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1. INTRODUCTION

It is well known that if R is a ring such that each right R-module
Ž .embeds in a free module, then R is a quasi-Frobenius QF ring. However,

if the embedding is restricted to finitely generated right R-modules, then
the situation is much more difficult to handle. A ring R is called right FGF
whenever every finitely generated right R-module embeds in a free mod-
ule and the so-called FGF problem which asks whether a right FGF ring is

Ž w x wQF remains open see 5 for a discussion of this question and 7, 8, 10, 12,
x .13, 16 for more recent results .

w x w xIn 9 Menal used the counting arguments developed by Osofsky in 11
to prove that if R is a ring such that each cyclic right R-module embeds in

Ž .a free module R is then called a right CF ring and the injective envelope
Ž .E R is projective, then R is already a QF ring. Thus, given a ring R,R

there exists a cardinal c with the property, that if every c-generated right
R-module embeds in a free module, then R is QF. However, Menal
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conjectured that in general it is not enough to take c s / , i.e., that there0
exist non-QF rings R such that each countably generated right R-module
embeds in a free module.

In this paper we show that it suffices to take c equal to the cardinal of
< <R, namely, if R is a ring of cardinal R s c such that each c-generated

right R-module embeds in a free module, then R is QF. Menal also asked
w x9, Question 1 , more generally, whether the existence of an infinite
cardinal c such that every right R-module defined by a set of relations of
cardinality F c embeds in a free module already implies that R is QF.
Our result implies that the answer to this question is positive when

< <c G R . From a slightly different point of view we may ask which is the
smallest cardinal c that guarantees that if every right R-module of
cardinal F c embeds in a free module, then R is already a QF ring. Our

< <result then says that, if R is infinite, c F R . This seems the best answer
that one can reasonably hope for in general.

w xA right CF ring need not be QF 2, 14 but, because every right FGF
w xright artinian ring is QF 5 , the FGF problem will have a positive answer if

every right CF ring turns out to be right artinian. This seems unlikely in
general but we obtain a rather weak sufficient condition that also extends

Ž . Ž .the result of Menal mentioned above. Let E s E R , S s End E , andR R
Ž .J s J S . We show that if R is right CF and every proper submodule of

ErJE is contained in a maximal submodule, then R is right artinian. These
rings need not be QF and, in fact, we show that there exist right CF rings

Ž .such that E R is finitely generated}and hence R is right artinian withR
a right Morita duality}but R is not QF. With the same techniques we
also obtain a sufficient condition for a right FGF ring to be QF involving
only countably generated right modules: a right FGF ring such that each
nonzero countably generated right R-module has a simple quotient is QF.

Throughout this paper, all rings R will be associative and with identity,
and Mod-R will denote the category of right R-modules. We will write MR
whenever we want to emphasize that M is a right R-module. The notation

wL : M will mean that L is an essential submodule of M. We refer to 1,e
x15 for all undefined notions used in the text.

2. RESULTS

� 4Let S be a ring and C a family of pairwise nonisomorphic simplek k g K
w xright S-modules. Recall from 7, 8 that this family is said to be idempo-

Ž .tent-orthogonal resp. idempotent-semiorthogonal when there exists a
� 4family e of idempotents of S satisfying that C e / 0 for eachk k g K k k

Ž .k g K and that C e s 0 resp., C e s 0 or C e s 0 for each j, k g Kj k j k k j
w xsuch that j / k. These families played a relevant role in 7, 8 as we shall
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now explain. Given a ring R and a right R-module M we will denote by
Ž . Ž Ž ..V R resp. C M a set of representatives of the isomorphism classes of

Ž .simple right R-modules resp. of the simple submodules of the module M .
w xFrom the proof of 8, Theorem 2.5 we can extract the following lemma

which will be useful later on:

Ž .LEMMA 2.1. Let R be a ring, E an injectï e module with S s End ER R
Ž . < Ž . < < Ž . <and J s J S , and suppose that V R F C E . If for e¨ery idempotent-

� 4semiorthogonal family C of simple right SrJ-modules we ha¨e thatk k g K
< < < Ž . <K F V R , then E is a cogenerator of Mod-R and has finitely generatedR
essential socle.

