitive.
• If the permutation θ is indecomposable, then the number of left-to-right maxima is equal to the number

of occurrences of b1 in w.

Replacing in w each factor aab0 by a gives a new kind of labeled Dyck path w ′ in which there is
no occurrence of b0 and in which for any occurrence w ′ = ubi v of b we have

|u|a − |u|b � i.

This suggests associating the polynomial M(w) with a Dyck path w by:
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Definition 6. Let w be a Dyck path of length 2n and let w ′
1b, w ′

2b, . . . , w ′
nb be the left factors of w

ending with an occurrence of b, that is w = w ′
ibw ′′

i . The polynomial M(w) is the product of binomi-
als vi associated with each occurrence of b by the following rule: Let hi = |w ′

ib|a −|w ′
ib|b vi = y + hi .

5.4. An enumeration formula

We define the polynomials Mm(y) and M ′
m(y) by Mm(y) = ∑

w∈Dm
M(w) and M ′

m(y) =∑
w∈D ′

m
M(w).

Proposition 9. The polynomials Mm(y) satisfy the following equations:

M1(y) = M ′
1(y) = y

and for m > 1:

M ′
m(y) = yMm−1(1 + y),

Mm(y) = M ′
m(y) +

n−1∑
p=1

M ′
p(y)Mm−p(y).

Moreover, in M ′
m(y) the coefficient of yn is the number of rooted maps with m − 1 edges and n vertices.

The first values of M ′
m are:

M ′
2 = y2 + y, M ′

3 = 2y3 + 5y2 + 3y, M ′
4 = 5y4 + 22y3 + 32y2 + 15y.

This gives a simpler proof of a formula given by D. Arques and J.-F. Béraud [2] (see also [28] for
the computation of the first values).

Corollary 8. Let U (z, y) be the formal power series enumerating rooted maps by numbers of edges and vertices,

U (z, y) =
∑

m,p>0

μm,p zm yp =
∑
m�1

zm M ′
m(y),

where μm,p is the number of rooted maps with m edges and p vertices. Then

U (z, y) = y + zU (z, y)U (z, y + 1).

Proof. By Proposition 9 we have

M ′
m+1(y)

y
= Mm(y + 1) = M ′

m(y + 1) +
n−1∑
p=1

M ′
p(y + 1)Mm−p(y + 1),

M ′
m+1(y)

y
= M ′

m(y + 1) +
n−1∑
p=1

M ′
p(y + 1)

M ′
m+1−p(y)

y
.

Hence:

M ′
m+1(y) = yM ′

m(y + 1) +
n−1∑
p=1

M ′
p(y + 1)M ′

m+1−p(y).

Multiplying these equalities by zm+1 for all m > 1 and adding gives the result. �
Note that similar results to those of this section were obtained recently by D. Drake for Hermite

polynomials related to weighted involutions which he calls matchings (see [11]).
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