Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces ${ }^{\hat{*}}$

Jong Soo Jung
Department of Mathematics, Dong-A University, Busan 604-714, South Korea
Received 23 April 2004
Available online 6 October 2004
Submitted by T.D. Benavides

Abstract

The iteration scheme for families of nonexpansive mappings, essentially due to Halpern [Bull. Amer. Math. Soc. 73 (1967) 957-961], is established in a Banach space. The main theorem extends a recent result of O'Hara et al. [Nonlinear Anal. 54 (2003) 1417-1426] to a Banach space setting. For the same iteration scheme, with finitely many mappings, a complementary result to a result of Jung and Kim [Bull. Korean Math. Soc. 34 (1997) 93-102] (also Bauschke [J. Math. Anal. Appl. 202 (1996) 150-159]) is obtained by imposing other condition on the sequence of parameters. Our results also improve results in [C. R. Acad. Sci. Sér A-B Paris 284 (1977) 1357-1359; J. Math. Anal. Appl. 211 (1997) 71-83; Arch. Math. 59 (1992) 486-491] in framework of a Hilbert space. © 2004 Elsevier Inc. All rights reserved.

Keywords: Nonexpansive mapping; Common fixed points; Iteration scheme; Sunny and nonexpansive retraction

1. Introduction

Let C be a nonempty closed convex subset of a Banach space E and let T_{1}, \ldots, T_{N} be nonexpansive mappings from C into itself (recall that a mapping $T: C \rightarrow C$ is nonexpansive if $\|T x-T y\| \leqslant\|x-y\|$ for all $x, y \in C)$.

[^0]We consider the iteration scheme: for N, nonexpansive mappings $T_{1}, T_{2}, \ldots, T_{N}$ and $a, x_{0} \in C$,

$$
\begin{equation*}
x_{n+1}=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T_{n+1} x_{n}, \quad n \geqslant 0 . \tag{1}
\end{equation*}
$$

In 1967, Halpern [9] firstly introduced the iteration scheme (1) for $a=0, N=1$ (that is, he considered only one mapping T); see also Browder [3]. He pointed out that the conditions $\lim _{n \rightarrow \infty} \lambda_{n}=0$ and $\sum_{n=1}^{\infty} \lambda_{n}=\infty$ are necessary in the sense that, if the iteration scheme (1) converges to a fixed point of T, then these conditions must be satisfied. Ten years later, Lions [12] investigated the general case in Hilbert space under the conditions $\lim _{n \rightarrow \infty} \lambda_{n}$ $=0, \sum_{n=1}^{\infty} \lambda_{n}=\infty$ and $\lim _{n \rightarrow \infty}\left(\lambda_{n}-\lambda_{n+1}\right) / \lambda_{n+1}^{2}=0$ on the parameters. However, Lions' conditions on the parameters were more restrictive and did not include the natural candidate $\lambda_{n}=1 / n+1$. In 1980, Reich [16] gave the iteration scheme (1) for $N=1$ in the case when E is uniformly smooth and $\lambda_{n}=n^{-a}$ with $0<a<1$.

In 1992, Wittmann [20] studied the iteration scheme (1) for $N=1$ in the case when E is a Hilbert space and $\left\{\lambda_{n}\right\}$ satisfies

$$
0 \leqslant \lambda_{n} \leqslant 1, \quad \lim _{n \rightarrow \infty} \lambda_{n}=0, \quad \sum_{n=1}^{\infty} \lambda_{n}=\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\lambda_{n+1}-\lambda_{n}\right|<\infty
$$

In 1994, Reich [17] obtained a strong convergence of the iterates (1) for $N=1$ with two necessary and decreasing conditions on parameters for convergence in the case when E is uniformly smooth with a weakly continuous duality mapping. In 1996, Bauschke [2] improves results of Wittmann to finitely many mappings with additional condition on the parameters $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+N}\right|<\infty$, where $T_{n}=: T_{n \bmod N}, N>1$. He also provided an algorithmic proof which has been used successfully, with modifications, by many authors [5,13,18,21,22]. In 1997, Jung and Kim [10] extended Bauschke's result to a Banach space and Shioji and Takahashi [19] improved Wittmann's result to a Banach space. Shimizu and Takahashi [18], in 1997, dealt with the above iteration scheme with the necessary conditions on the parameters and some additional conditions imposed on the mappings in a Hilbert space.

