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A structure is E-closed if it is closed under all partial E-recursive functions from 
V into V, a set theoretic extension of Kleene’s partial recursive functions of tinite 
type in the normal case. Let L(k) be E-closed and x, inadmissible. Then L(X) has 
reflection properties useful in the study of generic extensions of L(K). Every set 
generic extension of L(X) via countably closed forcing conditions is E-closed. A 
class generic construction shows: if L(K) is countable, and inside L(K) the greatest 
cardinal gc(rc), has uncountable cofmality, then there exists a TGgc(ti) such that 
L(k, 7’) = E(T), the least E-closed set with T as a member. A partial converse is 
obtained via a selection theorem that implies E(X) is x, admissible when X is a set 
of ordinals and the greatest cardinal in the sense of E(X) has countable cotinality in 
E(X). #‘I 1987 Academic Press, Inc. 

1. INTRODUCTION 

The notion of partial recursive function with numerical arguments was 
extended by Kleene [ 1, 23 so as to allow arguments of finite type. His 
extension was defined by schemes which give rise to infinitely long com- 
putations. In the so-called normal case the equality predicate is treated as if 
it were recursive. Normann [3] and Moschovakis independently extended 
the normal Kleene theory so as to allow all sets to occur as arguments. 
Thus {e}(x), the eth partial recursive function with argument x, has a 
meaning for all x E V. 

Normann’s definition is inductive. {e} is defined by interpreting e as the 
Godel number of a scheme. The schemes include rudimentary functions 
such as pairing and union, composition, effective bounding, and also 
enumeration (f(e, x) N (e}(x)). The attempt to compute {e}(x) via 
schemes produces a tree that is well founded iff {e}(x) is defined. Com- 
putation trees are discussed in Section 2, but it is worth noting now that 
the unique source of infinitely long computations is the effective bounding 

* The preparation of this paper was partially supported by NSF Grant MCS 7307344. The 
authors are thankful for the assistance of E. Griffor, D. Normann, and V. Wiley. 

1 
OOOl-8708/87S7.M 

Copyright 0 1987 by Academic Press, Inc. 
AU rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82072429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 SACKS AND SLAMAN 

scheme: lf {m)(x) is defined, and if (I} is defined for all y E (m}(x), 
then 12”‘. 3”)(x) is defined and is equal to 

If (e}(x) is defined, then {e}(x) said to convergence (in symbols 
(e)(x)l). Otherwise {e}(x) diverges ({e}(x)t). 

Let A be a transitive set. A is E-closed if 

xEA & (e}(x)1 --f (e)(x)EA. 

Every 1, admissible set is E-closed but not conversely. The E-closure of a 
set x, denoted E(x), is the least E-closed set that contains {x} u TC(x).’ 
The classic example of an inadmissible, E-closed set is E(2”). The least 
example is 

E(w)uE(E(o))uE(E(E(o)))u . . . . 

Some of the results of [4] were obtained by showing certain generic exten- 
sion of E(2”‘) are E-closed. The language of [4] was that of Kleene [ 11, so 
for clarity it must be pointed out that E(2”) corresponds to recursion in 3E 
as follows: 2 E E(2”) iff z is codable by a relation on 2” recursive in 3E, b 
for some b E 2’“. 

Set forcing over a C, admissible structure poses few problems. It is well 
known that if A is C, admissible and G is generic over A with respect to 
some set P (in A) of forcing conditions, then A(G) is x1 admissible. Class 
forcing (P c A) over A can be more intricate, as in Abramson [S] or 
Steel [6]. 

Set forcing over an E-closed, inadmissible structure poses a new 
problem, Let t be a term that refers to a generic object. What does it mean 
to force (e}(t) to converge? The answer varies greatly from one notion of 
forcing to the next. It is a consequence of Gandy selection that if a Levy- 
style, generic collapse of o1 to w is adjoined to E(w,), then the resulting 
extension is not E-closed. In [4] it was shown that every Cohen-generic 
extension of E(o,) is E-closed. Here Cohen-generic refers to forcing con- 
ditions that are countable initial segments of characteristic functions of 
subsets of w,. The causal difference between the above Levy and Cohen 
extensions was pointed out by Slaman: the set of countable Cohen con- 
ditions on w1 is countably closed, that is, 

(n)Cp, 2 pn+ 11 + (&)(n)Cp, 2 41. 

’ For the sake of exposition the bounding scheme given here differs somewhat from that of 
Normann [3]. 

* TC(x) is the transitive closure of x. 
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The countable closure condition is not necessary for E-closed, generic 
extensions. The countable chain condition also suffices by a mode of 
argument [8] not employed in the present paper. 

The set forcing construction of [4] was extended to an arbitrary 
E-closed, inadmissible L(K) in [9]. The machinery of [9] is reviewed and 
amplified in Sections 2 and 3, and then applied to a class forcing construc- 
tion in Section 4 to prove 

THEOREM 4.8. Let L(K) be countable, E-closed and 1, inadmissible. 
Suppose the greatest cardinal of L(n) has uncountable cofinality in L(K). 
Then there exists an S s cofCKi such that L(K, S) is the E-closure of S. 

(According to a well-known tine structure fact, Proposition 2.5, 

L(K) b [There is a greatest cardinal.], 

where L(ti) is z, inadmissible.) 
Theorem 4.8 resembles the following result of admissibility theory [7]: 

If L(K) is countable and C, admissible, then there exists a TG co such 
that L(tc, T) is the least C, admissible set with T as a member. A partial 
converse to 4.8 is obtained in Section 5 via a selection theorem. 

COROLLARY. 5.2. Let X be a set of ordinals. Zf in E(X) the greatest 
cardinal has cofinality co, then E(X) is C, admissible. 

If {e}(x) does not converge, then its computation tree has at least one 
infinite descending path. We call any such path a Moschovakis witness to 
the divergence of (e> at x. They were introduced in Moschovakis [lo] to 
show E(2”) is not C, admissible, and have since proved essential to the 
study of recursion in higher type objects. A structure A is said to admit M. 
witnesses if for all e < w  and x E A: if {e}(x) diverges, then some member of 
A is an M. witness for (e}(x). 

LEMMA 2.4 [9]. If L(n) is E-closed but not C, admissible, then L(n) 
admits Moschovakis witnesses. 

The above reflection property is precisely what is needed to make coun- 
tably closed set forcing succeed over an E-closed structure. 

THEOREM 3.5. Suppose A is E-closed and admits Moschovakis witnesses. 
Let PEA be countably closed in A. Zf G is P-generic, then A(G) is E-closed. 

The paper ends with some open questions and conjectures. 
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2. EXISTENCE OF MOSCHOVAKIS WITNESSES 

In this section it is shown that many inadmissible, E-closed structures 
admit Moschovakis witnesses. The proof extracts a reflecting ordinal from 
the failure of C, admissibility, and then draws on a characterization of 
reflection devised by Harrington [I 1 ] for recursion in objects of finite type. 

y is said to be E-recursive in x if there exists an e such that y = {e}(x). 
Whether or not an arbitrary z belongs to y can be decided by first com- 
puting {e}(x) and then checking whether or not z belongs to {e}(x). The 
second step is legitimate according to the schemes of E-recursion . 

B is said to be E-recursively enumerable in x if there exists an e such that 

B= fzl {ef(z, x)1}. 

From now on the prefix E will often be dropped. 
The enumeration scheme yields the usual Kleene recursion theorems and 

thereby the method of defining partial recursive functions by effective trans- 
finite recursion. 

Let < R be a well-founded relation and I a recursive function from w into 
w. Suppose for all e < o and all .Y in the field of < R, 

whenever (e}(y)1 for all y cR x. Then there exists a partial E-recursive 
function {c} such that {c}(x)1 for all x in the field of < R and 
{I(c)) - {c}. 

