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We study the possible boundary conditions of scalar field modes in a hyperscaling violation (HV) 
geometry with Lifshitz dynamical exponent z (z ≥ 1) and hyperscaling violation exponent θ (θ �= 0). 
For the case with θ > 0, we show that in the parameter range 1 ≤ z ≤ 2, −z + d − 1 < θ ≤ (d − 1)(z − 1)

or z > 2, −z + d − 1 < θ ≤ d − 1, the boundary conditions have different types, including the Neumann, 
Dirichlet and Robin conditions, while in the range θ ≤ −z + d − 1, only Dirichlet type condition can 
be set. In particular, we further confirm that the mass of the scalar field does not play any role in 
determining the possible boundary conditions for θ > 0, which has been addressed in Ref. [1]. Meanwhile, 
we also carry out the parallel investigation in the case with θ < 0. We find that for m2 < 0, three types 
of boundary conditions are available, but for m2 > 0, only one type is available.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The use of holographic duality into study of strongly-coupled 
field theories [2,3] has produced substantial progress in repro-
ducing and understanding phenomena not only from relativistic 
systems like QCD [4], but also from the non-relativistic strongly in-
teracting condensed matter systems [5–8]. These applications have 
provoked interest in holographic realization of symmetry groups 
that go beyond relativistic conformal symmetry. These include 
in particular the Schrödinger symmetry [9,10], Lifshitz symmetry 
[11–24] and HV symmetry [1,25–29], which exhibit in common the 
anisotropic scaling characterized by the dynamic critical exponent 
z > 1 between time and space coordinates on the boundary. Be-
sides, a lot of extensive holographic study on non-relativistic scal-
ing geometry have been present in [30–42] and references therein.

In the application of AdS/CFT correspondence, to gain reason-
able interpretations of the dual field theory, it is necessary and 
important to study possible boundary conditions of various fields 
in the bulk theory. In [43], the authors proposed a unique pre-
scription for finding consistent boundary conditions of the fields 
on a stably causal, static spacetime which possesses “good dy-
namic”. Later, by applying this proposal into the scalar field (also 
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electromagnetic and gravitational perturbations) in the global anti-
de Sitter space in [44], they found that the boundary conditions 
ranging from Dirichlet to Robin to Neumann conditions are in all 
possibility depending on the effective mass of the scalar field. Re-
cently, inspired by [43,44], this method of disclosing the possible 
boundary conditions is extended into the study of the scalar field 
in Lifshitz geometry in [45,46]. It was addressed that depending on 
the effective mass of the scalar field, which is determined by the 
Lifshitz exponent and the dimension of spacetime, the scalar field 
can have no reasonable dynamic, one-parameter choice of bound-
ary conditions type and only one boundary condition type.

In this letter, we shall explore the possible boundary conditions 
of scalar field in the HV geometry closely following the approach of 
[45]. Using the Poincaré patch, the HV geometry has the following 
form [30]

ds2
d+1 = u

2θ
d−1

(
− 1

u2z
dt2 + 1

u2
du2 + 1

u2
d�x2

)
, (1)

where x runs over d − 1 dimensions and the boundary of this 
geometry is at u = 0. The above metric enjoys both a Lifshitz dy-
namical critical exponent z (z ≥ 1) and a HV exponent θ . Under 
the scale-transformation

t → λzt, xi → λxi, u → λu , (2)

the metric (1) transforms as ds → λθ/(d−1)ds, which breaks the 
scale-invariance.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2015.11.046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:jianpinwu@mail.bnu.edu.cn
mailto:xmeikuang@gmail.com
http://dx.doi.org/10.1016/j.physletb.2015.11.046
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.11.046&domain=pdf


J.-P. Wu, X.-M. Kuang / Physics Letters B 753 (2016) 34–40 35
Before proceeding, we shall give several comments on the HV 
geometry (1). Firstly, the scalar curvature is R ∝ u− 2θ

d−1 , so that 
there is a curvature singularity at u = 0 for θ > 0 [1,42]. However, 
to implement the θ �= 0 HV geometry (1), one usually needs to 
introduce a dilaton field (see for example [1,27,28]), which can be 
used to absorb the curvature singularity into the dilaton in the 
dual frame. Furthermore, the null energy condition gives us the 
following constrains on z and θ ,

(d − 1 − θ)((d − 1)(z − 1) − θ) ≥ 0 , (3)

(d − 1 − θ + z)(z − 1) ≥ 0 . (4)

At the same time, the stabilities in the gravity side require θ ≤
d −1. Combining the above discussions, we summarize the allowed 
z and θ as

1 ≤ z ≤ 2, θ ≤ (d − 1)(z − 1) , (5)

z > 2, θ ≤ d − 1 . (6)

In section 2, we present our detailed analysis on the possible 
conditions of the scalar field with the hyperscaling violation ex-
ponent θ > 0 and θ < 0, respectively. Section 3 is the conclusion 
and discussion. In Appendix A, we give a brief summary for the 
series solutions of the linear differential equation, which we use 
frequently in the main context. In addition, the discussions on the 
square integrability of solutions at infinity are presented in Ap-
pendix B.