Very recently, O'Hara et al. [13] generalized the result of Shimizu and Takahashi [18] and proved a result of Bauschke [1] by imposing a new condition on the parameters, $\lim _{n \rightarrow \infty} \lambda_{n} / \lambda_{n+N}=1$, in the framework of a Hilbert space, which is not comparable with Bauschke's condition $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+N}\right|<\infty$.

In this paper, we establish the strong convergence of the iteration scheme $\left\{x_{n}\right\}$ defined by (1) for infinitely many nonexpansive mappings in a uniformly smooth Banach space with a weakly sequentially continuous duality mapping. The results extend results of O'Hara et al. [13] to a Banach space setting. Then we obtain a complementary result to a result of Jung and Kim [10] (also Bauschke [2]) for the same iteration scheme, with finitely many mappings. Our main results also improve and unify results in [12,18,20] in Hilbert spaces.

2. Preliminaries and lemmas

Let E be a real Banach space with norm $\|\cdot\|$ and let E^{*} be its dual. The value of $f \in E^{*}$ at $x \in E$ will be denoted by $\langle x, f\rangle$. When $\left\{x_{n}\right\}$ is a sequence in E, then $x_{n} \rightarrow x$
(respectively $x_{n} \rightharpoonup x, x_{n} \stackrel{*}{\rightharpoonup} x$) will denote strong (respectively weak, weak*) convergence of the sequence $\left\{x_{n}\right\}$ to x.

The norm of E is said to be Gâteaux differentiable (and E is said to be smooth) if

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\|x+t y\|-\|x\|}{t} \tag{2}
\end{equation*}
$$

exists for each x, y in its unit sphere $U=\{x \in E:\|x\|=1\}$. It is said to be uniformly Fréchet differentiable (and E is said to be uniformly smooth) if the limit in (2) is attained uniformly for $(x, y) \in U \times U$.

The (normalized) duality mapping J from E into the family of nonempty (by HahnBanach theorem) weak-star compact subsets of its dual E^{*} is defined by

$$
J(x)=\left\{f \in E^{*}:\langle x, f\rangle=\|x\|^{2}=\|f\|^{2}\right\}
$$

for each $x \in E$. It is single valued if and only if E is smooth. It is also well known that if E has a uniformly Fréchet differentiable norm, J is uniformly continuous on bounded subsets of E (cf. [4,6]). Suppose that J is single valued. Then J is said to be weakly sequentially continuous if for each $\left\{x_{n}\right\} \in E$ with $x_{n} \rightharpoonup x, J\left(x_{n}\right) \stackrel{*}{\rightharpoonup} J(x)$.

We need the following lemma for the proof of our main results, which was given in Jung and Morales [11]. It is actually Lemma 1 of Petryshyn [15] (also see Asplund [1]).

Lemma 1. Let X be a real Banach space and let J be the normalized duality mapping. Then for any given $x, y \in X$, we have

$$
\begin{equation*}
\|x+y\|^{2} \leqslant\|x\|^{2}+2\langle y, j(x+y)\rangle \tag{3}
\end{equation*}
$$

for all $j(x+y) \in J(x+y)$.
A Banach space E is said to satisfy Opial's condition [14] if for any sequence $\left\{x_{n}\right\}$ in E, $x_{n} \rightharpoonup x$ implies

$$
\limsup _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\limsup _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

for all $y \in E$ with $y \neq x$. We know that if E admits a weakly sequentially continuous duality mapping, then E satisfies Opial's condition; see [8].

Recall that a mapping T defined on a subset C of a Banach space E (and taking values in E) is said to be demiclosed if for any sequence $\left\{u_{n}\right\}$ in C the following implication holds:

$$
u_{n} \rightharpoonup u \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|T u_{n}-w\right\|=0
$$

implies

$$
u \in C \quad \text { and } \quad T u=w .
$$

The following lemma can be found in [7, p. 108].
Lemma 2. Let E be a reflexive Banach space which satisfies Opial's condition, let C be a nonempty closed convex subset of E, and suppose $T: C \rightarrow E$ is nonexpansive. Then the mapping $I-T$ is demiclosed on C, where I is the identity mapping.