The universal computation tree > U is defined by reference to the schemes 
of E-recursion. Each element of the field of > U is of the form (e, x) where 
e < w and x E V. a > U b is read: b is a subcomputation of a, and is defined 
by: there exists a finite sequence 7 LO,..., z,, such that a=zO, z,l=b, and zi+, 
is an immediate subcomputation of zi (i < n). The definition of immediate 
subcomputation has only two interesting clauses. They correspond to the 
effective bounding scheme of Section 1. 

(1) (m, x) is an immediate subcomputation of (2”. 3”, x). 

(2) If (HZ}(X) is defined, and ye {m}(x), then (n, y) is an 
immediate subcomputation of (2”. 3”, x). 

The remaining clauses, save one, correspond to the finitary schemes and 
so give rise to finitary branching in > U. The final clause states: if c is not 
the Godel number of a scheme, then (c, x) is an immediate subcom- 
putation of (c, x). 

It is readily verified that the relation “b is an immediate subcomputation 
of a” is recursively enumerable, and that {e )(x)J. iff > U below (e, x) is 
well founded. The method of definition by effective translinite recursion 
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yields a partial recursive function f such that for all e and x, if {e}(x)J, 
then f(e, x) is the set theoretic object consisting of > U below (e, x). Thus 
an E-closed set includes not only the end values of computations but also 
the computations themselves. (If (e}(x)J, then it seems appropriate to call 
> U below (e, x) the computation for {e}(x).) 

Similarly there exists a partial recursive function ({e}(x)\ such that if 
{el(xL then I {e>(x)1 is the ordinal height of > U below (e, x). For 
example, 1{2”.3”}(a)l =g if 

(1) w,<,CIC4(u)l =rl, 
(2) (xWTLCXE: {~>W-+ IWx)l =G and 
(3) (~)r<,W)C(X~ b4w~ Iw4x)l~~)” Ih4W =Tl. 

An ordinal 6 is said to be recursive in x if there exists a c such that 
6 = {c}(x). Thus ) {e}(x)\ is recursive in x if {e}(x)J. 

An essential result in E-recursion theory is the Gandy Selection Theorem 
[ 191: There exists a partial recursive function $(e, x) such that for all 
e-co, 

bW,,,C~e~h 411 

c* de, x)1 & {e>(4(e, xl, x)1. 

Suppose P(x, y) is a recursively enumerable predicate and 

(x)(Ey)[y is recursive in x & P(x, y)]. 

Then by Gandy selection there exists a recursive function f such that 
(x) P(x, f(x))* 

An E-closed set A admits Moschovukis witnesses if for all e < w  and 
x E A: if {e}(x)T, then there is an infinite descending path through > U 
below (e, x) in A. 

Three more definitions are needed for the main lemma (2.3) on the 
existence of Moschovakis witnesses in E-closed sets. 

rc; is the supremum of all ordinals recursive in x. 
I? is the supremum of all ordinals y such that y is recursive in 
a, x, where a E TC(x). 

If {e)(x)1 and 1 {e}(x)1 = 6, then the computation tree for {e}(x) is lirst- 
order definable over 

~26, (x} u-4x)). 

Consequently each set recursive in x belongs to L(K;, {x} u TC(x)), and 

E(x) = L(I?, {x} u TC(x)). 
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An ordinal y is said to be x-reflecting if for every C, formula 4, 

UY, {x) u TC(x)) I= d(x) 

iff 

-UK;, {xl “Wx)) I= d(x). 

K; is the greatest x-reflecting ordinal. To appreciate the definition of KC, 
let D(u, u) be a do formula (with free variables u and o), and suppose 

UK;, {x} u K(x)) I= (Ev) W-x, v). 

Then 

U6, {x} u Wx)) t= Vu) Wx, 01, 

for some 6 recursive in x. Suppose further that there is a well ordering > of 
TC(x) recursive in x. Then the presence of an existential witness for D 
below tip implies there is a witness recursive in x, namely the least one 
relative to the well ordering of L(6, {x> u TC(x)) extending >. 

LEMMA 2.1. Suppose A is recursive in x and g is co-recursiuelv 
enumerable in x. If A n 5? is nonempty, then there exists a c E A n 39 such 
that I$ > rc:i’ (H arrington-Kechris basis theorem [ 111). 

Proof: First, observe that IC:~> rc: implies iccc> K;. Otherwise x1 
statements about x would reflect from K:‘~ down to rc:. Thus it suffices to 
find a c E A A B such that ti; > ~2”. Now suppose no such c exists. Consider 
the following recursive (in x) enumeration of A: 

(I) If c E A - 93, then enumerate c. 

(II) If c E A and ti: < K;‘, then enumerate c. 

(Note that K: can be effectively defined from x and any ordinal greater 
than K;. Thus (II) applies when there is an ordinal recursive in x, c and 
greater than K:.) 

By effective bounding there is a y recursive in x that bounds the height of 
all computations occurring in the above enumeration of A. Since 
y < K; 6 K;, it follows that (II) never applies. Hence, every CE A is 
enumerated according (I) and so A n ~43 is empty. i 

LEMMA 2.la. Suppose there is a well ordering of TC(x) which is recursive 
in (x, z). Then there is a well ordering of { y 1 y is an immediate subcom- 
putation of (e, x)} which is (uniformly) recursive in (x, z). Moreover, if y 
is an immediate subcomputation of x then there is a well ordering of TC(y) 
which is (unzjiormly) recursive in (x, y, z ). 
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Proof: Assume e = 2”. 3”. If the only immediate subcomputation of 
(e, x) is (m, x) then the lemma is immediate. Suppose then that {m)(x)J. 
The value of {m} at x and the entire computation of {m}(x) from x is 
contained in L(I{m}(x)l, {x} uTC(x)), which is recursive in x. The 
(x, z)-recursive well-ordering of TC(x) induces a well ordering W of 
L( 1 {m}(x)/, {x} uTC(x)). W restricted to {m)(x) induces a well ordering 
of the immediate subcomputations of (e, x). 

If (e’, y ) is an immediate subcomputation of x and (e’, y ) is not equal 
to (m, x) then e’ = n and y E {m}(x). So TC(y) is a subset of 
UI {m)(x)1 v ix> uTC(x)) since this set is transitive and contains {m)(x). 
W restricted to the elements of TC(y) is a well ordering of TC( y) and is 
recursive in (x, y, z). 1 

LEMMA 2.2. Suppose some well ordering of TC(x) is recursive in x. 
Zf {e}(x)T, then a Moschovakis witness for {e}(x) belongs to L(lcf+ 1, 
1-d u -Wx)). 

ProoJ: Related to arguments of Moschovakis [lo] and Harrington 
[ 111. The witness It 1 (e,, x,) is defined by recursion on t. (eo, x0) is 
(e, x). Assume that (e,, x,) has been defined so that 

(a) {e,>(x,)t, 
(b) x, E UC, {x} u ‘Wx)), 

(cl K; > po . . . . . -c, 

(d) there is a’ well ordering of TC(x,) uniformly recursive in 
(x,,..., x, >. 

For simplicity assume e, = 2” * 3”. By the inductive assumption (d) and 
Lemma 2.la let < H, be recursive in (x,,,..., x, ) and well order {z 1 z is an 
immediate subcomputation of (e,, x,)}. 

If {ml(xt)t let (e,+ly x,+ 1 ) = (m, x, ). Assumption (c) on x, implies 
that IC; > K;. Consequently, {m}(x,)J if and only if 1 (m}(x,)l <K;. Thus 
one can look down from K: and see whether or not {m}(x,)t. The induc- 
tive hypothesis are immediate in this case. 

Suppose {m}(x,)J. Then define (e,, i, x,,~) to be (n, y) where (n, y.) 
is the < n, least pair (n, u ) so that 

UE {ml(x,) & I {n)(n)l2 C. 