2. Scalar boundary conditions in HV geometry

Since the HV geometry (1) we will study is static and stably 
causal, it has well defined timelike hypersurface and each is equiv-
alent to any other. Therefore, we can explore the possible boundary 
conditions for scalar field � on a particular hypersurface �. After 
selecting a static direction t , the Klein–Gordon (KG) equation can 
be written as

−u2z− 2
d−1 θ

∂2
t � + ud+z− d+1

d−1 θ
∂u(u−z−d+2+θ ∂u�) + ∇ i∇i�

− m2� = 0. (7)

We are interesting in momentum space and expand � as

� = up
∫

d�kc�kei�k.�xψk(t, u), with p = z − θ + d − 2

2
. (8)

Under the above transformation, the KG equation has the form

∂2
t ψk = −Aψk, (9)

where we have defined an operator A as

A = −u2(1−z)[∂2
u − p(p + 1)u−2 − m2u−2+ 2

d−1 θ − k2]. (10)

It can act on the Hilbert space H = L2(�, μ) of functions living 
on the time slice and being square integrable with the measure 
μ = V −1d�.

For the HV geometry, the measure is

μ = uθ+z−ddud�xd−1. (11)

So, the inner product on the Hilbert space H can be calculated as

〈�2|�1〉 =
∫
�

�∗
2�1uθ+z−ddud�xd−1. (12)

Obviously, the set of functions included in the Hilbert space not 
only depend on Lifshitz exponent z but also θ . Assuming that the 
wave packets are normalizable in the �x directions, the inner prod-
uct (12) becomes in term of ψk(t, u)

〈�2|�1〉u =
∫

duu2z−2ψ∗
2,kψ1,k. (13)

Subsequently, we shall study possible boundary conditions at u = 0
for ψk(t, u), which satisfy the KG equation and are finite under the 
norm (13), for the cases with θ > 0 and θ < 0, respectively. The 
related study for θ = 0 can be found in [45,46].

2.1. Boundary conditions for θ > 0

2.1.1. Solution spaces K±
In order to classify the possible boundary conditions, we only 

need to know the solution of modes near the boundary and 
its normalizability. Therefore, we shall only explore the solution 
spaces K± at u = 0 in the main body of this letter,1 whose ele-
ments satisfy the following eigenequation2

Aψ = λψ, (14)

with eigenvalues λ = ±i and A defined in Eq. (10). In addition, 
the elements of K± also should be square integrable under the 
measure (11).

Substituting the expression of A, the eigenequation (14) can be 
rewritten as

∂2
u ψ + Q (u)ψ = 0, (15)

where

Q (u) = −p(p + 1)u−2 − m2u
2

d−1 θ−2 − k2 + λu2z−2. (16)

Note that when θ = 0, Eq. (15) recovers to the equation studied 
in the Lifshitz–AdS geometry [45,46]. The above eigenequation is a 
second order linear differential equation and so there exist two lin-
early independent solutions for any given eigenvalue λ. However, 
it is difficult to find exact analytic solutions for Eq. (15) as that 
happens in AdS geometry [44]. Fortunately, because what we are 
interesting in is the normalizability of the solutions for eigenequa-
tion (15) under the measure (13), we only need to explore the 
behavior of eigenfunction ψ± near the boundary regardless of their 
full expression.

Since for θ > 0,

q0 = lim
u→0

u2 Q (u) = −p(p + 1), (17)

which is finite in the limit of u → 0, according to the description in 
Appendix A, we can judge that the singular point u = 0 is a regular 
singular point. Thus, we obtain the following initial equation

α(α − 1) − p(p + 1) = 0, (18)

which gives two values

α1 = 1

2
− ν, α2 = 1

2
+ ν, (19)

with

ν =
√

1 + 4p(p + 1)

4
=

√(
z − θ + d − 1

2

)2

. (20)

1 For completeness, we shall also present the discussions on the square integra-
bility of solution spaces K± over the full radial range from u = 0 to u = ∞ in 
Appendix B.

2 For convenience, we will drop the subscript k in ψ .
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From the above equation, it is obvious that ν2 is independent of 
the mass of scalar field, which is very different from the case in 
AdS geometry or Lifshitz–AdS geometry.3 This observation agrees 
well with that mass term does not contributes to the UV behavior 
of Green function of scalar operator as addressed in [1]. ν2 ≥ 0 is 
required to ensure the positive definiteness of the operator A on 
Hilbert space. Therefore, we have z−θ +d −1 ≥ 0, i.e., θ ≤ z+d −1
which gives us from Eq. (20) that ν = z−θ+d−1

2 . Note that the case 
with θ > z+d −1 is also excluded due to the instabilities of gravity 
according to Eq. (5) and Eq. (6).

Now we are ready to extract our solutions from Eqs. (A.6)–(A.9)
in the appendix. For clarification, we list the leading behaviors of 
ψ near u = 0 depending on the values of ν:

a. When ν is neither zero nor a half integer, we have the leading 
behaviors

ψ↓ = a0uα1 , ψ↑ = b0uα2 . (21)

b. When ν vanishes, i.e., α1 = α2 = 1/2, to the leading order, the 
asymptotic behaviors at u = 0 become

ψ↓ = a0u1/2, ψ↑ = a0u1/2 ln u. (22)

c. When ν becomes some nonzero half integer, i.e., z−θ +d −1 =
j, j = 1, 2, . . ., the logarithmic behavior in Eq. (A.9) diverges. 
To have well-defined behavior of ψ , the constant C in Eq. (A.9)
should vanish. So in this case, the asymptotic behaviors are the 
same as Eq. (21).