Let C be a nonempty closed convex subset of E. A mapping Q of C into C is said to be a retraction if $Q^{2}=Q$. If a mapping Q of C into itself is a retraction, then $Q z=z$ for every $z \in R(Q)$, where $R(Q)$ is range of Q. Let D be a subset of C and let Q be a mapping of C into D. Then Q is said to be sunny if each point on the ray $\{Q x+t(x-Q x): t>0\}$ is mapped by Q back onto $Q x$, in other words,

$$
Q(Q x+t(x-Q x))=Q x
$$

for all $t \geqslant 0$ and $x \in C$. A subset D of C is said to be a sunny nonexpansive retract of C if there exists a sunny nonexpansive retraction of C onto D; for more details, see [6].

The following lemma is well known (cf. [6, p. 48]).
Lemma 3. Let C be a nonempty closed convex subset of a smooth Banach space E, D a subset of $C, J: E \rightarrow E^{*}$ the duality mapping of E, and $Q: C \rightarrow D$ a retraction. Then the following are equivalent:
(a) $\langle x-Q x, J(y-Q x)\rangle \leqslant 0$ for all $x \in C$ and $y \in D$;
(b) $\|Q z-Q w\|^{2} \leqslant\langle z-w, J(Q z-Q w)\rangle$ for all z and w in C;
(c) Q is both sunny and nonexpansive.

Finally, we need the following lemma.
Lemma 4 (Xu [21]). Let $\left\{\lambda_{n}\right\}$ be a sequence in $(0,1)$ that satisfies $\lim _{n \rightarrow \infty} \lambda_{n}=0$ and $\sum_{n=1}^{\infty} \lambda_{n}=\infty$. Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers that satisfies any one of the following conditions:
(a) For all $\varepsilon>0$, there exists an integer $N \geqslant 1$ such that for all $n \geqslant N$,

$$
a_{n+1} \leqslant\left(1-\lambda_{n}\right) a_{n}+\lambda_{n} \varepsilon ;
$$

(b) $a_{n+1} \leqslant\left(1-\lambda_{n}\right) a_{n}+\mu_{n}, n \geqslant 0$, where $\mu_{n} \geqslant 0$ satisfies $\lim _{n \rightarrow \infty} \mu_{n} / \lambda_{n}=0$;
(c) $a_{n+1} \leqslant\left(1-\lambda_{n}\right) a_{n}+\lambda_{n} c_{n}$, where $\lim \sup _{n \rightarrow \infty} c_{n} \leqslant 0$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.

3. Main results

First, we study the strong convergence result in a Banach space which generalizes Theorem 3.3 of O'Hara et al. [13].

Theorem 5. Let E be a uniformly smooth Banach space with a weakly sequentially continuous duality mapping $J: E \rightarrow E^{*}, C$ a nonempty closed convex subset of E, and $T_{n}: C \rightarrow C(n=1,2,3, \ldots)$ nonexpansive mappings such that

$$
F:=\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(T_{n}\right) \neq \emptyset .
$$

Assume that $V_{1}, \ldots, V_{N}: C \rightarrow C$ are nonexpansive mappings with the property: for all $k=1,2, \ldots, N$ and for any bounded subset \tilde{C} of C, there holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{x \in \tilde{C}}\left\|T_{n} x-V_{k}\left(T_{n} x\right)\right\|=0 \tag{4}
\end{equation*}
$$

Let $\left\{\lambda_{n}\right\}$ be a sequence in $(0,1)$ which satisfies $\lim _{n \rightarrow \infty} \lambda_{n}=0$ and $\sum_{n=1}^{\infty} \lambda_{n}=\infty$. For any a and x_{0} in C, define

$$
x_{n+1}=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T_{n+1} x_{n}, \quad n \geqslant 0 .
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $Q_{F(V)} a$, where Q is a sunny nonexpansive retraction of C onto $F(V):=\bigcap_{k=1}^{N} \operatorname{Fix}\left(V_{k}\right)$.