Since 1 {m}(x,)l < ~$-“f d Kf, JJEL(JC; + 1, {x} uTC(x)). It has to be 
shown that 
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By Lemma 2.1 there is a ZE (m}(x,) such that 

{n}(z)t & K;TO . . . . . . x, > K;O . ...1 %Z. 

Let (n, zO) be the < n, least pair so that zO is such a z. It suffices to show 
that y = zO. Clearly, (n, y) < 11, (n, zO) since 1 {n}(z,)l = co > K;‘. Suppose 
(n, y) < 11, (n, zO). Consider (as in the proof of Lemma 2.1) the following 
recursive (in x0,-., xr, zo) enumeration of wr (n,z,>=({n,,->I 
(n, z) < n, (n, z,)}. By induction, W r (n, zo) is recursive in x0 ,..., x,, zo. 

(I) If (n}(z) J, then enumerate z. 
(II) If ~p.--yf < K;+C'-~, then enumerate z. 

(Note that K:o......IcI < K~o..--Y,.= implies that K~....-x’ < K~...,-‘cI-=,) 

By effective bounding there is a y recursive in ?co,..., x,, z. that bounds 
the height of all computations occuring in the above enumeration. It 
follows that (II) never applies, since otherwise 

Ky.“, < , y < K$. . . . . . r,,zo < Kp . . . . . li,. 

Hence (I) applies to every z so that (n, z ) < M‘ (n, zO ). In particular, if 
Y#Zo then I (n}(y)1 < y. But 

) {n}(y)1 2 Kf 2 K:“‘-.‘““zo > y 

according to assumption (c). Thus z. = y. 
Finally to complete the induction, Lemma 2.2 uniformly provides a well 

ordering of TC(y) which is recursive in x0,..., xI, y. 1 

LEMMA 2.3. Suppose L(K) is E-closed but not x1 admissible. Then ti: < K 

for all x E L(K). 

Proof Let K: 3 K for some fixed x in L(K) with the object of showing 
that L(K) is x1 admissible. 

Since any element of L(K) can be well ordered in L(K), 

L(K) k (EW)[ W is a well ordering of TC(x)]. 

By assumption K; B K so there is a y which is recursive in x such that 

L(y) /= (EW)[ W is a well ordering of TC(x)]. 

Thus the L-least well-ordering of W, of TC(x) is recursive in x. 
To prove that L(K) satisfies xi-bounding, suppose 

L(K) t= (u),, ,@) p(u, u), 
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where 9 is A, with parameter p. Let y be less than K so that there is a well 
ordering Wp,d of TC( (p, d)) which is recursive in p, d, y. Then there is a 
well ordering of TC( (p, d, y ) ) which is recursive in p, d, y. To simplify the 
discussion, the parameters p, d, y together are referred to as p*. 

For each b in d 

K~s P.6 2 Kx 
r ,. 

This last follows from (l)-(3). 

(1) Let 0’ be the least ordinal, if there is one, needed to construct 
(from z) Moschovakis witnesses for (e}(z) for all e such that {e}(z)t. Then 
6’2 K;. If not, then, by reflection, 8’ would be recursive in z; this would 
make the complete recursively enumerable in z subset of w  recursive, and 
absurdity. 

(2) e<-~.P*>.b < K<x,p*).b f or each b in d by Lemma 2.2. (The 
parameter y was introduced to provide the well ordering needed to apply 
Lemma 2.2.) 

(3) For any u and u, 8” < P”, since a Moschovakis witness for 
a divergent u computation {e >( ) u can be construed as a Moschovakis 
witness for a divergent (u, u)-computation {e* }(u, u). 

Thus KI<~,P’)*~ > e(- P*)*b 2 0” > K; > K. Hence for each b Ed, there is a c 
such that 

and c is recursive (by reflection) in x, p*, b. The set of all e such that 

(elk P*, b)l and L(K) I= Ft(b, {e>(x, P*, b)) 

is recursively enumerable in x, p*, b. By Gandy selection (Sect. 2) one such 
e can be chosen by an effective method which is uniform in x, p*, 6. It 
follows there is a partial recursive function f such that for each b E d, 

Sk P*, b)l and L(K) I= 9th fk P*, 6)). 

By effective bounding (f(x, p*, b) 1 b E d} is recursive in x, p*, d and so 
must be an element of L(K) SinCe L(K) iS E-closed. m 

LEMMA 2.5 [9]. If L(K) is E-closed but not x1 admissible, then L(K) 

admits Moschovakis witnesses. 

Proof: For z E L(K) let y be the least ordinal so that there is a well 
ordering of TC(z) which is recursive in z, y. By Lemma 2.4, K~-Y < K. By 
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Lemma 2.3, if (e}(z, y) is divergent, then there is a Moschovakis witness to 
this effect in L(ti:” + 1, TC(z u y) u (z, y}). In particular, the relevant 
Moschovakis witnesses for z are elements of L(lcf,’ + 1, TC(z u y) u {z, y }) 
which is a subset of L(ti). 

PROPOSITION 2.5 (well known). Suppose L(K) is E-closed but not 2, 
admissible. Then 

L(K) + [There exists a greatest cardinal.] 

Proof: Let y be a cardinal in the sense of L(K). A standard downward 
Lowenheim-Skolem argument shows that L(y) is a x, substructure of 
L(ti). Iffis x, over L(ti) and its domain and defining parameters belong to 
L(y), then its range belongs to L(y). 1 

The greatest cardinal of L(K), when it exists, is denoted by gc(K). 

3. GENERIC EXTENSIONS OF E-CLOSED SETS 

Let A be an E-closed set, and G a subset of some element of A. Define 
A(G) to be the set of all z such that for some e and a: 

: = {e>(a, G), aE A and 1 (e}(a, G)l E A. 

Suppose P is a partial ordering of forcing conditions such that 9’ E A and 
is countable closed in A. In this section, it will be shown that A(G) is 
E-closed, if G is P-generic over A, and A admits Moschovakis witnesses. 

The forcing language dpA has the power to describe the computation of 
{e}(a, G) when a and I(e)(a, G)/ belong to A. The primitive terms of YA 
are a (aE A) and 9. A general term is {e}(t, ,..., t,), where t ,,,.., t, are 
terms. Each term t is equivalent to one of so-called normal form {e}(a, 9). 
A unique normal form for t can be found effectively from t by elementary 
syntatical manipulations. YA also includes among its primitive symbols: o 
(a E A), E, / 1, variables, quantifiers and propositional connectives. 

Let 9 = (P, > ) E A be a partial ordering of forcing conditions p, q, r,...; 
p B q means p is extended by q (i.e., p says less than q about G). 

The forcing relation p H- I{ e}(a, S)l = CJ and the set F(p, e, a, $9, C) of 
terms are defined simultaneously by recursion on CE A. Among the 
elements of F(p, e, a, 9, cr) are terms that name the elements of {e>(a, $3) 
when 9 is generic, p E G and p forces 1 {e}(a, 9)I to be D. Each major 
clause of the recursion corresponds to one of the Normann schemes, as in 



INADMISSIBLE FORCING 11 

the definition of < “, the universal computation tree of Section 2. 
Y(p, e, a, 9, c) shall be used to represent a set of terms and also as a term 
itself. The effective bounding scheme is handled as follows. 

Define p H- I{ 2”. 3”}(a, S)l = IJ by: 

(-Q),<,CP t+ Hmh %)I =rl; 

P H- (~)(E~),,,C~E~(P, m, 44 Q, Y) 

& UE {m)(4 3) + I {n}(u)1 = 21; 

p l-l- (~L<,(E~)C(~E~(P, m, 4 9,~) 

& UE {m)(a, %I& I(n)(u)I 2~) v I{m}(a, S)l =zl. 

Define F(p, 2”. 3”, a, Y, IT) to be 

{{n}(s)ls~~(P, m, 4 9, y)}. 