After having fixed the asymptotic behaviors at u = 0, we shall 
study their square integrability under the measure (13), in which 
the leading behavior of u2z−2ψ2 is required in the form of uβ with 
β > −1. We first discuss the case of ν being non-zero, which has 
the asymptotic behavior as (21). For the solution ψ↑ , we have

uβ = u2z−2+2ν+1, (23)

which results in ψ↑ being square integrable when ν > −z. Re-
calling the condition of gravitational stability and the expression 
ν = z−θ+d−1

2 > 0, we have the conditions z − θ + d − 1 ≥ 0 and 
ν > −z, which are always satisfied. Thus, the solution ψ↑ is al-
ways square integrable near u = 0. While ψ↓ leads to

uβ = u2z−2−2ν+1. (24)

So ψ↓ being square integrable requires that −ν > −z. Combining 
the assumption that z − θ + d − 1 ≥ 0, the square integrability of 
ψ↓ results in −z + d − 1 < θ ≤ z + d − 1.

For the case of ν vanishing, the leading behavior is the logarith-
mic term ψ↑ in Eq. (22). So, u2z−2ψ2 has the following behavior

u2z−2ψ2 = u2z−1(ln u)2, (25)

which is independent of θ and so square integrable near u = 0 for 
any z > 1.

Thus, for 0 ≤ ν < z, i.e., −z + d − 1 < θ ≤ z + d − 1, ψ↓ and ψ↑
are both in the Hilbert space near u = 0. While for ν ≥ z, only ψ↑
is in the Hilbert space, without considering the eigenvalue λ.

Furthermore, as we discussed in Appendix B.1, for 0 ≤ ν < z, 
the more general solution ψ2 (B.9)

ψ2 = C↓ψ↓ + C↑ψ↑, (26)

which is fulfilled near the boundary is square integrable un-
der measure (11). Since the solutions multiplying the solution 

3 Similar case has been found in Dirac equation in [27,39,40].
(26) by any phase also belong to the Hilbert space, we have a 
one-dimensional solution space for each eigenvalue ±i. Therefore, 
a one-dimensional alternative set of boundary conditions can be 
found in this range. However, for ν ≥ z, because ψ↓ lies out of the 
Hilbert space, so only one type of boundary condition is available.

2.1.2. Boundary conditions
Subsequently, we shall further study the available boundary 

conditions of the scalar field ψ for 0 ≤ ν < z. Similar to the dis-
cussion in the AdS and Lifshitz–AdS geometry [43,45], we define

ψγ = ψ2,λ=i + eiγ ψ2,λ=−i. (27)

Considering the complete forms of ψ↓ and ψ↑ at u = 0, for ν being 
non-zero or a half integer, we simplify the behavior of ψγ as

ψγ ∼
∞∑

n=0

(an,γ u
1
2 −ν+n + bn,γ u

1
2 +ν+n), (28)

where both an,γ and bn,γ contribute to determine the choice 
of boundary conditions. Although we cannot match the solutions 
ψ↑,↓ near u = 0 to the solutions ψ1,2 near u = ∞,4 as discussed in 
[45], we can still make a choice of extension, which is determined 
by the ratio b0,γ /a0,γ . Using Eq. (8), one can obtain the behavior 
of � near u = 0

�t ∼
∞∑

n=0

(an,γ u
z−θ+d−1

2 −ν+n + bn,γ u
z−θ+d−1

2 +ν+n). (29)

The leading behavior is u
z−θ+d−1

2 −ν . Actually, the exponent in the 
leading term is zero, which corresponds to the case with m = 0 in 
AdS and Lifshitz–AdS geometry [43,45].

Finally, keeping the constrained conditions (5) and (6) in mind, 
we shall summarize our discussion about θ > 0 as follow:

• When ν = 0, i.e., z − θ + d − 1 = 0, together with z ≥ 1, which 
means θ ≥ d. This should be ruled out because the range θ ≥ d
has no intersection with (5) or (6), and leads to instabilities of 
gravity.

• When 0 < ν < z, i.e., −z + d − 1 < θ < z + d − 1, combining 
with the conditions (5) and (6), we have

1 ≤ z ≤ 2, −z + d − 1 < θ ≤ (d − 1)(z − 1) , (30)

z > 2, −z + d − 1 < θ ≤ d − 1 . (31)

In the parameter range above, the leading term of �t is 
a0,γ u

z−θ+d−1
2 −ν and the subleading term is b0,γ u

z−θ+d−1
2 +ν . 

Therefore, the choice of the ratio b0,γ

a0,γ
will correspond to dif-

ferent types of boundary conditions ranging from Dirichlet 
condition (

b0,γ

a0,γ
= 0), Neumann condition (

b0,γ

a0,γ
= ∞) to Robin 

condition ( b0,γ

a0,γ
is the value being neither 0 nor ∞). Note that 

since ν = z−θ+d−1
2 , the exponent in the leading term is zero. It 

just corresponds to the case of m2 = 0 in AdS or Lifshitz–AdS 
geometry [43,45].

• When ν ≥ z, we have θ ≤ −z + d − 1, which falls into the 
range θ ≤ (d − 1)(z − 1) (Eq. (5)) or into θ ≤ (d − 1) (Eq. (6)). 
For this case, the leading term is not available while only 
the subleading term is available, of which the form goes like 
b0,γ u

z−θ+d−1
2 +ν . Therefore, only one type of boundary condi-

tion is available in this case.

4 Please see the Appendix B.
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2.2. Boundary conditions for θ < 0

In this subsection, we turn to explore the possible boundary 
conditions for the case with θ < 0.

