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Abstract

Pipelining is a well understood and often used implementation technique for increasing the performance
of a hardware system. We develop several SystemC/C++ modeling techniques that allow us to quickly
model, simulate, and evaluate pipelines. We employ a small domain specific language (DSL) based on
resource usage patterns that automates the drudgery of boilerplate code needed to configure connectivity
in simulation models. The DSL is embedded directly in the host modeling language SystemC/C++. Addi-
tionally we develop several techniques for parameterizing a pipeline’s behavior based on policies of function,
communication, and timing (performance modeling).

Keywords: pipeline, system level design, discrete-event simulation, generic programming, hardware
modeling, policies, SystemC

1 Introduction

Pipelining is a well understood and often used implementation technique for in-

creasing the performance of hardware [17,15]. Since we have a taxonomy of pipeline

designs we can (and should) develop system-level techniques that allow us to quickly

model, simulate, and evaluate various configurations.

In this paper we describe several modeling techniques inspired by research in

the generic and generative programming community [3,6]. We use SystemC [22,9]

as our simulation framework because of its support for system level modeling and

simulation and because it is embedded in C++, a language with support for generic,

polymorphic, object oriented programming. Furthermore C++ is suitable for con-

structing domain specific languages (DSLs) [2,4].

In system modeling simulation performance usually improves when we move to

more abstract models [9]. In software development it is often the opposite; abstract

models suffer an abstraction penalty [25]. As a modeler abstracts, performance

may, at some point, begin to degrade. One goal is to ameliorate the abstraction
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penalty by using compile time generic modeling techniques as opposed to run-time

techniques (e.g. virtual methods).

Pipelines are composed of stages that compute outputs at regular intervals based

on inputs. We’ll start with a somewhat contrived example of an application specific

three stage linear pipeline that computes the function 2x2 + 4x − 7.

Stage S1 computes 2x2 which feeds S2 adding 4x, which finally feeds S3 to

subtract 7. A register-transfer level (RTL) implementation requires multiplexors,

latches, and clock inputs on each resource considerably cluttering up the design and

model. Requiring the user to model these artifacts is not helpful and hinders design

exploration. In our library one simply declares the stages, the function each stage

computes, and the route a transaction follows through the pipeline.

Resource<F1> s1; Resource<F2> s2; Resource<F3> s3;

Pipeline p = s1 >> s2 >> s3;

Pipeline stages are declared to be resources that are parameterized on a small class

that implements the computational aspect of the stage. The class Resource is

a proxy class for a highly configurable Stage class developed in section 3. The

expression above specifies that a transaction enters the pipeline at S1, proceeds to

S2 then exits the pipeline after S3. A modeler can quickly explore a new pipeline

where a stage is repeated (feedback), replicated, or skipped (bypass). For example

in a floating-point multiplication pipeline the adder might be reused consecutively

ten times. In our language this is specified as Adder*10.

A key component of our modeling framework are techniques for separating or-

thogonal behaviors of the pipeline into policies [4]. The DSL allows us to give

a concise configuration of the pipeline, automatically generate mundane boiler-

plate code used to connect modules, insert channels, and generate pipeline con-

trol code. We handle pipelines with arbitrarily complex routing including feedback

and feed-forward (bypass) paths, multi-function, and static or dynamic pipelines.

This generality arises because the DSL is embedded in the host modeling language

(SystemC/C++). This also eliminates the need to write separate language specific

processing phases (e.g., lexical analysis, parsing).

We don’t claim that the code described here can be used unmodified to model

every kind of pipeline imaginable; that’s one of the main reasons we’ve chosen to

embed this in a general purpose modeling language. We’re motivated by the way

a software design pattern [7] describes a particular problem that appears over and

over again along with example code of how to solve the problem (rather than code

that works in every context). What we do claim is that the techniques we describe

solve problems that repeatedly appear in pipeline modeling and that the example

code can be reused and modified to suit a particular modeler’s needs. Moreover,

the pipeline specifications are compact and efficient allowing a designer to quickly
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explore design alternatives.

1.1 Related Work

Excellent overviews of pipelining, hardware implementation techniques, and tax-

onomies are described in [17,15]. The compiler research community has developed

high-level notations for pipelines to generate instruction schedulers [5,20]. Our no-

tation is inspired by that of [20]. The work in [1,13,14] describes notations for

specifying pipelines for downstream tools. Mishra and Dutt [18] describe how to

validate a pipeline specification written in the architectural description language

[10]. Petri Nets [21] and Process Algebra [11,12] have been used to model and

simulate pipelines.