The quantifiers and propositional connectives are forced in standard 
fashion. Thus p forces (Ex) F(x) if p forces F(i) for some appropriate i, p 
forces (x) Y(x) if p forces - (Ex) - 9(x), and p forces -9 if F is not 
forced by any q d p. One detail above is the definition of 

when p < q and s E T(p, m, a, 9, y). It is filled in by adding one more step 
to the recursion. Define 

4 tk {4wE {2m.3n}(% 9) 

to be q H- {SE Im)(+ 9) & (W,,,(l{~}(.9l =z)l. 
The weak forcing relation, p H- *F, is given by p # w - 8. 
p Ii- I {e}(t)1 = u means p H-- I (et}(a,, 9)( = 6, where {e,}(a,, 9) is the 

normal form of {e}(t). Similarly 

y(P, e, t, 0) = Y(p, e,, a,, %,a). 

LEMMA 3.1. p H-- I {e}(t)1 = cr, T(p, e, t, CT) and q #SE (e}(t) (where 
p > q and s E Y(p, e, t, CT)) are recursive in CT, B (un$ormZy in a). 

ProoJ: Be effective transhnite recursion on 0. 1 

The relation > ,, is needed for the development of an effective bound on 
I {e}( t)l when p weakly forces I {e}(t)1 into A. An approximate version of 
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is simply p < q and q H- *(e, t, ) > U (n, t2). U is the universal com- 
putation tree of Section 2. A typical detail of the precise definition of > ,, is 

4 tk (2”. 3”, t, > > u (4 f2) 

if there is a YEA such that q H- I{m)(t,)l =y, 

t*emq, m, t,, Y) and 4 tt t2 E bat,). 

> ,, is the forcing counterpart of > U. It includes all possible values of 
> U for all generic G’s. It will be seen that p # “b is an immediate subcom- 
putation of a” is a recursively enumerable relation on appropriate triples 
(P, a, b); 

P t-t- *W)CI (e)(t)1 = 01, 

as a relation on p, e, and t, is recursively enumerable in P; and that > y is 
well founded below (p, e, t) when p weakly forces ( {e}(t)1 into A. These 
three facts are interwoven in an essential way with the existence of an effec- 
tive bound on I{e}(t)l. 

LEMMA 3.2. Suppose > I, is well founded below (p, e, t ). If 

P tt *(Eo)Cl{eHt)l = gl, 

then there exists a y  recursive in p, t, 9 such that 

P I+ *I {e)(t)1 d y. 

Proof: y is computed by an effective transtinite recursion on the height 
of (p, e, t) in > “. The case of maximum interest occurs when e = 2”. 3”. 
By recursion there is a 6 recursive in p, t, 9 such that 

P tt *I {m)(t)1 d 6. 

By Lemma 3.1 the set K, defined by 

<Po,~)EK++PBPo&Po t-l- I{4Wl=o, 

is recursive in p, t, 9. Assume ( po, a) E K and s E F( po, m, t, cr). Then 

PO I+ *(W)CsE {m)(t) -+ I {nHs)l =Pl. 

Suppose p. 2 q. Then there is an r such that q > r and either 

r #se {m}(t) or r kks$ {m)(t). 
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By Lemma 3.1 the set of all r < q that force s E {m}(t) is recursive in 
q, s, t, g, 9. For each such r there is by recursion a p recursive in r, s, 9 
such that 

r tt *I{nHs)l GP. 

The effective bounding priciple and Gandy selection yield a strict upper 
bound y on p (for all relevant r and s) such that y is recursive in p, r, 9. It 
is safe to assume 6 < y. 1 

LEMMA 3.3. Assume A admits Moschovakis witnesses and 9 is countably 
closed in A. If 

P H- *WoKI (e>(t)1 =ol, 

then > ,, is well founded below ( p, e, t ). 

Proof Let ( g > (P, e, t) ( = y) be the partial recursive function defined in 
the proof of Lemma 3.2. If {g} converges on (p, e, t) then > ,, is well 
founded below (p, e, t). This is so because the value of (g} on any 
w  < V (p, e, t) is a strict upper bound for the values of (g} on the 
predecessors of w  in > “. Thus g assigns rank. 

Suppose { g)(p, e, t)T. Let z E A be a Moschovakis witness for 
(g, (p,e,t)). Thus zO=(g, (p,e,t)), and z, >Uz,+, for all n. There 
must be a z, such that 

z,=(g, (%%S)) and (P, e, t> > v  (9, n, s>. 

The existence of such a z, is a consequence of the details of the definition 
of (g> by effective transfinite recursion on > y. The immediate 
predecessors of (g, (p, e, t)) in > U need not have the form of z,, but 
every Moschovakis witness, as it winds its way down below ( g, (p, e, t ) ), 
must encounter elements of the form z, infinitely often. Thus each 
Moschovakis witness to the divergence of (g}(p, e, t) has a built-in, 
infinite, descending sequence in > v below (p, e, t). It follows there is a 
sequence ( pn, e,, t, ) (n > 0) in A such that 

(po, eo, to> = <p, e, t> 

<Pn,enptn) b4Pn+l~en+dn+J. 

Since 9 is countably closed in A, there is a q such that for all n, p,, > q. But 
then 
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Thus q weakly forces the existence of an Moschovakis witness to the 
divergence of (e}(t), and so p ( 2 q) cannot weakly force {e}(t) to con- 
vergence. 1 

LEMMA 3.4. Assume A admits Moschovakis witnesses, and 9 is coun- 
tably closed in A. If 

P H- *(Eo)[l {eHt)l = 01, 

then there exists a y recursive in p, t, 9 such that 

P tt *I (e>(t)1 <Y. 

Proof: Combine Lemmas 3.2 and 3.3. 1 

Let G be a path through 9. G is P-generic with respect to a sentence 9 
if there is a p E G such that either p tf- 9 or p H- - F. G is P-generic over 
A if: 

(i) G is generic with respect to every sentence of the form 

I{e}(t)l =c7 or (Eo)[l{e)(t)l =cl. 
(ii) Suppose there is a PEG such that p w [{m}(t)1 =D. Then G is 

generic with respect to 

(~)(ET)C~EF(P, m, t. 0) 

& uE {m}(t) + I [n}(u)l = r]: 

and to every sentence of the form s E {m }(t) for all s E Y(p, m, t, a). 

THEOREM 3.5. Suppose A is E-closed and admits Moschovakis witnesses. 
Let BE A be countably closed in A. If G is P-generic over A, then A(G) is 
E-closed. 

Proof: Let aE A. Suppose I (e}(t)/ d K, where ti is the least ordinal not 
in A, with the intent of showing I {e}(t)1 < K. As usual assume e = 2”‘. 3”. 
Then there are p E G and IJ < K such that 

P tk I( =o 

and 

P I+ (u)(ET)Cu E r(p, m t, c.) 

& UE {m}(t) -+ I (n}(u)l = ~1. 
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For each s E Y(p, m, t, 0) and q < p, there is an r < q such that either 

(i) r #se (m}(t) or 

(ii) r H-s4 {m)(t). 

The set of all r 6 q such that (1) holds is recursive in q, s, t (T, 9’ by 
Lemma 3.1. If r satisfies (i) then 

for some p recursive in r, s, 9 by Lemma 3.4. The effective bounding prin- 
ciple, as in proof of Lemma 3.2, yields a bound y on p (for all relevant r 
and s) such that y is recursive in p, t, B. Since A is E-closed, y E A. Thus p 
forces [{e}(t)1 to be at worst max(a, y). 1 

The proof of Theorem 3.5 shows: if p forces I {e}(a, g)I < K, then p forces 
I {e}(a, $)I to be less than I+*~. Further information can be obtained if A 
is of the form L(K). For example, for each a E L(K) and p, there must be a 
q > p such that q forces K:” G K,P.~+@. Such matters are discussed in [9] 
and [13]. 