Proof. First, we note that assumption (4) implies that $\bigcap_{k=1}^{N} \operatorname{Fix}\left(V_{k}\right) \supset F$. Note that $\left\{x_{n}\right\}$ is bounded since $F \neq \emptyset$. In fact, by induction, we show that $\left\|x_{n}-z\right\| \leqslant \max \left\{\left\|x_{0}-z\right\|\right.$, $\|a-z\|\}$ for all $n \geqslant 0$ and all $z \in F$. The result is clearly true for $n=0$. Suppose the result is true for n. Let $z \in F$. Then by the nonexpansivity of T_{n+1},

$$
\begin{aligned}
\left\|x_{n+1}-z\right\|= & \left\|\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T_{n+1} x_{n}-z\right\| \\
\leqslant & \lambda_{n+1}\|a-z\|+\left(1-\lambda_{n+1}\right)\left\|T_{n+1} x_{n}-z\right\| \\
\leqslant & \lambda_{n+1}\|a-z\|+\left(1-\lambda_{n+1}\right)\left\|x_{n}-z\right\| \\
\leqslant & \lambda_{n+1} \max \left\{\left\|x_{0}-z\right\|,\|a-z\|\right\} \\
& +\left(1-\lambda_{n+1}\right) \max \left\{\left\|x_{0}-z\right\|,\|a-z\|\right\} \\
= & \max \left\{\left\|x_{0}-z\right\|,\|a-z\|\right\} .
\end{aligned}
$$

Moreover, since for all $n \geqslant 0$ and for any $z \in F$,

$$
\begin{aligned}
\left\|T_{n+1} x_{n}\right\| & \leqslant\left\|T_{n+1} x_{n}-z\right\|+\|z\| \leqslant\left\|x_{n}-z\right\|+\|z\| \\
& \leqslant \max \left\{\left\|x_{0}-z\right\|,\|a-z\|\right\}+\|z\|,
\end{aligned}
$$

it follows that $\left\{T_{n+1} x_{n}\right\}$ is bounded. Since

$$
\left\|x_{n+1}-T_{n+1} x_{n}\right\|=\lambda_{n+1}\left\|a-T_{n+1} x_{n}\right\| \leqslant \lambda_{n+1}\left(\|a\|+\left\|T_{n+1} x_{n}\right\|\right) \leqslant \lambda_{n+1} M
$$

for some M, we also have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-T_{n+1} x_{n}\right\|=0 \tag{5}
\end{equation*}
$$

Let a subsequence $\left\{T_{n_{j}+1} x_{n_{j}}\right\}$ of $\left\{T_{n+1} x_{n}\right\}$ be such that

$$
\begin{aligned}
& \lim _{j \rightarrow \infty}\left\langle a-Q_{F(V)} a, J\left(x_{n_{j}+1}-Q_{F(V)} a\right)\right\rangle \\
& \quad=\limsup _{n \rightarrow \infty}\left\langle a-Q_{F(V)} a, J\left(x_{n+1}-Q_{F(V)} a\right)\right\rangle
\end{aligned}
$$

and $T_{n_{j}+1} x_{n_{j}} \rightharpoonup p$ for some $p \in C$. By assumption, we have for any $k=1,2, \ldots, N$ and for $\tilde{C}=\left\{x_{n}\right\}$,

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \sup _{x \in \tilde{C}}\left\|T_{n+1} x-V_{k}\left(T_{n+1} x\right)\right\| \geqslant \limsup _{n \rightarrow \infty}\left\|T_{n+1} x_{n}-V_{k}\left(T_{n+1} x_{n}\right)\right\| \\
& \geqslant \limsup _{j \rightarrow \infty}\left\|T_{n_{j}+1} x_{n_{j}}-V_{k}\left(T_{n_{j}+1} x_{n_{j}}\right)\right\|,
\end{aligned}
$$

and so

$$
\lim _{j \rightarrow \infty}\left\|T_{n_{j}+1} x_{n_{j}}-V_{k}\left(T_{n_{j}+1} x_{n_{j}}\right)\right\|=0 \quad \text { for all } k=1,2, \ldots, N
$$

Thus, by Lemma 2, we have $p \in \operatorname{Fix}\left(V_{k}\right)$ for $k=1,2, \ldots, N$, that is, $p \in \bigcap_{k=1}^{N} \operatorname{Fix}\left(V_{k}\right)$.
On the other hand, since E is uniformly smooth, F is a sunny nonexpansive retract of C (cf. [6, p. 49]). Thus, by weakly sequentially continuity of duality mapping J and Lemma 3, we have