2.2.1. Solution spaces K±
Similar to the discussion in last subsection, we start with find-

ing the solution of the eigenequation at the singular point u = 0. 
From Eqs. (15) and (16), it is explicit that u = 0 is an irregular 
point with rank l = − θ

d−1 . This is very different from the obser-
vation for θ > 0, in which u = 0 is a regular singular point. Note 
that with the same trick in the above subsection, we can assume 
θ = −(d − 1)l where l = 1, 2, 3, . . .. If θ is a rational non-integer, 
a transformation of coordinates of ρ = u1/n can be made to fulfill
that − nθ

d−1 is an integer.
Therefore, the solution of Eq. (15) has the form of Eq. (A.10)

ψ(u) = F (u)exp

[
l∑

l=1

Clu
−l

]
, (32)

with

F (u) =
∞∑

n=0

anuα+n, a0 �= 0. (33)

Putting Eq. (32) back into Eq. (15), we have⎡
⎣ l∑

l=1

Cll(l + 1)u−l−2 +
(

l∑
l=1

Cl(−l)u−l−1

)2

+ Q (u)

⎤
⎦ F

+ ∂2
u F + 2

l∑
l=1

Cl(−l)u−l−1∂u F = 0, (34)

with l = − θ
d−1 .

It is easy to find that the most dominant terms at u = 0 in 
Eq. (34), i.e., the highest power term of 1/u are the squared sum 
term and the m2 term. The coefficient of the most dominant terms 
should be set to zero to satisfy the equation, so that we have

C2
θ

θ2

(d − 1)2
− m2 = 0 (35)

which gives two roots Cθ,± as follow

C I
θ,± = ±

(
−d − 1

θ

)√
m2, m2 ≥ 0, (36)

CII
θ,± = ±

(
−d − 1

θ

)√
|m|2 i, m2 < 0. (37)

Then to the leading order at u = 0, the asymptotic behaviors of ψ
in Eq. (32) are

ψ I
1 = a0uα exp[C I

θ,+u
θ

d−1 ],
ψ I

2 = a0uα exp[C I
θ,−u

θ
d−1 ] for m2 ≥ 0, (38)

ψ II
1 = a0uα exp[CII

θ,+u
θ

d−1 ],
ψ II

2 = a0uα exp[CII
θ,−u

θ
d−1 ] for m2 < 0. (39)

Since Eq. (35) is independent of the eigenvalue, the above solu-
tions satisfy the eigenequation Aψ = ±iψ . In addition, the above 
solutions are square integrable except ψ I .
1
Moreover, in Appendix B.2, we discussed that in this case, the 
general possible square integrable solution near the boundary is 
ψ2 in Eq. (B.10), i.e.,

ψ2 = C1ψ
j

1 + C2ψ
j

2 . (40)

Because the exponent damped solution ψ I
1 lives beyond of the 

Hilbert space and we cannot construct the above linear combina-
tion for j = I , so only one type of boundary conditions is available 
for the modes with m2 ≥ 0. But for m2 < 0, the construction in 
Eq. (40) is available in Hilbert space and any solution multiplying 
that is included in, so there is a one-dimensional alternative set of 
boundary conditions.

2.2.2. Boundary conditions
Following the steps in the case with θ > 0, we can deduce the 

behavior of ψγ for θ < 0 and m2 < 0 as

ψγ ∼
∞∑

n=0

(
ãn,γ un exp[CII

θ,+u
θ

d−1 ] + b̃n,γ un exp[CII
θ,−u

θ
d−1 ]

)
, (41)

where both ãn,γ and b̃n,γ will determine the choice of boundary 
conditions. Furthermore, the behavior of � near u = 0 can be writ-
ten as

�t ∼
∞∑

n=0

(
ãn,γ u

z−θ+d−2
2 +n exp[CII

θ,+u
θ

d−1 ]

+ b̃n,γ u
z−θ+d−2

2 +n exp[CII
θ,−u

θ
d−1 ]

)
, (42)

which can be expanded into the form

�t ∼
∞∑

n=0

(
ãn,γ u

z−θ+d−2
2 +n[1 + CII

θ,+u
θ

d−1 + . . .]

+ b̃n,γ u
z−θ+d−2

2 +n[1 + CII
θ,−u

θ
d−1 + . . .]

)
. (43)

Therefore, we shall close this subsection with a summary of 
the possible boundary conditions of the scalar field in the HV 
geometry with θ < 0. For the modes with m2 < 0, there are differ-
ent types of boundary conditions ranging from Dirichlet condition, 
Neumann condition to Robin condition, which is set by the ration 
b̃0,γ

ã0,γ
. While for the modes with m2 ≥ 0, only one type of boundary 

conditions is available.

3. Conclusions and discussions

In this letter, we examined the normalizability and studied the 
possible boundary conditions of scalar field in hyperscaling violat-
ing geometry. We discussed them in both cases with θ > 0 and 
θ < 0, respectively. In the case with θ > 0, we fixed two sets of 
range of geometrical parameters, HV exponent θ and Lifshitz ex-
ponent z, in which the types of possible boundary conditions can 
be different. Specifically, in a certain range, see Eqs. (30) and (31), 
three types of boundary conditions including Dirichlet condition, 
Neumann condition to Robin condition, are available for the scalar 
mode. This observations is analogous to the well known mass win-
dow in AdS geometry allowing for different quantizations of the 
scalar modes. However, the difference is that, in this case, the mass 
of the scalar field does not play any role in determining the pos-
sible boundary conditions in HV geometry. While in the range of 
θ ≤ −z + d − 1, i.e., ν ≥ z, only the subleading term of �t sur-
vives, which leads to the conclusion that no alternative choice of 
the boundary conditions is available and only Dirichlet type condi-
tion can be set. Also, we studied them parallely in the case with 
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θ < 0, in which we found that for m2 < 0, three types of boundary 
conditions can be set while for m2 > 0, only one type is available.