The present section concludes with an application of Theorem 3.5 needed 
for the main result of the next section. Recall Proposition 2.5. The next 
result states that under suitable hypotheses, the greatest cardinal of an 
E-closed structure can be collapsed to or. 

CORROLARY 3.4. Assume L(K) is countable, E-closed and C, 
inadmissible. Suppose gc(rc), the greatest cardinal in the sense of L(K), has 
uncountable cofinality in L(u). Then there exists an onto 

f: wy + gc(fc) 

such that L(K, f) is E-closed, its greatest cardinal is L(K) w1 , and 
wf44 = w;(6.1’) 

Proof. Let 9 be the set of all PE L(K) of the form 

p: 6 + gc(lc) (6 < wyy. 

9 is an element of L(K) by a standard condensation argument, and .?Y is 
countably closed in L(K), since cf(gc(lc)) > w  in L(K). By Lemma 2.4; L(K) 
admits Moschovakis witnesses. Let 

j-1 W?(K) + S(K) 

be p-generic. Then f is an onto map, and by Theorem 3.5, L(Ic, f) is 
E-closed. wf@) = o$(“*.” because 9 is countably closed. 1 

607/66/l-2 
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4. E-POINTED PERFECT FORCING 

Let L(X) be countable, E-closed and C, inadmissible. By 
Proposition 2.9, Z,(X) has a greatest cardinal, namely gc(rc). Assume gc(x) 
has uncountable colinality in L(K). In this section it will be shown that 
there exists a TE gc(rc) such that L(K, T) is the E-closure of T. T will be 
generic with respect to uncountable, E-pointed, perfect forcing conditions. 
The ideas underlying the proof of Theorem 3.5 will guide the proof that 
L(K, T) is E-closed. Some modifications are necessary because the collec- 
tion of forcing conditions is now a “class” rather than a “set.” Pointed, per- 
fect forcing was applied in [7]. Iterated perfect forcing was developed by 
Baumgartner and Laver [14] for countable conditions, and by Kanamori 
[ 151 for uncountable conditions. 

By Corollary 3.6 there is an f such that 

L(ti, f) k [There is only one uncountable cardinal.] 

and L( X, f) is E-closed. The forcing conditions will belong to L(K, f), and 
the desired T will be generic over L(k-, f), and the desired T will be generic 
over L(K, f). Let o, denote the greatest cardinal of L(K, f). Since fcan be 
construed as a subset of w, , it follows that each bounded subset of w, 
(in L(K, f)) iS constructible from a countable (in L(K, f)) initial segment of 
fvia an ordinal less than 0,. Thus Seq, defined by 

dESeqo3:a+(O, 1}&~<~,&dE~(K,f), 

is a member of L(K, f). 

SupposepsSeq. If tiEp, then 3 is said to split inp if g*(O) and 3*(l) 
belong to p. (If domain(s) = c(, then domain(3*(0))=a+ 1 and 
(d*(O))(a) =O.) p is perfect if: 

(4 (.~).~Ep(~)lEdOm,,~C(~ 14~ PI. 
(b) (3),.p(Et),.I,[tiz t & t splits in p]. 

(cl (a),<,“, (2)[(domain(j)=cr & tl is a limit & (fi)B<z((~ r/I)Ep)) 
-+3EP]. 

(d) (f)tEp4(m)(n)(n <m -f(n) sf(m)) & (n)(f(n) splits in P) -+ 
U,f(n) splits in p]. 

Clause (d) says that p splits on a closed unbounded subset of each branch 
through p. A branch is a function g: w, + 2 such that every countable 
initial segment of g belongs to p. Let [p] be the collection of all branches 
through p. 

p is E-pointed if 

t.J.3 s<w,(T)CT~ [PI + P QE T, &j-l. 

In short P can be computed from any branch through p. 
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Let P be the class of all E-pointed, perfect p’s in L(K, f). Note that 
P $ UK, f). Let p, 4, r,..., denote elements of P. p > q (read p is extended 
byq) ifpzq. Define 9J to be (P, a). 

PROPOSITION 4.1. 9 is countably closed in L(K, f). 

Proof. Let p,? (n < o) be an infinite descending sequence in 9, and let q 
be n (p,, 1 n < w>. q satisfies clause (d) of the definition of perfect, because 
the filter of closed unbounded subsets of w, is countably closed. To see that 
q is E-pointed, observe that each countable sequence of countable ordinals 
is E-recursive in some countable ordinal. Thus the d,,‘s needed to compute 
the p,?‘s from a common branch T can be combined into a single 6 that 
serves to compute q from T. 

Suppose X, Y G wl. X and Y are said to have the same degree if there 
exist CI, /l< w, such that 

PROPOSITION 4.2. The degrees of the branches through p are just the 
degrees greater than or equal to that of p. 

Proof Suppose p < E X, c(, f for some (T < or. A TE [p] is defined by 
recursionono,.IfTrydoesnotsplitinp,thenT(y)=OifTry*(O)Ep, 
and = 1 otherwise. Assume T r y splits in p. Let b be the order type of 

(616<y& T 16 splits inp). 

Then 

if /?EX 
otherwise. 

T winds its way through P in the same manner that X does through 2”‘. 
Consequently 

T<Ep,X and X d E p, T. 

The initial assumption on X implies the degree of T is at most that of X. 
The E-pointedness of p implies the degree of X is at most that of T. 1 

In the light of Proposition 4.2, an E-pointed p represents a cone of 
degrees whose vertex is the degree of p. If TE [p], then p “forces” the 
degree of T to be at least that of p without “forcing” any bound on the 
degree of T. 

p is said to be E-pointed via 6 (6 < ol) if 

(T)CTE [PI + P < .c T 6, f I. 
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PROPOSITION 4.3. Suppose Y G o, and p is E-pointed via 6. Then there 
exists a q such that p 2 q, q < E p, Y, and Y < E q, L 6. 

Proof: .j E q is defined by recursion on the domain of J with the intent 
of coding Y into every branch of [q]. 

Suppose .JE~ and .j does not split in p. Then .g*(O)~q if JOEY. 
Otherwise d* ( 1) E q. 

Suppose .j splits in p. Let z be the order type of 

(y)y<domain(j)&3 py splits inp}. 

If r =/I + 1, then 
.J*(o) Eq if PE Y, 

.I*(l)Eq if PEY. 

If t is a limit, then J splits in q. 
By construction p d q. To see q is E-pointed, fix TE [q]. Then TE [p], 

and so p d t T, .f, 5. By construction Y dE T, p. Thus Y 6 E T, f,  6. 
q < E p, Y, so q d E T, f,  6. 

The left-most branch of [q] is recursive in q, hence Y d E q, J 6. 1 

The language 9(x,!, y) has the power to analyze the computation of 
{e}(.x) when +y\-E(k-,P; T) and I(e)(.u)I < ti. The primitive terms are: 
y, /, a for each a E t(ti), and CJ for each ordinal B < K. If t, ,..., t,, are terms, 
then {e}(t, ,..., t,) is a term. The language also includes: E, ) 1, variables, 
quantifiers and propositional connectives. The relations 

s E r(e, t, a) and 

are defined simultaneously by recursion on G. 9(e, t, (T) is a set of terms 
that suffice to name the elements of {e}(t) when ( (e}( t)l = CJ. For example, 
suppose e = 2”’ .3”. 

Then L(K,~, T) b 1 j2”‘. 3”}(t)/ = 0 if there is a y < 0 such that the 
following are true in L(ti, J T): 

IWW =Y, 

(u)(E~L<rCu~~(w t, Y)&UE {m}(t)+ I( =tl, 
(t),<,(Eu)II(uE~h t3 Y)&UE {m)(t)& l{~}(U,l>~) ” I( =71. 

5(2”.3”, LO)= {{n}(~)l(Ey)~<o(~~~(~, t, ~1)); 
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and 

ifsEF(m,t,cJ)and L(K,~, T)+s~{m}(t). 