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left\langle a-Q_{F(V)} a, J\left(T_{n+1} x_{n}-Q_{F(V)} a\right)\right\rangle \\
& \quad=\lim _{j \rightarrow \infty}\left\langle a-Q_{F(V)} a, J\left(T_{n_{j}+1} x_{n_{j}}-Q_{F(V)} a\right)\right\rangle \\
& \quad=\left\langle a-Q_{F(V)} a, J\left(p-Q_{F(V)} a\right)\right\rangle \leqslant 0 . \tag{6}
\end{align*}
$$

This together with (5) implies that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle a-Q_{F(V)} a, J\left(x_{n+1}-Q_{F(V)} a\right)\right\rangle \leqslant 0 . \tag{7}
\end{equation*}
$$

Since $\left(1-\lambda_{n+1}\right)\left(T_{n+1} x_{n}-Q_{F(V)} a\right)=\left(x_{n+1}-Q_{F(V)} a\right)-\lambda_{n+1}\left(a-Q_{F(V)} a\right)$, by using the inequality (3) in Lemma 1, we have

$$
\begin{align*}
\left\|x_{n+1}-Q_{F(V)} a\right\|^{2}= & \left\|\left(1-\lambda_{n+1}\right)\left(T_{n+1} x_{n}-Q_{F(V)} a\right)+\lambda_{n+1}\left(a-Q_{F(V)} a\right)\right\|^{2} \\
\leqslant & \left(1-\lambda_{n+1}\right)^{2}\left\|T_{n+1} x_{n}-Q_{F(V)} a\right\|^{2} \\
& +2 \lambda_{n+1}\left\langle a-Q_{F(V)} a, J\left(x_{n+1}-Q_{F(V)} a\right)\right\rangle \\
\leqslant & \left(1-\lambda_{n+1}\right)\left\|x_{n}-Q_{F(V)} a\right\|^{2} \\
& +2 \lambda_{n+1}\left\langle a-Q_{F(V)} a, J\left(x_{n+1}-Q_{F(V)} a\right)\right\rangle . \tag{8}
\end{align*}
$$

Now, let $\varepsilon>0$ be arbitrary. Then by (7), there exists N_{ε} such that

$$
\left\langle a-Q_{F(V)} a, J\left(x_{n+1}-Q_{F(V)} a\right)\right\rangle \leqslant \frac{\varepsilon}{2} \quad \text { for all } n \geqslant N_{\varepsilon}
$$

Thus, from (8), we have

$$
\begin{equation*}
\left\|x_{n+1}-Q_{F(V)} a\right\|^{2} \leqslant\left(1-\lambda_{n+1}\right)\left\|x_{n}-Q_{F(V)} a\right\|^{2}+\lambda_{n+1} \varepsilon . \tag{9}
\end{equation*}
$$

Putting $a_{n}=\left\|x_{n}-Q_{F(V)} a\right\|^{2}$, we have from (9),

$$
a_{n+1} \leqslant\left(1-\lambda_{n+1}\right) a_{n}+\lambda_{n+1} \varepsilon
$$

It follows from Lemma 4 that $a_{n} \rightarrow 0$ and hence $\left\{x_{n}\right\}$ converges strongly to $Q_{F(V)} a$ This completes the proof.

As a direct consequence, we have the following

Corollary 6 (O'Hara et al. [13, Theorem 3.3]). Let H be a Hilbert space, C a nonempty closed convex subset of H, and $T_{n}: C \rightarrow C(n=1,2,3, \ldots)$ nonexpansive mappings such that

$$
F:=\bigcap_{n=1}^{\infty} \operatorname{Fix}\left(T_{n}\right) \neq \emptyset .
$$

Assume that $V_{1}, \ldots, V_{N}: C \rightarrow C$ are nonexpansive mappings with the property: for all $k=1,2, \ldots, N$ and for any bounded subset \tilde{C} of C, there holds

$$
\lim _{n \rightarrow \infty} \sup _{x \in \tilde{C}}\left\|T_{n} x-V_{k}\left(T_{n} x\right)\right\|=0
$$

Let $\left\{\lambda_{n}\right\}$ be a sequence in $(0,1)$ which satisfies $\lim _{n \rightarrow \infty} \lambda_{n}=0$ and $\sum_{n=1}^{\infty}=\lambda_{n}=\infty$. For any a and x_{0} in C, define

$$
x_{n+1}=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T_{n+1} x_{n}, \quad n \geqslant 0 .
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $P_{F(V)} a$, where P is the nearest point projection of C onto $F(V):=\bigcap_{k=1}^{N} \operatorname{Fix}\left(V_{k}\right)$.