Our next task is to look for idempotent-semiorthogonal families of
< Ž . <simple right SrJ-modules whose cardinal is less than or equal to V R . It

w xwas shown in 7 that if the cyclic submodules of the injective envelope
Ž .E R are essentially embeddable in projective modules, then the hypothe-R

sis on idempotent-semiorthogonal families of the preceding lemma holds
Ž .for E s E R . We are going to see that a similar result can be obtained,R

more generally, if the essential embeddings considered are into modules
with a weaker form of projectivity that we now define, and that will be only
used as a merely technical device. If M is a right R-module, we say that M
is c-projectï e if for each epimorphism p : X ª Y and each homomor-
phism f : M ª Y there exists for each x g M a homomorphism h : xR ª X

Ž .Ž . Ž .such that p( h x s f x .
Ž . Ž .Let R be a ring, E an injective module, S s End E , and J s J S .R R

� 4Consider an idempotent-semiorthogonal family C of simple rightk k g K
� 4SrJ-modules with associated idempotents e . Since the idempotentsk k g K

� 4of SrJ lift modulo J, there exist idempotents s of S such thatk k g K
e s s q J. Let, for each k g K, E s s E : E and p : S ª C thek k k k k k

Ž .epimorphism defined by p 1 s c , where c g C is an element such thatk k k
c s / 0. Then we have:k k

Ž . Ž .LEMMA 2.2. Let E be an injectï e module, S s End E , J s J S , andR R
� 4C an idempotent-semiorthogonal family of simple right SrJ-modules.k k g K
Suppose that for each k g K there exists a c-projectï e submodule P ofk

Ž .Ž .E s s E such that p m E P has a nonzero simple quotient. Thenk k k S k
< < < Ž . <K F V R .

w xProof. We adapt the proof of 7, Lemma 2.4 to this more general
situation. Let, for each k g K, i : E ª E and h : P ª E be thek k k k k

Ž .Ž . ŽŽ . .canonical inclusions. Let N s p m E P s Im p m E ( i ( hk k S k k S k k
and denote by q : P ª N and w : N ª C m E the canonical projec-k k k k k k S
tion and injection, respectively. By hypothesis N has a nonzero simplek
quotient U , with canonical projection p : N ª U . Choosing one ofk k k k
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Ž .these quotients for each k g K, we define a map from K to V R by
w x w xassigning k ¬ U , where U denotes the isomorphism class of U . Tok k k

complete the proof we show that this map is injective.
w x w xSuppose that U s U for j, k g K and let w : U ª U be an isomor-j k j k

Ž .phism. If a : U ª E U denotes the inclusion, for each k g K, wek k k
Ž . Ž .obtain by injectivity an R-homomorphism f : E U ª E U satisfyingj k

that f ( a s a (w. Also, a (p has an extension p X to C m E, soj k k k k k S
that a (p s p X (w . Let now y g P be an element such thatk k k k j j
Ž .Ž .p ( q y / 0. Since P is c-projective, there exists a homomorphismj j j j
c : y R ª P such that if u : y R ª P is the inclusion, then p ( q (c sj k j j j k k
w (p ( q (u . By injectivity we also have an endomorphism t : E ª E, i.e.,j j j
an element t g S, such that t ( i ( h (u s i ( h (c . Observe then thatj j j k k
f ( a s a ( w is a monomorphism, and hence the morphismj k