A sentence 8 is said to be ranked (and of rank at most a) if it is of the 
form 1 (e)(t)1 = CJ, or s E {e}(t), where s E F(e, t, a). The forcing relation 
p H-F is defined by 

(T)CTE [P] + L(4 f, T) k 91 

when ?F is ranked, and in a standard fashion when 8 is unranked (e.g., 
has an unbounded ordinal quantifier). 

The weak forcing relation p k *F is given by (q),,,(Er),,,[r WY]. 
The reason for defining forcing for ranked sentences in terms of truth is 

to avoid quantification over a class of forcing conditions. The next lemma 
shows that the definition of k is workable. 

LEMMA 4.4. Suppose 9 has rank at most C. Let W be a well ordering of 
o1 of height C. Then for each p, there is a q such that p 6 q, either q EF or 
q H- - 8, and q < Ep, W, r91 (uniformly). 

ProoJ: By Proposition 4.3 there is an r such that p 2 r, r 6 E W rF1 
and ( W, rF1) < E r, f, 6, for some 6, < wl. q will be constructed by local 
forcing. Each branch through q will be generic in the sense of wO. The forc- 
ing conditions associated with WV are the elements of r. The only sentences 
eligible for forcing are those of rank at most CJ from the language 
S(K, P, F). The definition of pi’, is in essence the same as that of /-/--, given 
at the beginning of Section 3. The only changes are the restrictions to r 
and Q. 

Let I@ = { F0 16 -C w1 > be a well ordering of all sentences of Z'(K, P, F) 

that arise in the unraveling of the definition of t-t-F. Note that IV” <E W, 
rF1. A map h: Seq + r is defined by recursion on the length a of t E Seq. 
The range of h is the desired q. 

c1= 0: h(t) is the shortest SE r such that either stf, F or s w0 N 9. (Thus 
h(0) decides whether q forces 9 or -9.) 

01= /? + 1, where 8 is not a limit: let (s,,, s1 ) be the least pair of incom- 
parable extensions of h(t r (fl+ 1)) in r such that for each i < 2, either 

si tf, gfi or si WC-&. 

Define h((t r (/?+ l))*(i))=si. 

Lx = A.: h(t)=U{h(t l’r)lu<n), 
cr=A+l: h(t rn)*<i)=h(t m)*(i). 
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(Note that h(t r II) must split in r, because h(t r (p + 11) splits when /3 is 
not a limit.) 

With the aid of Lemma 3.1, q GE r, W, rF1, hence q GE p, W, ‘9’ 
(uniformly). q is perfect because it is a homeomorphic image of Seq. To see 
q is E-pointed, fix TE [q]. Then TE [p], and so p GE, T, f; 6, for some 
6, < w,. Thus q 6 E T, f, 6,) r, 6,. But TE [r], so r d eT, .h 6, for some 
62<w,. Consequently q <ET,f,60,6,,62. u 

As in Section 3 the relation > V is invoked to obtain an effective bound 
on 1 {e>(t)] when p weakly forces 1 (e>(t)] < K. The proof of the next lemma 
is similar to that of Lemma 3.4 save for a fusion construction needed to 
overcome the failure of 9’ to be an element of L(K). 

LEMMA 4.5. Assume rt1 z 0,. Suppose > v is well jbunded below 
(p,e,t). If 

P tk*(~~)Cl{ej(t)l =c~l, 

then there exists (q, y, W(y)) recursive in p, rt’, f such that p 3 q, 

and W(y) is a well ordering of CO, of height y. 

Proof (q, y, W(y)) is computed by an effective transtinite recursion on 
the height of (p, e, t) in > c,. As always assume e = 2”. 3”. By recursion 
there exists ( pO, y,,, W(y,,)) recursive in p, rtl, f such that p > p,,, 

p. tk I imHt)l = Yo, 

and W(yo) is a well ordering of wr of height yo. By Proposition 4.3 there is 
a pI such that po2 pl, p1 GE po, W(yo), rtl, and (WY,), rfl> d E 
p,,f,6, for some 6,<0,. 

Let kV’(y,,) = {tu I c( < o, 1 be a well ordering of all terms that belong 
to s(m, t, yo). A straightforward definition of fV”(y,) yields: 

fJ?Yo) GE W(YO)? rt’; and rt,lzo for all a<o,. 
A contracting sequence { 4% 1 a < (;, } of forcing conditions is defined by 

effective transtinite recursion on c(. 

40= PI, 9i=fl{4rx/a<E,}3 

9r+*=UC4j+,I~E91n2”+‘}. 

The definition of q;+ , has two parts. First, by Lemma 4.4, there is an r, 
such that: 

qz2r,, x+1- I r,n2 -,9}; 

rl GE 4%, 3, W(yo), ‘t’, ‘t,‘; 



INADMISSIBLE FORCING 21 

and 

0) Ol-t,~ @4(t) or 
6) ra H- 1, $ (m)(t). 

If (ii) holds, then qj: + , = rcl. If (i) holds, then 

0-h e, t> > y <rrx, 4 t,>; 

and so by recursion on > y there is (q: + 1, y:, 1, W(y,+ 1)) recursive in r,, 
rt,l, f (uniformly by Gandy selection) such that ra > q; + , , 

4:+1 tt I{n>(fJl =Y:+ly 

and W(yz+ ,) is a well ordering of height yE+, . Define 

4co= fwLb-4~ 

and 

ym = strict upper bound of 

Then qm < pl, W(y,), rtl, w(y,) GE p, rtl, J: To see qm is E-pointed, fix 
TE [q,]. Then TE p,, hence p1 GE, T,f, 6, for some countable 6, not 
depending on T. Thus qm < T, f, 6,) 6,,. To check that [qm] is perfect, let 

C, = (B ( T r jl splits in qx} 

for all CI 6 ol. C, (a < ol) is closed and unbounded, hence C,, = 
n { C, 1 c1< o, } is closed. To verify that C,, is unbounded, fix do < wl. 
Choose 6,, + , E Cb, so that 6,, , >6,,. Let h,=U{6,In<o}. Then 

wwBw4=cao, 
and so T r 6, splits in Cd,“. For all o! 2 6,, 

qcIn2 bJ+ 1 = qa,“n p<“+ 1. 

Hence 6, E C. 
Since qm t+ I {e>(t)l d Ymo, it follows from a local forcing construction as 

in Lemma 4.4 that there exists a q such that qm > q, 

and q GEqco, W(y,), rtl. The desired y is the definite value of I{e}(t)l 
forced by q. W(y , ) can be obtained effectively from the W(y, + 1 ))s. 1 
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A closer examination of Lemmas 3.2 and 4.5 will clarify the proof of 
Lemma 4.6. In both 3.2 and 4.5 a partial recursive function {g} was 
defined by effective transfinite recursion. It was shown by induction that if 
< b, is well founded below (p, e, t ) then { g}(p, e, t)l and its value 
includes an ordinal y and a condition q d p such that q forces 1 {e )(t)l to 
be y. 

There is a second viewpoint. The partial recursive function {g} is defined 
formally via a fixed point construction without reference to < I,. If 
{g>(p, e, t)l, then < u below (g, (p, e, t ) ) is a well-founded relation 
closely associated with < v below (p, e, t). The arguments of 3.2 and 4.5 
applied to < U below (g, (p, e, t)) show that the value of (g}(p, e, t) 
includes a y and a q as above. 

The second approach yields no new information concerning set forcing, 
because in that case < U below (g, e, t) ) is essentially the same as < y 
below (p, e, t). It is in the context of class forcing that further insight is 
gained. If 9 is a class, then the immediate predecessors of (p, e, t ) in < P 
form a class rather than a set, and this is so even if < I, below (p, e, t) is 
well founded with height less than K. The fusion construction of Lemma 4.5 
supplies a q, and a set version of < c, below (q, e, t ) extracted from < U 
below (g, (p, e, t ) ). The set version of < F, below (q, e, t) is dense in the 
full class version of < &, below (q, e, t ). 