Here we only consider the scalar field in the HV geometry but 
never refer to any specific model. It would be very interesting to 
explore the scalar, vector and tensor fluctuations on specific HV 
models, such as Refs. [1,25–27] and references therein. However, 
we would like to point out that considering the specification of a 
HV background involves a specific metric and a running dilaton, it 
is still not obvious that the KG mass is an interesting coupling in 
the context of holography for HV backgrounds. The mass that de-
termines the dimensions of the dual scalar operators is the mass 
in the dual frame, which can be obtained by Weyl transformation 
[47,48]. This mass term in the dual frame may be more relevant 
for the physics of the dual theory, which calls for further under-
standing.
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Appendix A. Series solutions of the second order homogeneous 
linear differential equations

In this appendix, we will give a brief summary of the series so-
lutions of the second order homogeneous linear differential equa-
tions. For the detailed discussions, please refer to [49–51]. Now, 
we begin with the following differential equation

y′′(x) + P (x)y′(x) + Q (x)y(x) = 0. (A.1)

Usually, a point x0 can be classified as the ordinary point, regu-
lar singular point and irregular singular point. The ordinary point 
is that the coefficient functions P (x) and Q (x) are all analytic at 
point x0.5 For ordinary point, y(x) can be expanded in term of 
Taylor series

y(x) =
∞∑

n=0

cn(x − x0)
n. (A.2)

A singular point is that at least one of the coefficient functions 
P (x) and Q (x) are not analytic at x0. The singular point x0 can 
be furthermore classified as regular singular point and irregular 
singular point. If all of (x − x0)

2 Q (x), (x − x0)P (x) are analytic at 
x = x0, the point x0 is regular singular point. Otherwise, the point 
x0 is called irregular singular point. Especially, if

(x − x0)
l+1 P (x) =

∞∑
n=0

an(x − x0)
n,

(x − x0)
2(l+1) Q (x) =

∞∑
n=0

bn(x − x0)
n, (A.3)

where at least one of a0 and b0 are not zero and l is a positive 
integer, then the point x0 is the irregular singular point of rank l. 
If the order of the pole of P (x) and that of Q (x) at x0 are l1 + 1

5 Here, we assume that x0 is finite. For an infinite point, one can set x = 1/χ and 
then study the behavior as χ → 0.
and 2l2 + 2 respectively, with l1 not equal to l2, then the rank l is 
equal to the greater of l1 and l2.

For a regular singular point, instead of the Taylor series, one 
needs a Frobenius series

y(x) = (x − x0)
α

∞∑
n=0

cn(x − x0)
n, c0 �= 0. (A.4)

Substituting the above expansion into the second order differen-
tial equation (A.1), and then requiring that the coefficient for each 
power of x − x0 must vanish separately, one can obtain the follow-
ing indicial equation

α(α − 1) + p0α + q0 = 0, (A.5)

where p0 = limx→x0 (x − x0)P (x) and q0 = limx→x0 (x − x0)
2 Q (x). 

The above equation gives two values α1, α2. If α1 − α2 �= j, j =
0, 1, 2, . . ., there are two linearly independent solutions of Frobe-
nius form

y1(x) = (x − x0)
α1

∞∑
n=0

an(x − x0)
n, a0 �= 0, (A.6)

y2(x) = (x − x0)
α2

∞∑
n=0

bn(x − x0)
n, b0 �= 0. (A.7)

If α1 −α2 = 0, one of the two linearly independent solution, y1(x), 
is the Frobenius form (A.6) and another, y2(x), looks like

y2(x) = y1(x) ln(x − x0) + (x − x0)
α2

∞∑
n=0

bn(x − x0)
n. (A.8)

If α1 − α2 = j, with j = 1, 2, . . ., y1(x) still remains the form (A.6), 
but y2(x) will be

y2(x) = C y1(x) ln(x − x0) + (x − x0)
α2

∞∑
n=0

bn(x − x0)
n, b0 �= 0,

(A.9)

where C is a constant that might vanish or not.
For the irregular singular point of rank l, the solutions are of 

the form

y(x) = F (x)exp

[
l∑

l=1

Cl(x − x0)
−l

]
, (A.10)

where F (x) is a Frobenius series.
If the irregular singular point of rank l is infinity, then the so-

lutions of Eq. (A.1) at large x is of the form

y(x) =
( ∞∑

n=0

anx−α−n

)
exp

[
l∑

l=1

Clx
l

]
, a0 �= 0. (A.11)

Appendix B. The square integrability at infinity

Since Eq. (15) has two singular points, i.e., u = 0 and u → ∞, 
for completeness, in this appendix, we shall also present the dis-
cussions on the possible square integrability of solutions to Eq. (15)
under the measure (13).
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B.1. Case I: θ > 0

To search for the possible square integrable solutions to Eq. (15)
over the full radial range, we need to further exploit the behavior 
of these solutions at infinity. To deal with the behaviors at infinite 
point, one usually sets u = 1/r and study them at r → 0. Under 
this transformation, the eigenequation (15) becomes

∂2
r ψ + 2

r
∂rψ + Q̃ (r)ψ = 0, (B.1)

where Q̃ has the form

Q̃ (r) = −p(p + 1)r−2 − m2r−2(1+ θ
d−1 ) − k2r−4

+ λr−2(1+z). (B.2)