Ž .f ( a (p ( q (u : y R ª E U is nonzero, so that we havej j j j j k

0 / f ( a (p ( q (u s a (w (p ( q (uj j j j k j j j

s a (p ( q (c s p X (w ( q (c s p X ( p m E ( i ( h (cŽ .k k k k k k k k S k k

s p X ( p m E (t ( i ( h (u .Ž .k k S j j j

w xNow, the argument can be completed exactly as in 7, Lemma 2.4 . If
j / k and C s s 0, consider the homomorphism p (t#( i : s S ª C ,k j k j# j k

Ž . Ž . Ž .Ž .where t# s Hom E, t and i s Hom E, i , and set x [ p (t# 1R j# R j k
Ž .Ž . Ž .Ž .g C . Then p (t#( i s s p (t# s s xs g C s s 0. Tensoringk k j# j k j j k j

Ž . Ž . Ž .with E we then see that p m E ( t# m E ( i m E s 0 and, sinceS k S S j# S
Ž .t# m E ( t and i m E ( i , that p m E (t ( i s 0, which gives aS j# S j k S j

contradiction and shows that j s k.

Now we exploit Lemma 2.2 to obtain situations in which the cardinality
of every idempotent-semiorthogonal family of simple right SrJ-modules is
less than or equal to that of the set of isomorphism classes of simple right
R-modules.

LEMMA 2.3. Let P be a finitely generated projectï e module such thatR
Ž .E s E P is c-projectï e and suppose that e¨ery proper submodule of ErJER R

is contained in a maximal submodule. Then, for e¨ery idempotent-semior-
� 4 < < < Ž . <thogonal family C of simple right SrJ-modules, K F V R .k k g K

� 4Proof. Consider an idempotent-semiorthogonal family C of sim-k k g K
� 4ple right SrJ-modules with associated idempotents e and let, fork k g K

each k g K, s be an idempotent of S such that e s s q J. Thenk k k
C s / 0 for each k g K and so there exists an element c g C such thatk k k k
c s / 0. Let p : S ª C be the homomorphism of Mod-S defined byk k k k
Ž .p 1 s c and E s s E, with canonical inclusion i : E ª E. Settingk k k k k k
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Ž . Ž .i s Hom E, i , we see that p m E ( i : E ª C m E can bek# R k k S k k k S
Ž .identified with p ( i m E and hence it is an epimorphism, so thatk k# S

Ž .Ž . w xp m E E s C m E. By 6, Proposition 1.3 we have that C m E /k S k k S k S
0 and since this module is a quotient of ErJE, our hypothesis implies that
it has a simple quotient. Thus we can apply Lemma 2.2 with P s E tok k

< < < Ž . <conclude that K F V R .

The usefulness of considering c-projective modules instead of projective
ones will be apparent once we prove our next result. Indeed, in order to be
able to apply Lemma 2.3 we show that if the cyclic submodules of ER
embed in c-projectives then E is already c-projective, even if theseR
embeddings are not supposed to be essential. We have:

PROPOSITION 2.4. Let E be an injectï e module. Then the followingR
conditions are equï alent:

Ž .i E is c-projectï e.
Ž .ii E¨ery cyclic submodule of E is essentially embeddable in aR

c-projectï e module.
Ž .iii E¨ery cyclic submodule of E is embeddable in a c-projectï eR

module.

Ž . Ž .Proof. That i implies ii is clear because a direct summand of a
Ž .c-projective module is c-projective and it is also obvious that ii implies

Ž . Ž . Ž .iii . To prove that iii implies i , let f : E ª Y be an homomorphism,
p : X ª Y an epimorphism, and x g E with inclusion u : xR ª E. By
hypothesis, there exists a monomorphism ¨ : xR ª M, where M is a
c-projective module. Since E is injective there exists a homomorphism
w : M ª E such that u s w(¨ . The c-projectivity of M then gives a
morphism g : xR ª X such that f (w(¨ s p( g and so f (u s p( g,
showing that E is c-projective.

We are now ready to obtain a rather weak but sufficient condition for a
right CF ring to be right artinian.

Ž .THEOREM 2.5. Let R be a ring and E s E R . If R is right CF and e¨eryR
proper submodule of ErJE is contained in a maximal submodule, then R is
right artinian.