According to the second viewpoint the two cases that occur in the 
analysis of ( p, e, t ) are { g }(p, e, t) converges or diverges, rather than < P 
is well founded or ill founded below (p, e, t ). 

LEMMA 4 6 . . If rtl G co1 and 

p H-*Wa)CI {e)(t)1 = aI, 

then {gl(p, e, t)l. 

Proof Virtually identical with that of Lemma 3.3. If { g}(p, e, t)?, then 
there is a Moschovakis witness to the divergence of { g}(p, e, t) in L(K, f) 
by Lemma 2.4. The witness yields an infinite descending sequence in < y 
below (p, e, t). Since 9 is countably closed by Lemma 4.1, the infinite 
descending sequence contracts to a q below p that forces {e}(t) to 
diverge. 1 

LEMMA 4 7 . . Zf rtl E co1 and 

P tt*@c)CI {e>(t)1 = 01, 
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then there exist (q, y, W(y)) recursive in p, rtl f such that p 2 q, 

4 H- I W)l = Y, 

and W(y) is a wellordering of co, of height y. 

Proof. By Lemmas 4.5 and 4.6, and the intervening remarks. 1 

Let TG w1 . T is p-generic on a sentence 9 of 9( rc,P, 9) if there is a p 
such that TE [p], and either p H_F or p k N 9. T is p-generic if: 

(i) T is g-generic on every 9 that is ranked or of the form 
tEo)CI {e>(t)1 = ~1 and 

(ii) if TE [p] and p t+ I{m}(t)l =(r, then there is a q6p such that 
TE [p] and q forces the following sentence or its negation, 

(u)(E7)[u~~(m, t,a)&ue {m)(t)+ I{n)(u)l =t]. 

THEOREM 4.8. Let L(K) be countable, E-closed and Cl inadmissible. Sup- 
pose the greatest cardinal of L(K) has uncountable cofinality in L(K). Then 
there exists an S G off such that L( K, S) is the E-closure of S. 

Proof: Let T be B-generic as above. Then S is (f, T) encoded as a 
subset of o$(~). By Proposition 4.3 and the genericity of T, each YE 2”’ n 
L(K, f) is recursive in T, ft 6 for some countable 6. Hence E(S) 2 L(K, A T). 
To check E(S) E L(Jc, f, T), suppose rtl < or and 

L(K, f, T) I= IG’“. 3”)Wl G x. 

Then there is a p such that TE [p], p tj-- (Eo)[l(m)(t)l =a], and 

p t-l- tu)W)Cu E Wn, t,fl) 8~ u E {m}(t) 

--f I {nI(u)l = 71. 

By Lemma 4.7 there is (p,,, yO, W(y,)) recursive in p, rtl, f such that 
P>Po, 

p. t+ I {mHt)l = 70, 

and W(yo) is a wellordering of w1 of height yo. Now the fusion argument of 
Lemma 4.5 can be repeated to obtained qm and ym such that p. 2 qm, 

qco H-*lp”~3”)(t)l GYCO, 

and y a, <E p, rtl, f: Thus qm weakly forces I(2” .3”}(t)] to be less than IC. 
The set of such qo3’s is dense in p, and so p weakly forces 
(Ea)[ I { 2”. 3”}(t)l = a]. (Note that p does not in general force a universal 
bound on 1{2”* 3”}(t)l f or all generic elements of [p]. 1 
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5. SELECTION 

In this section a selection theorem is proved to obtain a partial converse 
to Theorem 4.8. The theorem is inspired by a result of Y. Moschovakis 
[ 181 (also cf. Kirousis [20]). Let E(R(a)) be the E-closure of the set of all 
sets of rank less than CI. Moschovakis showed: if c1 has countable cofinality 
in E(R(a)), then E(R(cr)) is C, admissible. Corollary 5.2 states: let X be a 
set of ordinals; if in E(X) the greatest cardinal has cofmality w, then E(X) 
is x1 admissible. Corollary 5.3 is the intended partial converse to 
Theorem 4.8. Let X be a set of ordinals. Some fundamental facts concerning 
the structure of E(X) will prove helpful below. 

(RO) Let a, b, c ,..., E sup X. For all z, 2 E E(X) iff z GE X, a for 
some a. 

(R 1) Each element of E(X) can be coded by a subset of sup X. More 
precisely, if z E E(X), then there exists a z* G sup X such that z is recursive 
in z*, and z* E E(X). z* is defined by a recursion on the length of com- 
putation of z from x. 

(R2) In E(X) there is a greatest cardinal. 

Call it gc(E(X)). It is safe to assume gc(E(X)) is sup X. More precisely, 
there exists an X0 G sup X such that E(X,,) = E(X) and gc(E(X,)) = sup X0. 

Let A E sup X. Recall from Section 2 that A is said to be recursively 
enumerable in X if there exists an e such that for all a E sup X, 

UEA f-* {e}(u, X)1. 

Each a corresponds to a node (e, (a, X)) on the universal computation 
tree > U defined in Section 2. a belongs to k iff > U is well founded beneath 
(e, (a, X)). For simplicity the node (e, (a, X)) will be written a. Thus 
UGA iff al. Fact (Rl) makes it possible to think of each node below 
(e, (a, X) ) as being of the form (e,, (b, X) ) for some b E sup X, or 
more simply b. Define 

minA =min{lul lu~A}. 

Ial is the height of > ,, beneath a. ]a] is defined by recursion to be the strict 
least upper bound (sup+) of all lb/ such that b is an immediate subcom- 
putation of a (as defined in Sect. 2). 

THEOREM 5.1. Let X be a set of ordinals. Suppose in E(X) there is an 
ascending sequence (K, 1 j < CO} of cardinals (in the sense of E(X)) such that 

supX=gc(E(X))=sup{ti,] j<o}. 
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If A E sup X is nonempty and recursively enumerable in X, then min A is 
recursive in X, (uj 1 j < o} (uniformly). 

Proof: The predicate, b is an immediate subcomputation of a, is recur- 
sively enumerable. The following modification, b is an immediate com- 
putation of a via /I, is recursive. The idea is to let /3 bound the height of the 
computation needed to show b is an immediate subcomputation of a. For 
example: 

(1 8) (m, u) is an immediate subcomputation of (2”. 3”, ,u) via 8. 

G$) If {m)(u)l, I(m)(u)I GP, and VE {m}(u), then (n, v) is an 
immediate subcomputation of (2”. 3”, u) via /I. 

The theorem is proved by an effective transfinite recursion on min A, 
henceforth called the main recursion. There are countably many cases 
woven together at the finish by the Gandy selection principle. 

Case 2’ .3j. Suppose i < j and there is an a E A n rcj such that 

min A = min(A n K~) = /aI 

= sup+ { 161 1 b < ‘ii & b is immediate subcomputation of a}. 

In this case min(A n K~) is computed by a recursion of length K~+ 1. Fix 
a<K,+ I and assume /I(Y) has been computed for all Y < CI. Define 

The definition of B(a) has two subcases. In the first, p-(a)+ 12 
min(A n xi) and /I(U) is defined to be min(A n K~). In the second, 

B-(a) + 1 < min(A n K~), 

and I is computed as follows. Let Z, be the set of all b such that 

b < K~, 61, p-(a) < lb/ and b is an immediate subcomputation of 
some a E K, via /I ~ ( CI). 

Z, is nonempty thanks to the a mentioned in the supposition of Case 2’. 3’. 
Z, is recursively enumerable in b-(a), X, xi, hence the main recursion can 
be applied to compute min Z,. Define 

fi( a) = min Z, 

It follows that {/?(a)la< u,+~} is recursive in X and the K, sequence. 
Note that for all sufficiently large a, /?(a) is min(A n rci). If not, then for all 
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sufficiently large CX, the second subcase holds. For each such CI there is a 
b E K~ such that 

ata, = Ibl and /?(a) > /I(y) for all y < c7. 