Proof. Note that the nearest point projection P of C onto F is a sunny nonexpansive retraction. Thus the result follows from Theorem 5.

As in [13], by using Theorem 5 together with Lemmas 3.1 and 3.2 of [13] (Lemma 1 of [18]), we can also obtain the following result.

Corollary 7 (O'Hara et al. [13, Corollary 3.4]). Let E be a Banach space, C a nonempty closed convex subset of E, and $T, S: C \rightarrow C$ nonexpansive mappings with fixed points.
(a) $\operatorname{Set} T_{n}(x)=\frac{1}{n} \sum_{j=0}^{n-1} T^{j} x$ for $n \geqslant 1$ and $x \in C$. For $x_{0}, a \in C$, define

$$
x_{n+1}=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T_{n+1} x_{n}, \quad n \geqslant 0 .
$$

If E is a uniformly convex and uniformly smooth Banach space with a weakly sequentially continuous duality mapping, then the sequence $\left\{x_{n}\right\}$ converges strongly to $Q_{F} a$, where Q is a sunny nonexpansive retraction of C onto $F:=\operatorname{Fix}(T)$.
(b) Set $T_{n}(x)=\frac{2}{n(n+1)} \sum_{k=0}^{n-1} \sum_{i+j=k} S^{i} T^{j}(x)$ for $n \geqslant$ and $c \in C$, define

$$
x_{n+1}=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T_{n+1} x_{n}, \quad n \geqslant 0 .
$$

Suppose that $S T=T S$ and $\operatorname{Fix}(S) \cap \operatorname{Fix}(T) \neq \emptyset$. If E is a Hilbert space H, then the sequence $\left\{x_{n}\right\}$ converges strongly to $P_{F(S T)} a$, where P is the nearest point projection of C onto $F(S T):=\operatorname{Fix}(S) \cap \operatorname{Fix}(T)$.

Remark 8. (1) Corollary 7(a) extends Corollary 3.4(a) in [13] to a Banach space setting.
(2) Theorem 1 of Shimizu and Takahashi [18] is just Corollary 7(b).

Now we consider the results developed by Bauschke [2] (also Jung and Kim [10]), in which he defined the following control conditions on the parameters $\left\{\lambda_{n}\right\}$:
(B1) $\lim _{n \rightarrow \infty} \lambda_{n}=0$;
(B2) $\sum_{n=1}^{\infty} \lambda_{n}=\infty$; equivalently $\prod_{n=1}^{\infty}\left(1-\lambda_{n}\right)=0$;
(B3) $\sum_{n=1}^{\infty}\left|\lambda_{n}-\lambda_{n+N}\right|<\infty$.
We will replace (B3) by the condition
(N3) $\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{\lambda_{n}+N}=1$.
This condition also improves Lions' condition [12],
(L3) $\lim _{n \rightarrow \infty} \frac{\lambda_{n}-\lambda_{n+1}}{\lambda_{n+1}^{2}}=0$.
Remark 9. Both (N3) and (B3) cover the natural candidate of $\lambda_{n}=\frac{1}{n+1}$, but (L3) does not. However, (B3) and (N3) are independent of each other. For more details, see [21].

We will give a complementary result to Theorem 1 of Jung and Kim [10] (also Theorem 3.1 of Bauschke [2]) with condition (B3) replaced by condition (N3).