Proof. Since every cyclic right R-module embeds in a free module, it is
enough to show that R has finitely generated essential socle. By LemmaR
2.3 and Proposition 2.4 we have that the cardinality of every idempotent-

� 4orthogonal family C of simple right SrJ-modules is less than ork k g K
< Ž . <equal to V R . Then we can use Lemma 2.1 to show that E and henceR

R has finite essential socle.R
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Ž .COROLLARY 2.6. Let R be a ring and E s E R . If R is right CF andR
ErJE is finitely generated, then R is right artinian.

Corollary 2.6 extends Menal’s result which asserts that a right CF ring R
Ž . w xsuch that E R is projective is already a QF ring 9, Corollary 9 . Indeed,R

Ž .it follows from this corollary that if R is right CF and E R is finitelyR
generated, then R is a right artinian ring with a right Morita duality. These
rings need not be QF, however, as the following example shows.

w xEXAMPLE 2.7. Let as in 2, p. 70 p be a prime number and P the
Ž .prime field of p elements. Let K s P X be the field of rational functions

Ž .over P and consider K as a K, K -bimodule where the right K-module
structure is the natural one and the left K-module structure is given by the
Frobenius endomorphism of K, that is, a ? x s a p x for a, x g K. Let R be
the trivial extension of K by the bimodule K , that is, R s K [ K asK K

Ž .Ž . Ž p .abelian group, with multiplication given by a, x b, y s ab, a y q bx
Ž . Ž . w x Ž .for a, x , b, y g R. It is shown in 2 that R is a two-sided artinian ring

Ž .which is right CF but not QF. We show that E R is finitely generated.R
To see this observe that if w : K ª R denotes the canonical ring homo-
morphism, then the restriction of scalars functor w# : Mod-R ª Mod-K

! !Ž . Ž .has a right adjoint w : Mod-K ª Mod-R given by w M s Hom R, MK
Ž w x.for M g Mod-K cf. 15, p. 105 . Since w# preserves monomorphisms, it is

! !Ž .easily checked that w preserves injectivity and so w M is an injective
!Ž .right R-module for every M in Mod-K. In particular, E [ w K is anR

Ž .injective right R-module and we show that E ( E R . It is easily seenR R
Ž .Ž .that E ( K [ K with the right R-module structure given by u, ¨ a, xR

Ž p . Ž . Ž .s a u, a¨ q xu for u, ¨ g E and a, x g R. We can define an R-ho-R
Ž . Ž p .momorphism u : R ª E by u a, x s a , x . It is easy to check that uR R

is a monomorphism and that Im u is essential in E , so that we indeedR
Ž .have E ( E R . Finally, to see that E is finitely generated just noteR R R

pŽ . p � 4that K s K X is a p-dimensional vector space over K . Let u , . . . , u1 p
p Ž . p pbe a K -basis of K. Then if u, ¨ g E with u s Ý a u and we setR is1 i i

y 1 Ž .¨ s ¨u , ¨ s ¨ s ??? s ¨ s 0, we see that u, ¨ s1 1 2 3 p
Ž p p p . p Ž .Ž .Ý a u , Ý ¨ u s Ý u , 0 a , ¨ , so that the elementsis 1 i i is 1 i i is 1 i i i
Ž . Ž .u , 0 , . . . , u , 0 generate E .1 p R

w xIn 13, Theorem 3.4 it was shown that a right CF right perfect ring is
Žright artinian. Recall that a ring R is called a right max ring or a right

w x.B-ring 4 when every nonzero right R-module has a maximal submodule;
right perfect rings are right max rings but a right max ring need not be
semiperfect. In fact, if R is a right V-ring, that is, a ring such that each
simple right R-module is injective, then all the right R-modules have zero
radical and so R is a right max ring. Thus, in contrast with the rings

w x Žconsidered in 12, 13 , right max rings need not even be semiregular see
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w x.3 . As an immediate consequence of Theorem 2.5 we obtain:

COROLLARY 2.8. E¨ery right CF right max ring is right artinian.