Each such h is associated with at most one LX, but there are xi+ 1 Cos. 

Case 5’. Suppose min A = min(A n K,). Let r(j, a) be the supremum+ of 
all Ihl such that b < K,, and b is an immediate subcomputation of a. y(j, a) 

is a partial function, and is defined iff every b < ~~ (and an immediate sub- 
computation of a) converges. Suppose further that 

a E A n ICY & la/ = min A + y(j, a) < min A 

for all j < w. In this case min(A n K~) is computed by a recursion of length 
K,+,. Fix a<~,+~ and assume b(y) has been computed for all y < c(. Define 

P~-(Co=SUP{B(Y)IY<a~. 

The definition of P(U) has two subcases. In the first, /3 (a) + 1 > 
min(A n ti,) and /I(U) is min(A n K~). In the second, 

B-(N) + 1 < min(A n K,), 

and P(U) is computed as follows. Let y(j, a, p) be the supremum+ of all Ibl 
such that b < tij and b is an immediate subcomputation of a via b. y(j, a, j3) 

is partial recursive in j, a, /?, and is defined iff every b < ~~ (and an 
immediate subcomputation of a via /I) converges. Let Y, be the set of 
(j, a) such that 

Y, is nonempty by virtue of the suppositions that define Case 5’. Y, is 
recursively enumerable in ,!-(a), X, K~, hence the main recursion can be 
applied to compute 

It follows that {/?(a) I c1< K,, 1 } is recursive in X and the K, sequence. For 
all sufficiently large CI, /3(a) is min(A n K~). If not, then the second subcase 
obtains for all sufficiently large LX. For each such tl there is a (j, a) E co x K~ 

such that 

B(a) = kh a, P-(a)) and B(a)>P(r) (Y<U). 

Each such (j, a) is associated with at most two a’s, but there are K~+ 1 CL’S. 
For a given (j, a) the first a might occur at fl,, when the only immediate 
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subcomputation of a via &, is (m, a, X), and the second at j?i when pi > 
I Cm, a, WI. 

An effective procedure has been defined for each case q above. It con- 
verges iff the suppositions of the case are true . If it converges, then it 
converges to min A. Let B be the set of all q such that the procedure for 
case q converges. Recall the Gandy selection principle from the proof of 
Lemma 2.3. B is a nonempty subset of o recursively enumerable in X, 
{ ~~ 1 i < w}. By Gandy selection, an element of B can be computed from X, 
{Uili<W}. I 

The proof of Theorem 5.1 establishes more than is stated. E(X) can be 
replaced by an arbitrary E-closed structure d with an additional predicate. 
The only structural fact needed for the proof is somewhat weaker than the 
existence of a greatest cardinal of cofinality o in 8’. As above no 
assumption need be made about the power set operation inside d (cf. [ 131 
for details). 

COROLLARY 5.2. Let X be a set of ordinals. Zf in E(X) the greatest car- 
dinal has cofinality w, then E(X) is C, admissible. 

Proof Let D(a, z) be A,. Suppose 

@)~~x(EzL.~(x$‘(bt z) 

in the hope of bounding z. Then 

(b)bp,(Ea),.,(Ee)C{e}(X, a)1 & Nb, {e>K a))]. 

The set 

(I{e)(X, alI I {e>(X a)1 8~ D(b, {e)(X a))> 

is recursively enumerable in X, b. Thus its min is recursive in X, 6, 
{ ~~ 1 i < o} by Theorem 5.1. Consequently z is a computable function of b, 
hence bounded in E(X). [ 

COROLLARY 5.3. Suppose L(n) is E-closed and not C, admissible. If 
6 -C K, S G 6 and E(S) = L(u, S), then in L(K, S) the greatest cardinal has 
uncountable cofinality. 

Proof. Apply Corollary 5.2. 

COROLLARY 5.4. Suppose L(K) is E-closed and not C, admissible. Let 
(up) 1 n <co} be the set of all infinite cardinals in the sense of L(tc). Then 
there do not exist 6 < K and S G 6 such that E(S) = L( tc, S). 
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Proof Suppose 6 and S exist. Let gc(S) be the greatest cardinal in the 
sense of E(S). By remark (R2) at the beginning of Section 5, it is safe to 
assume SE gc(S). It follows from Corollary 5.3 that gc(S) = w,LIK) for some 
positive n co, and that w~L(~) is regular in E(S). There is a t E E(S) such 
that 

t will be used to define a violation of the E-closedness of E(S). 
Suppose Z c of;(“) and ZE L(ti). Z can be effectively coded by’a coun- 

table subset of w,Lu(li) as follows. Let z(n) be the least triple (y, p, n) such 
that Zn o, is first order definable over L(y) via formula II with parameter 
p. A standard downward SkolemPLowenheim argument shows ( y, p, n ) E 
o$(Ji. Thus {z(n)ln < o} encodes Z, and the processes of encoding and 
decoding are effective. 

Let Y be a countable subset of wt,‘“) in L(K). Then t(Y) is a bounded 
subset of w,$(~’ in E(S), since w t(K) is uncountable and regular in E(S). By a 
well-known theorem of Hajnal, t( Y) E L(/l, S) for some /? < o,LiK). 

Thus every subset of w h(xt in L(ti) can be coded by a countable subset of 
wOL,(~) in E(S), which is constructible from S below w:(~). This process, 
reversed and slightly modified, violates the E-closedness of E(S). Let K be 
the set of all bounded subsets of w,L(~) in E(S), and let w E K. Define h(w) 
as follows. If t-l[w] encodes a subset of W, L(K) that is the graph of a well- 
founded relation, then h(w) is the ordinal height of that relation. Otherwise 
h(w) = 0. 

h is recursive in S, t, but maps KE E(S) onto K. 1 

6. FURTHER QUESTIONS AND RESULTS 

(Ql) Is the converse of Theorem 4.8 true? To make the question 
definite, let L(K) be countable and x1 inadmissible, and assume there exist 
6 <K and SF&~ such that L(K, S)=E(S). Does it follow that gc(K), the 
greatest cardinal of L(ti), has uncountable cofinality in L(K)? Corollary 5.3 
requires the greatest cardinal of L(ti, S) to have uncountable colinality in 
L( K, S). It seems possible for gc(K) to have countable colinality in L(K), 
and to collapse in L(K, S) to a cardinal of uncountable colinality. 

(Q2) Suppose K, 6, and S are as in (Ql ). Can the degree of S be 
made minimal? In the present setting “minimal” means:: for all R E E(S), if 
S $ E(R), then L(K) P E(R). An affirmative answer is morally certain via 
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the methods of [7]. There it was shown that if a is countable, greater than 
o and x1 admissible, then there exists an SE o such that 

(i) E(S)=L(a, S) and 
(ii) for all RE E(S), if S$E(R), then L(a) & E(R). 

(Q3) Suppose L(K) is uncountable, E-closed and C1 inadmissible. 
Assume gc(rc) has uncountable cofinality in L(K). Do there exist 6 < IC and 
S G 6 such that L(K, S) = E(S)? S. Friedman [ 16,173 has found a virtually 
complete answer to this question when I/= L and cardinality of L(K) is 6. 

The analysis of E(X) made in the various sections of the present paper 
depends strongly on the assumption that X is a set of ordinals. Slaman 
[ 131 has shown: Let L(K) be countable and E-closed. Then there exists a 
countable XG 2” such that 

(a) UK, 9 = W3; 
(b) L(Ic, X) does not admit Moschovakis witnesses; and 
(c) if L(K) is C, admissible but not the E-closure of any ZE L(K), 

then L(lc, X) is C1 admissible but the notions of E-recursive enumerability 
and boldface C, do not agree on L(K, X). 
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