We view our research as building on this work in two fundamentally different

ways. The first is how we separate pipeline behaviors into orthogonal policy classes,

the second is how these policies are then configured into a working pipeline with

a DSL that is itself embedded in the general purpose system simulation language

SystemC. As [25] points out external DSLs not embedded in a general purpose

language “tend to have short life-spans due to limited support and portability,

suffer from a lack of tools (particularly debuggers), and it is usually impossible to

use two DSLs in the same source file.”

1.2 SystemC: Very Briefly

SystemC is a discrete event modeling and simulation language for designing hard-

ware/software systems [22,19]. SystemC modules have ports connected through

channels. SystemC has predefined channels for hardware like wires (sc signal)

and higher-level channels such as blocking FIFOs. Users can also define their own

channel types. A SystemC module is a class that inherits sc module. Modules can

contain threads (SC THREAD) or methods that fire on event changes (SC METHOD).

SystemC also has a large library of hardware data types including bit vectors and

fixed-point types.

2 System Level Pipeline Specification

Our pipeline specification framework consists of a small DSL to specify pipeline

structure, and generic models of transactions, stages, and transaction routers. These

components are configured by the user with compile time parameters. These tech-

niques are inspired by software engineering research in meta-programming [2], gen-

erative and generic programming [6,3], design patterns[7], and some advanced C++

programming techniques [4,24,23].

2.1 Pipeline Specification DSL

A pipeline expression defines the route a transaction follows through a pipeline. In

a static pipeline this route is fixed. In a multi-function static pipeline there may be

two or more different transaction types each with a different route. The language
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provides three binary operators, >>,+, ∗, defined on pipeline resources. Figure 1

shows a small grammar for our DSL.

Pipe ::= Term >> Pipe | Term(1)

Term ::= Stage | Stage ∗ int | Stage + Stage(2)

Stage ::= id(3)

Fig. 1. The pipeline DSL grammar

Before a stage name can appear in an expression it must be declared as a

Resource<F> where F is a user defined functor class. A functor class encapsulates

a function that takes a transaction as an argument and returns a transaction.

In a pipeline expression S1 >> S2 . . . >> Sn, we call S1 the pipeline entry and

Sn the exit. The expression S1 >> S2 indicates that the output of stage S1 is fed

into stage S2. The expression S1 * n indicates that a stage should be repeated n

times. This operator represents feedback, not replication of a stage. The * operator

is shorthand for repeated sequencing; S1 * 3 is shorthand for S1 >> S1 >> S1.

Reusing a stage name in an expression means the stage is also reused and that a

transaction is fed back to the stage. For example, the expression S1 >> S2 >> S3

>> S1 means that after a transaction exits S3 it goes back to be operated on by S1

and then exits the pipeline. The expression S1 + S2 means that two stages are used

in the same cycle and that a transaction is sent to both stages. The expression S1

>> S2 + S3 >> S4 means �S1 sends the transaction to both S2 and S3, then S2 and

S3 each then send their transaction to S4. S4 needs to know how to handle receiving

two transactions simultaneously.

Resource declarations and pipeline expressions are valid C++ and not an exter-

nal language; reminiscent of expression templates [24]. To parse these expressions

we overload the >>, +, and * operators and build an abstract syntax tree which we

process to generate SystemC code for connectivity and control. Pipeline expressions

are really compact representations of reservation tables [17].

Consider the pipeline expression below.

S1 >> S2 >> S3 >> S1 >> S3*2 >> S1 >> S2(4)

Our library generates the SystemC module hierarchy depicted in figure 2. The

circles are transaction routers that are automatically inserted into the module hier-

archy.

Fig. 2. Module hierarchy generated by the pipeline expression equation 4.
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3 Abstracting Stages and Transactions

In addition to the DSL, generic representations of pipeline stages, transactions, and

transaction routers are key components of the framework. A pipeline is composed of

one or more interconnected stages that communicate transactions. A stage consumes

a transaction, operates on it, and sends it on to a subsequent stage through a

router. A transaction contains user specified data the stage operates on and control

information derived from the pipeline expression. A transaction keeps track of

where it is in the pipeline. A transaction router examines where the transaction

currently is, where it has to go, and uses a lookup table to forward it through the

proper port. Stages have exactly one input and one output, though they may carry

complex types. Routers are multi-ported and handle multiple inputs and outputs

of a stage.

Rather than using low-level digital or RTL modeling constructs (e.g.,

SC METHODS and sc signals) we use a transaction level model (TLM) [9]. Pipeline

resources are thread processes that communicate arbitrarily complex transactions

through channels (single place FIFOs) much like a dataflow simulation [9]. We use

this framework only for explication, our classes are not wedded to using threads and

FIFOs but are parameterized on precisely these design choices. By switching poli-

cies FIFOs can be replaced with other SystemC channels such as Verilog/VHDL

like signals (SystemC’s sc signal type) and thread processes with method pro-

cesses — useful in communication refinement as a modeler migrates their design to

an implementation.