We consider N mappings $T_{1}, T_{2}, \ldots, T_{N}$. For $n>N$, set $T_{n}:=T_{n \bmod N}$, where $n \bmod N$ is defined as follows: if $n=k N+l, 0 \leqslant l<N$, then

$$
n \bmod N:= \begin{cases}l & \text { if } l \neq 0, \\ N & \text { if } l=0\end{cases}
$$

Theorem 10. Let E be a uniformly smooth Banach space with a weakly sequentially continuous duality mapping $J: E \rightarrow E^{*}$ and C a nonempty closed convex subset of E. Let T_{1}, \ldots, T_{N} be nonexpansive mappings from C into itself with $F:=\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$ nonempty and

$$
F=\operatorname{Fix}\left(T_{N} \ldots T_{1}\right)=\operatorname{Fix}\left(T_{1} T_{N} \ldots T_{3} T_{2}\right)=\cdots=\operatorname{Fix}\left(T_{N-1} T_{N-2} \ldots T_{1} T_{N}\right)
$$

Let $\left\{\lambda_{n}\right\}$ be a sequence in $(0,1)$ which satisfies
(N1) $\lim _{n \rightarrow \infty} \lambda_{n}=0$;
(N2) $\sum_{n=1}^{\infty} \lambda_{n}=\infty$;
(N3) $\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{\lambda_{n}+N}=1$.
For any a and x_{0} in C, define

$$
x_{n+1}=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T_{n+1} x_{n}, \quad n \geqslant 0 .
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to Q_{F} a, where Q is a sunny nonexpansive retraction of C onto F.

Proof. We follows the same idea as in the proof of Theorem 1 in [10]. So we just sketch it. As in proof of Theorem 5, we can obtain the following facts and so the proofs are omitted:
(1) $\left\|x_{n}-z\right\| \leqslant \max \left\{\left\|x_{0}-z\right\|,\|a-z\|\right\}$ for all $n \geqslant 0$ and for all $z \in F$;
(2) $\left\{x_{n}\right\}$ is bounded;
(3) $\left\{T_{n+1} x_{n}\right\}$ is bounded;
(4) $x_{n+1}-T_{n+1} x_{n} \rightarrow 0$.

Since (N3) is different from the condition (A3) in [2] (that is, (B3) above), we give the details of proof for $x_{n+N}-x_{n} \rightarrow 0$ as in [13]. By (3) above, there exists a constant $L>0$ such that for all $n \geqslant 1$,

$$
\left\|z-T_{n+1} x_{n}\right\| \leqslant L
$$

Since for all $n \geqslant 1, T_{n+N}=T_{n}$, we have

$$
\begin{aligned}
\left\|x_{n+N}-x_{n}\right\|= & \|\left(\lambda_{n+N}-\lambda_{n}\right)\left(z-T_{n+N} x_{n+N-1}\right) \\
& +\left(1-\lambda_{n+N}\right)\left(T_{n} x_{n+N-1}-T_{n} x_{n-1}\right) \| \\
\leqslant & L\left|\lambda_{n+N}-\lambda_{n}\right|+\left(1-\lambda_{n+N}\right)\left\|x_{n+N-1}-x_{n-1}\right\| \\
= & \left(1-\lambda_{n+N}\right)\left\|x_{n+N-1}-x_{n-1}\right\|+\lambda_{n+N} L\left|1-\frac{\lambda_{n}}{\lambda_{n+N}}\right| .
\end{aligned}
$$

By (N3), we have $\lim _{n \rightarrow \infty} L\left|1-\frac{\lambda_{n}}{\lambda_{n+N}}\right|=0$, and so by Lemma 4,

$$
x_{n+N}-x_{n} \rightarrow 0 .
$$

By the proof in [2], we also have

$$
\begin{equation*}
x_{n}-T_{n+N} \ldots T_{n+1} x_{n} \rightarrow 0 \tag{10}
\end{equation*}
$$

Finally we prove the strong convergence of $\left\{x_{n}\right\}$. Let a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ be such that

$$
\lim _{j \rightarrow \infty}\left\langle a-Q_{F} a, J\left(x_{n_{j}+1}-Q_{F} a\right)\right\rangle=\limsup _{n \rightarrow \infty}\left\langle a-Q_{F} a, J\left(x_{n+1}-Q_{F} a\right)\right\rangle .
$$

We assume (after passing to another subsequence if necessary) that $n_{j}+1 \bmod N=i$ for some $i \in\{1, \ldots, N\}$ and that $x_{n_{j}+1} \rightharpoonup x$. From (10), it follows that $\lim _{j \rightarrow \infty} \| x_{n_{j}+1}-$ $T_{i+N} \ldots T_{i+1} x_{n_{j}+1} \|=0$. Hence, by Lemma 2, we have $x \in \operatorname{Fix}\left(T_{i+N} \ldots T_{i+1}\right)=F$.