From Eq. (B.1), we can see that the singular point u = ∞ (r = 0) 
is an irregular singular point with rank z if z ≥ θ

d−1 and with rank 
θ

d−1 if z < θ
d−1 , respectively. Note that z < θ

d−1 is excluded due 
to the gravitational instability, then we can only focus on the case 
with z ≥ θ

d−1 and also we will assume integer z = l, l = 2, 3, 4, . . ..6
For an irregular singular point with rank l at infinity, the solu-

tion of Eq. (15) has the form of (A.11), i.e.,

ψ(u) = F (u)exp

[
l∑

l=1

Clu
l

]

with F (u) =
∞∑

n=0

anu−α−n, a0 �= 0. (B.3)

Substituting Eq. (B.3) into Eq. (15), we obtain

[
l∑

l=1

Cll(l − 1)ul−2 +
(

l∑
l=1

Cllu
l−1

)2

− p(p + 1)u−2

− m2u
2θ

d−1 −2 − k2 + λu2z−2

]
F

+ ∂2
u F + 2

l∑
l=1

Cllu
l−1∂u F = 0, (B.4)

where l = z. We pick up the largest power terms in the left hand 
side of Eq. (B.4) and require that its coefficients vanish, such that 
we get the following equation

C2
z z2 + λ = 0. (B.5)

The above equation has no print of θ and only depends on the 
Lifshitz exponent z, which agrees well with that found in Lifshitz
geometry [45]. Eq. (B.5) gives two roots Cz,± , so that we have the 
asymptotic behaviors of the scalar field to the leading order near 
u = ∞ as

ψ1 = a0u−α exp[Cz,+uz], ψ2 = a0u−α exp[Cz,−uz]. (B.6)

Then, we have to fix Cz,± by the chosen eigenvalue λ = ±i with 
which the eigenequation gives a square integrable solution space 
K± under the measure V −1d� [43]. Due to a0 �= 0, Eq. (B.5) has 
roots

6 For rational and noninteger z, we can make a transformation of coordinate as 
ρ = r1/n so that we have the rank nz is an integer.
C i
z,± = ±

(
1 + i√

2z

)
, for λ = i, (B.7)

C−i
z,± = ±

(
1 − i√

2z

)
, for λ = −i. (B.8)

Since near the infinity u = ∞, the exponential function in Eq. (B.6)
blows up exponentially for Cz = Cz,+ while exponentially damped 
for Cz = Cz,− , the solution ψ2 is alway square integrable while ψ1
is not at the singular point u = ∞. Furthermore, we can express 
the solution ψ2 at u = ∞ in term of the linear combination of 
those at u = 0 as

ψ2 = C↓ψ↓ + C↑ψ↑, (B.9)

where C↓ and C↑ are constant. Therefore, over the full range from 
u = 0 to u = ∞, the possible solutions of square integrability under 
measure (11) are ψ2. Taking account of the behaviors of ψ at u = 0
and that at infinity, we can conclude that for 0 ≤ ν < z, in the 
range from u = 0 to u = ∞, the solution ψ2 is square integrable 
under measure (11).

B.2. Case I: θ < 0

Now we shall discuss the behaviors of KG equation at infinity 
for θ < 0. From Eq. (B.1), we can easily find that the point at in-
finity (u = ∞) is an irregular singular point with rank z. Therefore, 
the behavior of eigenequation (15) for θ < 0 at infinity is the same 
as that for θ > 0, i.e., Eq. (B.6)–(B.8), which are independent of θ
and only dependent of z.

Obviously, the square integrable solutions ψ2 at infinity (see 
Eq. (B.6)) for λ = ±i can be expressed as the linear combination 
of ψ j

1 and ψ j
2 at u = 0,

ψ2 = C1ψ
j

1 + C2ψ
j

2 (B.10)

with constant C1, C2 and j = I, II. Therefore, in the range from 
u = 0 to u = ∞, the solution ψ2 is possible square integrable under 
measure (11).

References

[1] X. Dong, S. Harrison, S. Kachru, G. Torroba, H. Wang, Aspects of holography 
for theories with hyperscaling violation, J. High Energy Phys. 1206 (2012) 041, 
arXiv:1201.1905.

[2] J.M. Maldacena, The large N limit of superconformal field theories and super-
gravity, Adv. Theor. Math. Phys. 2 (1998) 231–252, arXiv:hep-th/9711200.

[3] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field the-
ories, string theory and gravity, Phys. Rep. 323 (2000) 183–386, arXiv:hep-
th/9905111.

[4] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, 
Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618.

[5] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, 
Class. Quantum Gravity 26 (2009) 224002, arXiv:0903.3246.

[6] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. 
High Energy Phys. (2010) 723105, arXiv:0909.0518.

[7] S. Sachdev, Condensed matter and AdS/CFT, Lect. Notes Phys. 828 (2011) 273, 
arXiv:1002.2947.

[8] S. Sachdev, What can gauge-gravity duality teach us about condensed matter 
physics? Annu. Rev. Condens. Matter Phys. 3 (2012) 9, arXiv:1108.1197.

[9] K. Balasubramanian, J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. 
Rev. Lett. 101 (2008) 061601, arXiv:0804.4053.

[10] D. Son, Toward an AdS/cold atoms correspondence: a geometric realization of 
the Schrodinger symmetry, Phys. Rev. D 78 (2008) 046003, arXiv:0804.3972.

[11] S. Kachru, X. Liu, M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. 
Rev. D 78 (2008) 106005, arXiv:0808.1725.