We’ll begin developing generic classes using our simple pipeline from the intro-

duction (section 1) as an example. We’ll first develop naive implementations of

transaction and stage classes and use these as a basis for our policy based classes.

A pipeline stage needs the original value of x and the output from the previous

stage — information we’ll keep in a transaction. A transaction also keeps track of

its current location in the pipeline. Figure 3 shows an initial version of a transac-

tion. Lines 4-5 specify the data and lines 7-8 specify control information. The data

member route represents the path a transaction follows through the pipeline and

is static because all transactions in a uni-function pipeline share the same route.

For a multi-function pipeline we would have different transaction classes for each

pipeline function. The member curr is not static as it represents where a particular

transaction is within the pipeline.

The first stage (naive version) of the pipeline computes 2x2 (figure 4). Lines 3-4

show the stage’s port interface, line 11 the function. Line 12 models a one cycle

delay, line 13 advances the transaction to the next stage, and line 14 writes the

modified transaction to the output. This is all well and good but we’d like to be

able to abstract a stage so that it is as reusable as possible. Stage bundles many

design choices into one class and doesn’t give a modeler flexibility over the large

number of possible design choices such as functionality, timing, and interface. We’d

like a modeler to be able to configure a stage to suit a variety of situations.

Enter policies, patterns, and generic programming [4,6,2]. “Policies represent
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1 class Transaction {

2 public:

3 void advance() { curr++; }

4 const double orig;

5 double data;

6 private:

7 static Route route;

8 Route::iterator curr;

9 };

Fig. 3. Naive implementation of a transaction for pipeline in section 1.

1 class Stage : public sc_module {

2 public:

3 sc_fifo_in<Transaction *> in;

4 sc_fifo_out<Transaction *> out;

5

6 Stage() { SC_THREAD(process); }

7

8 void process() {

9 while (1) {

10 Transaction * t = in.read();

11 t->data = t->data + 2 * sqr(t->orig);

12 wait(1, SC_NS);

13 t->advance();

14 out.write(t);

15 }

16 }

17 };

Fig. 4. Naive implementation of Stage 1 for pipeline in section 1.

configurable behavior for generic functions and types” [23]. In C++ a policy is an

orthogonal unit of behavior passed as a template argument. The combination of

templates and multiple inheritance gives us the mechanics to cope with combina-

torial behaviors by factoring out design choices into classes. The main criticism of

our Transaction and Stage classes are that they hard-code design choices making

them difficult to reuse.

3.1 Transactions

The transaction class hard-codes the two data members orig and data that

are particular to the pipeline; an easy fix with a template parameter (figure 5).

For our example pipeline instantiating the template parameter T with an STL

pair<double,double> gets us back the original transaction with two data members.

A typedef aids readability.

typedef Transaction<pair<double, double> > MyTransaction;
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1 template <typename T>

2 class Transaction {

3 public:

4 void advance() { curr++; }

5 T value;

6 // ... routing code stays same

7 };

Fig. 5. Abstract implementation of a transaction.

During communication refinement we can instantiate T with a SystemC hardware

data type.

3.2 Stages

Stage also hard codes design choices. FIFOs are the communication model, 2x2

is the function it computes, and it all takes one nanosecond. What if we want

our pipeline to be untimed? Substituting zero in wait wont do as an untimed

model is different than a zero time model. The non-terminating while loop implies

we’re using an SC THREAD process as opposed to an SC METHOD process. All of

these design choices can be turned into policies and passed to the Stage class as

template parameters. One might wonder what remains of Stage, our host class?

“At an extreme, a host class is totally depleted of any intrinsic policy. It delegates

all design choices and constraints to policies. Such a host class is a shell over a

collection of policies and deals only with assembling the policies into a coherent

behavior” [4].

Decomposing a stage into policies for timing, function, communication, and

process yields a highly configurable class. Importantly a modeler can implement

their own custom policies and does not have to use ours.

3.2.1 Function Policy

Creating a policy class for function is a straightforward application of a functor

class 2 .

1 template<typename T>

2 struct TwoSqr {

3 static inline T f(T p) {

4 p.second = p.second + 2*sqr(p.first);

5 return p;

6 }

7 };

TwoSqr declares a function f and is parameterized on the type of data in a trans-

action. Below is a modified Stage that uses a function policy. Function policies for

other stages are analogous.

2 For readability we name the function f as opposed to overloading the function call operator ()()
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1 template <class Function>

2 class Stage : public sc_module,

3 public Function {

4 public:

5 // ... as before

6 t->data = f(t->data);

7 // ... as before

8 };

Parameterized inheritance (line 3) allows us to call f (line 6) in the function policy.