We are now going to see that for right FGF rings it is enough to assume
that countably generated nonzero modules have maximal submodules.
With this goal in mind we show:

PROPOSITION 2.9. Let R be a right FGF ring and N a finitely generated
right R-module. Then N is contained in a countably generated c-projectï e

Ž .submodule of E N .

Ž .Proof. Let N be a finitely generated module and E s E N . WeR
define a c-projective submodule of E containing N by induction. StartingR
with M s N with inclusion u : M ª E and considering a monomor-1 1 1
phism ¨ : M ª F , where F is a finitely generated free module, we1 1 1 1
obtain by injectivity a morphism w : F ª E such that w (¨ s u . Let1 1 1 1 1
M s Im w and, inductively, M s Im w for each k G 1. Then the M2 1 kq1 k k
are finitely generated submodules of E and N s M : M : ??? : M :1 2 k
??? , so that M [ j` M is a countably generated submodule of E. Weks1 k
show that M is a c-projective module. To see this let L be a finitely
generated submodule of M with inclusion u : L ª M, p : X ª Y an
epimorphism, and f : M ª Y a homomorphism. Since L is a finitely
generated submodule of M [ j` M , there exists an index j G 1 suchks1 k
that L : M . By construction, the inclusion u : M ª E factors in thej j j
form u s w (¨ with ¨ : M ª F a monomorphism into a free module F .j j j j j j j
Thus u factors through F and so does f (u. This gives the requiredj
morphism g : L ª X satisfying that f (u s p( g and shows that M is
indeed c-projective.

COROLLARY 2.10. Let R be a right FGF ring such that each countably
generated nonzero right R-module has a maximal submodule. Then R is QF.

� 4Proof. Let C be an idempotent-semiorthogonal family of simplek k g K
Ž Ž ..right SrJ-modules, where S s End E R . If, as in Lemma 2.1, E s s E,R k k

Ž .Ž .then p m E E / 0 and by Proposition 2.9 there exists a countablyk S k
Ž .Ž .generated c-projective submodule P of E such that p m E P / 0.k k k S k

Since this module is countably generated it has a simple quotient by
< < < Ž . < Ž .hypothesis and so Lemma 2.2 implies that K F V R . Then E R is aR

cogenerator and has finitely generated essential socle by Lemma 2.1. Thus
w xR is right artinian and hence QF by 5 .

We will now show that in the situation of Theorem 2.5 the hypothesis
that ErJE is finitely generated is automatically satisfied if we assume that
sufficiently large modules embed in free modules. First we find an upper

< <bound for ErJE .
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LEMMA 2.11. Let R be a ring such that each 2-generated submodule of
Ž . < < � < <4E s E R embeds in a free module. Then ErJE F max / , R .R 0

< < < < Ž .Proof. First we show that ErJE F SrJ . Since ErJE ( SrJ m E,S
Ž .it is enough to prove that every element of SrJ m E is of the formS

Ž .s q J m 1 with s g S and 1 g R : E. If we consider an element of the
Ž .form s q J m e with e g E, then the R-homomorphism f : R ª E given
Ž .by f 1 s e extends by injectivity to an endomorphism s9 of E such that

Ž . Ž . Ž . Ž . Ž . Ž .s9 1 s f 1 s e. Thus s q J m e s s q J m s9 1 s ss9 q J m 1. It is
Ž .then clear that every element of SrJ m E is of this form.S

< < � < <4Next we show that SrJ F max / , R . Let, for each n G 1, M be the0 n
set of all injective homomorphisms from R to Rn. For each f g M letn