[12] M. Taylor, Non-relativistic holography, arXiv:0812.0530.
[13] U.H. Danielsson, L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, 

J. High Energy Phys. 03 (2009) 070, arXiv:0812.5088.
[14] R.B. Mann, Lifshitz topological black holes, J. High Energy Phys. 06 (2009) 075, 

arXiv:0905.1136.

http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230312E31393035s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230312E31393035s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230312E31393035s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib6865702D74682F39373131323030s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib6865702D74682F39373131323030s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib6865702D74682F39393035313131s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib6865702D74682F39393035313131s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib6865702D74682F39393035313131s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313130312E30363138s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313130312E30363138s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930332E33323436s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930332E33323436s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930392E30353138s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930392E30353138s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313030322E32393437s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313030322E32393437s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313130382E31313937s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313130382E31313937s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303830342E34303533s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303830342E34303533s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303830342E33393732s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303830342E33393732s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303830382E31373235s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303830382E31373235s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303831322E30353330s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303831322E35303838s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303831322E35303838s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930352E31313336s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930352E31313336s1


40 J.-P. Wu, X.-M. Kuang / Physics Letters B 753 (2016) 34–40
[15] G. Bertoldi, B.A. Burrington, A. Peet, Black holes in asymptotically Lifshitz 
spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003, 
arXiv:0905.3183.

[16] D.-W. Pang, A note on black holes in asymptotically Lifshitz spacetime, 
arXiv:0905.2678.

[17] D.-W. Pang, On charged Lifshitz black holes, J. High Energy Phys. 01 (2010) 116, 
arXiv:0911.2777.

[18] K. Balasubramanian, J. McGreevy, An analytic Lifshitz black hole, Phys. Rev. D 
80 (2009) 104039, arXiv:0909.0263.

[19] E. Ayon-Beato, A. Garbarz, G. Giribet, M. Hassaine, Lifshitz black hole in three 
dimensions, Phys. Rev. D 80 (2009) 104029, arXiv:0909.1347.

[20] R.-G. Cai, Y. Liu, Y.-W. Sun, A Lifshitz black hole in four dimensional R2 gravity, 
J. High Energy Phys. 10 (2009) 080, arXiv:0909.2807.

[21] Y.S. Myung, Y.-W. Kim, Y.-J. Park, Dilaton gravity approach to three dimensional 
Lifshitz black hole, Eur. Phys. J. C 70 (2010) 335, arXiv:0910.4428.

[22] M. Dehghani, R. Mann, R. Pourhasan, Charged Lifshitz black holes, Phys. Rev. D 
84 (2011) 046002, arXiv:1102.0578.

[23] V. Keranen, L. Thorlacius, Thermal correlators in holographic models with Lif-
shitz scaling, Class. Quantum Gravity 29 (2012) 194009, arXiv:1204.0360.

[24] J. Tarrio, S. Vandoren, Black holes and black branes in Lifshitz spacetimes, J. 
High Energy Phys. 09 (2011) 017, arXiv:1105.6335.

[25] L. Huijse, S. Sachdev, B. Swingle, Hidden Fermi surfaces in compressible states 
of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121, arXiv:1112.0573.

[26] E. Shaghoulian, Holographic entanglement entropy and Fermi surfaces, J. High 
Energy Phys. 1205 (2012) 065, arXiv:1112.2702.

[27] Mohsen Alishahiha, Eoins O. Colgsain, Hossein Yavartanoo, Charged black 
branes with hyperscaling violating factor, J. High Energy Phys. 11 (2012) 137, 
arXiv:1209.3946.

[28] I. Papadimitriou, Hyperscaling violating Lifshitz holography, arXiv:1411.0312.
[29] Z.-Y. Fan, H. Lu, Electrically-charged Lifshitz spacetimes, and hyperscaling vio-

lations, arXiv:1501.05318.
[30] C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis, R. Meyer, Effective holo-

graphic theories for low-temperature condensed matter systems, J. High Energy 
Phys. 1011 (2010) 151, arXiv:1005.4690.

[31] U. Gursoy, E. Plauschinn, H. Stoof, S. Vandoren, Holography and ARPES sum-
rules, J. High Energy Phys. 1205 (2012) 018, arXiv:1112.5074.

[32] M. Alishahiha, M.R. Mohammadi Mozaffar, A. Mollabashi, Fermions on Lifshitz 
background, Phys. Rev. D 86 (2012) 026002, arXiv:1201.1764.

[33] L.Q. Fang, X.H. Ge, X.M. Kuang, Holographic fermions in charged Lifshitz theory, 
Phys. Rev. D 86 (2012) 105037, arXiv:1201.3832.

[34] J.P. Wu, Holographic fermions on a charged Lifshitz background from Einstein–
Dilaton–Maxwell model, J. High Energy Phys. 03 (2013) 083.

[35] J.P. Wu, Emergence of gap from holographic fermions on charged Lifshitz back-
ground, J. High Energy Phys. 04 (2013) 073.
[36] J.P. Wu, The charged Lifshitz black brane geometry and the bulk dipole cou-
pling, Phys. Lett. B 728 (2014) 450–456.

[37] A. Lucas, S. Sachdev, Conductivity of weakly disordered strange metals: from 
conformal to hyperscaling-violating regimes, Nucl. Phys. B 892 (2015) 239–268, 
arXiv:1411.3331.

[38] A. Lucas, S. Sachdev, K. Schalm, Scale-invariant hyperscaling-violating holo-
graphic theories and the resistivity of strange metals with random-field dis-
order, Phys. Rev. D 89 (2014) 066018, arXiv:1401.7993.