3.2.2 Communication Policy

Stage hard-codes FIFOs as the communication medium. Factoring out Stage’s port

interface into a separate class is more involved. SystemC’s port classes are template

classes. C++ allows us to specify a template class as a template parameter; template

template parameters appear frequently in policy based design [4].

1 template<

2 typename Transaction,

3 template <typename> class InPort,

4 template <typename> class OutPort

5 >

6 struct StageInterface {

7 InPort<Transaction *> in;

8 OutPort<Transaction *> out;

9 };

StageInterface is now parameterized on the transaction (line 2) and the input

and output port interfaces (lines 3-4). A typedef helps with readability and gets

us back our example stage interface that uses FIFOs.

typedef

StageInterface<MyTransaction, sc_fifo_in, sc_fifo_out> FIFOInterface;

3.2.3 Timing Policy

Stage hard-codes a performance model of a one nanosecond delay. A trivial way to

generalize this is to allow the user to pass an integer through the constructor and

use that as the delay. This assumes that the performance model will be a simple

wait statement and nothing more complicated; not very general. Additionally we

might want to support an untimed model where we would expect there to be no

simulation performance penalty in calling wait. One way to do that is to ensure

that the call to wait is removed by the compiler for untimed models. We define

two timing policies TimedPolicy and UntimedPolicy fully aware that the modeler

could design more complicated policies.

struct TimedPolicy {

inline static void wait(int t) { ::wait(t, SC_NS); }
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1 template <class Transaction,

2 class Function,

3 class DelayModel,

4 class PortInterface>

5 class Stage : public sc_module,

6 public Function,

7 public DelayModel,

8 public PortInterface {

9 public:

10 Stage() { SC_THREAD(process); }

11

12 void process() {

13 while(1) {

14 Transaction * t = in.read();

15 t->data = f(t->data);

16 wait(1);

17 t->advance();

18 out.write(t);

19 }

20 }

21 };

Fig. 6. Our generic policy based pipeline stage class.

};

struct UntimedPolicy {

inline static void wait(int t) { }

};

If UntimedPolicy policy is instantiated the call to wait is inlined with an empty

function body, eliminating function call overhead.

3.2.4 Our Host Stage Class

Having defined several orthogonal policies figure 6 shows our generic stage class.

This new stage class goes a long way in being generic and reusable. However the

non-terminating while loop in the process function is not generic; it implies we’re

using thread processes (SC THREAD) as opposed to method processes (SC METHOD),

or clocked threads (SC CTHREAD). While we don’t have space to show it here we

also factor out the process policy into ThreadPolicy and MethodPolicy adding one

more template parameter ProcessPolicy to the Stage class.

3.3 Putting it all together

Recall that our DSL initially uses a proxy class Resource for stages. To generate a

complete simulation model we pass our policy classes to Resource.
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Resource<Sqr<Data>, MyTransaction, TimedPolicy, FIFOInterface, Threading> s1;

To shorten this up a bit we can give reasonable default values to the template

parameters or use an extra configuration repository class [6].

We don’t have room to show the transaction routers. These are multi-ported

modules parameterized on a transaction and use a vector indexed by the stage

number to lookup the appropriate channel to write the transaction to. We have

not yet decomposed these further into other policies. Pipelines that demand a more

complicated resource arbitration scheme require an arbitration policy.

4 Conclusions and Future Work

We’ve presented techniques for modeling and simulating system level pipelines. A

small DSL gives a compact representation of the pipeline and enables us to auto-

matically generate tedious boilerplate and control code. Generic representations

of transactions and stages decomposed into policy classes allow us to reuse large

amounts of code used to describe pipeline resources.

One aspect we haven’t addressed is when a transaction can be initiated in the

pipeline, the issue latency. Issue latencies are derivable from the DSL; [17] shows us

how and [20] makes it fast. One area of future work are policies for gathering per-

formance statistics as well as policies for generating implementation level models.

More policies will be discovered as we model more complicated pipelines, including

pipelines that use global state, such as processor instruction pipelines with instruc-

tion and data caches. In terms of abstractions used in our framework concept models

[8] can help clarify requirements of our policies.

The pipeline DSL needs enhancing. For example, a stage replication operator

S1
∧3 could mean replicate hardware; instantiate S1 three times as opposed to feed-

back (S1*3). At the moment parentheses are meaningless but giving semantics to

expressions such as ((S1 >> S2)*2 >> S3)*3 by “unrolling” makes sense. Also, we

could probably make pipeline descriptions even more concise by using the Boost

lambda library [16] for specifying functors.
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