� Ž n. 4D [ g g Hom R, R N Im g l Im f : Im g . We define a mapn, f R e
w : D ª SrJ as follows. Let g g D and u : R ª E the canonicaln, f n, f n, f
inclusion. Since f is a monomorphism, there exists a homomorphism
h : Rn ª E such that h( f s u and, using again the injectivity of E, we
obtain an endomorphism s of E such that s(u s h( g. Then we define

Ž .w g [ s q J. To see that w is indeed a well defined map, supposen, f n, f
that h9 : Rn ª E and s9 g S satisfy that h9( f s u, s9(u s h9( g. Then

y1Ž .L s g Im f is essential in R and hence in E . Calling ¨ : L ª R toR R
the inclusion we have a homomorphism g 9 : L ª R such that f ( g 9 s g (¨
and hence s(u(¨ s h( g (¨ s h( f ( g 9 s u( g 9 and, similarly, s9(u(¨
s h9( g (¨ s h9( f ( g 9 s u( g 9. Thus we see that the restrictions of s and
s9 to L agree and so s y s9 is an endomorphism of E whose kernel is an
essential submodule. Therefore we have that s y s9 g J and so s q J s
s9 q J.

Now, we claim that for each s g S there exist n G 1, f g M , andn
Ž . Ž .g g D such that w g s s q J. Let x s s 1 g E and a : R ª xR q Rn, f n, f

the homomorphism given by left multiplication with x. If ¨ : xR q R ª E
is the canonical inclusion, then s(u s ¨ ( a . Because every 2-generated
module embeds in a free module, there exist n G 1 and a monomorphism
w : xR q R ª Rn. Let f s w N and g s w( a . Since R is essential in E,R

Ž .we have that xR l R is essential in xR and hence Im g l Im f s w xR
Ž . Ž .l w R : Im g s w xR . This shows that g g D . By injectivity wee n, f

obtain a morphism h : Rn ª E such that h(w s ¨ so that, in particular,
h( f s ¨ N s u. Thus s(u s ¨ ( a s h(w( a s h( g and so we haveR

Ž .that w g s s q J, proving our claim.n, f
< < < Ž . < � < <4Hence it follows that SrJ F j j D Let c s max / , R .nG1 f g M n, f 0n

< < < Ž n. < < n < < <Since M F Hom R, R s R F c and, similarly, D F c for eachn R n, f
< <n G 1 and each f g M , we have that SrJ F c.n

Now we are ready to give the promised condition for the finite genera-
tion of ErJE.
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Ž . Ž .LEMMA 2.12. Let R be an infinite ring, E s E R , S s End E , andR R
Ž . ŽR.J s J S . If e¨ery quotient of R embeds in a free module, then ErJE isR

finitely generated.

< < < <Proof. First note that by Lemma 2.11, ErJE F c s R . Let q : E ª
ErJE be the canonical projection. Then there exists a c-generated sub-

Ž .module M of E such that q M s ErJE and, replacing M by M q R if
necessary, we can assume that R : M. Denote by ¨ : R ª M the inclu-
sion. By hypothesis we have a monomorphism w : M ª RŽ I . for some set I

Ž . Fand so there exists a finite subset F of I such that Im w(¨ : R . Then,
if p : RŽ I . ª RF denotes the projection, p (w(¨ is a monomorphism.
Because ¨ is essential we have that p (w is also a monomorphism. Thus
the inclusion a : M ª E factors, by injectivity, in the form a s h(p (w

F Ž .Ž . Ž .Ž .for some h : R ª E. Therefore ErJE s q( a M s q( h(p (w M
Ž .Ž F . Ž .Ž F .: q( h R : ErJE. From this it follows that ErJE s q( h R is

finitely generated.

We now give our main result.

THEOREM 2.13. Let R be a ring such that e¨ery quotient of RŽR. embedsR

in a free module. Then R is QF.

Proof. If R is finite, then every 2-generated right R-module embeds in
w xa free module and so the result follows from 16, Proposition 1.24 . If R is

infinite the result follows from Corollary 2.6 and Lemma 2.12.
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