[39] X.-M. Kuang, E. Papantonopoulos, B. Wang, J.-P. Wu, Formation of Fermi sur-
faces and the appearance of liquid phases in holographic theories with hyper-
scaling violation, J. High Energy Phys. 11 (2014) 086, arXiv:1409.2945.

[40] X.-M. Kuang, E. Papantonopoulos, B. Wang, J.-P. Wu, Dynamically generated gap 
from holography in the charged black brane with hyperscaling violation, J. High 
Energy Phys. 1504 (2015) 137, arXiv:1411.5627;
X.-M. Kuang, J.-P. Wu, Transport coefficients from hyperscaling violating black 
brane: shear viscosity and conductivity, arXiv:1511.03008.

[41] P. Bueno, P.F. Ramirez, Higher-curvature corrections to holographic entangle-
ment entropy in geometries with hyperscaling violation, arXiv:1408.6380.

[42] W. Chemissany, I. Papadimitriou, Lifshitz holography: the whole shebang, 
arXiv:1408.0795.

[43] A. Ishibashi, R.M. Wald, Dynamics in non-globally-hyperbolic static spacetimes 
II: general analysis of prescriptions for dynamics, Class. Quantum Gravity 20 
(2003) 3815–3826, arXiv:gr-qc/0305012.

[44] A. Ishibashi, R.M. Wald, Dynamics in non-globally-hyperbolic static spacetimes: 
III. Anti-de Sitter spacetime, Class. Quantum Gravity 21 (2004) 2981–3014, 
arXiv:hep-th/0402184.

[45] C. Keeler, Scalar boundary conditions in Lifshitz spacetimes, J. High Energy 
Phys. 1401 (2014) 067, arXiv:1212.1728.

[46] T. Andrade, S.F. Ross, Boundary conditions for scalars in Lifshitz, Class. Quan-
tum Gravity 30 (2013) 065009, arXiv:1212.2572.

[47] I. Kanitscheider, K. Skenderis, M. Taylor, Precision holography for non-
conformal branes, J. High Energy Phys. 0809 (2008) 094, arXiv:0807.3324 [hep-
th].

[48] M.J. Duff, G.W. Gibbons, P.K. Townsend, Macroscopic superstrings as interpolat-
ing solitons, Phys. Lett. B 332 (1994) 321, arXiv:hep-th/9405124.

[49] G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, A Harcourt Sci-
ence and Technology Company, 2001.

[50] C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and 
Engineers, McGraw-Hill Book Company, 1978.

[51] H. Cheng, Advanced analytic methods in science and engineering, MIT 
open course ware, http://ocw.mit.edu/courses/mathematics/18-305-advanced-
analytic-methods-in-science-and-engineering-fall-2004/.

http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930352E33313833s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930352E33313833s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930352E33313833s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930352E32363738s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930352E32363738s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303931312E32373737s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303931312E32373737s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930392E30323633s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930392E30323633s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930392E31333437s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930392E31333437s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930392E32383037s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303930392E32383037s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303931302E34343238s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib303931302E34343238s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313130322E30353738s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313130322E30353738s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230342E30333630s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230342E30333630s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313130352E36333335s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313130352E36333335s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313131322E30353733s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313131322E30353733s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313131322E32373032s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313131322E32373032s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230392E33393436s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230392E33393436s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230392E33393436s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313431312E30333132s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313530312E3035333138s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313530312E3035333138s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib436861726D6F757369733A32303130s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib436861726D6F757369733A32303130s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib436861726D6F757369733A32303130s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313131322E35303734s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313131322E35303734s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230312E31373634s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230312E31373634s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230312E33383332s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313230312E33383332s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4A50577531s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4A50577531s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4A50577532s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4A50577532s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4A50577533s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4A50577533s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313431312E33333331s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313431312E33333331s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313431312E33333331s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430312E37393933s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430312E37393933s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430312E37393933s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430392E32393435s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430392E32393435s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430392E32393435s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313431312E35363237s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313431312E35363237s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313431312E35363237s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313431312E35363237s2
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313431312E35363237s2
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430382E36333830s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430382E36333830s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430382E30373935s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313430382E30373935s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib67722D71632F30333035303132s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib67722D71632F30333035303132s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib67722D71632F30333035303132s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib6865702D74682F30343032313834s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib6865702D74682F30343032313834s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib6865702D74682F30343032313834s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313231322E31373238s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313231322E31373238s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313231322E32353732s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib313231322E32353732s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4B616E697473636865696465724B44s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4B616E697473636865696465724B44s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4B616E697473636865696465724B44s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib447566664647s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib447566664647s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4172666B656Es1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib4172666B656Es1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib42656E646572s1
http://refhub.elsevier.com/S0370-2693(15)00902-8/bib42656E646572s1
http://ocw.mit.edu/courses/mathematics/18-305-advanced-analytic-methods-in-science-and-engineering-fall-2004/
http://ocw.mit.edu/courses/mathematics/18-305-advanced-analytic-methods-in-science-and-engineering-fall-2004/

	Scalar boundary conditions in hyperscaling violating geometry
	1 Introduction
	2 Scalar boundary conditions in HV geometry
	2.1 Boundary conditions for θ>0
	2.1.1 Solution spaces K±
	2.1.2 Boundary conditions

	2.2 Boundary conditions for θ<0
	2.2.1 Solution spaces K±
	2.2.2 Boundary conditions


	3 Conclusions and discussions
	Acknowledgements
	Appendix A Series solutions of the second order homogeneous linear differential equations
	Appendix B The square integrability at inﬁnity
	B.1 Case I: θ>0
	B.2 Case I: θ<0

	References