On the other hand, since E is uniformly smooth, F is a sunny nonexpansive retract of C (cf. [6, p. 49]). Thus, by weakly sequentially continuity of duality mapping J and Lemma 3, we have

$$
\begin{align*}
\limsup _{n \rightarrow \infty}\left\langle a-Q_{F} a, J\left(x_{n+1}-Q_{F} a\right)\right\rangle & =\lim _{j \rightarrow \infty}\left\langle a-Q_{F} a, J\left(x_{n_{j}+1}-Q_{F} a\right)\right\rangle \\
& =\left\langle a-Q_{F} a, J\left(x-Q_{F} a\right)\right\rangle \leqslant 0 . \tag{11}
\end{align*}
$$

Since $\left(1-\lambda_{n+1}\right)\left(T_{n+1} x_{n}-Q_{F} a\right)=\left(x_{n+1}-Q_{F} a\right)-\lambda_{n+1}\left(a-Q_{F} a\right)$, by Lemma 1, we have

$$
\begin{align*}
\left\|x_{n+1}-Q_{F} a\right\|^{2} \leqslant & \left(1-\lambda_{n+1}\right)^{2}\left\|T_{n+1} x_{n}-Q_{F} a\right\|^{2} \\
& +2 \lambda_{n+1}\left\langle a-Q_{F} a, J\left(x_{n+1}-Q_{F} a\right)\right\rangle \\
\leqslant & \left(1-\lambda_{n+1}\right)\left\|x_{n}-Q_{F} a\right\|^{2} \\
& +2 \lambda_{n+1}\left\langle a-Q_{F} a, J\left(x_{n+1}-Q_{F} a\right)\right\rangle . \tag{12}
\end{align*}
$$

Now, let $\varepsilon>0$ be arbitrary. Then by (11), there exists N_{ε} such that

$$
\left\langle a-Q_{F} a, J\left(x_{n+1}-Q_{F} a\right)\right\rangle \leqslant \frac{\varepsilon}{2} \quad \text { for all } n \geqslant N_{\varepsilon}
$$

Thus, from (12), we have

$$
\left\|x_{n+1}-Q_{F} a\right\|^{2} \leqslant\left(1-\lambda_{n+1}\right)\left\|x_{n}-Q_{F} a\right\|^{2}+\lambda_{n+1} \varepsilon
$$

Thus, it follows from Lemma 4 that $\left\{x_{n}\right\}$ converges strongly to $Q_{F} a$. This completes the proof.

As an immediate consequence, we have the following
Corollary 11 (O'Hara et al. [13, Theorem 4.1]). Let H be a Hilbert space, C a nonempty closed convex subset of H, and T_{1}, \ldots, T_{N} nonexpansive mappings from C into itself with $F:=\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$ nonempty and

$$
F=\operatorname{Fix}\left(T_{N} \ldots T_{1}\right)=\operatorname{Fix}\left(T_{1} T_{N} \ldots T_{3} T_{2}\right)=\cdots=\operatorname{Fix}\left(T_{N-1} T_{N-2}-T_{1} T_{N}\right)
$$

Let $\left\{\lambda_{n}\right\}$ be a sequence in $(0,1)$ which satisfies (N1)-(N3) in Theorem 2. For any a and x_{0} in C, define

$$
x_{n+1}=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T_{n+1} x_{n}, \quad n>0 .
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $P_{F} a$, where P is the nearest point projection of C onto F.

The following is a complementary result of the result of Wittmann [20].
Corollary 12. Let H be a Hilbert space, C a nonempty closed convex subset of H, and T a nonexpansive mapping from C into itself with $\operatorname{Fix}(T) \neq \emptyset$. Let $\left\{\lambda_{n}\right\}$ be a sequence in $(0,1)$ which satisfies $(\mathrm{N} 1)-(\mathrm{N} 3)$ in Theorem 10. For any a and x_{0} in C, define (with $N=1$)

$$
x_{n+1}=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T x_{n}, \quad n \geqslant 0 .
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $P_{F} a$, where P is the nearest point projection of C onto F.

Let D be a subset of a Banach space E. Recall that a mapping $T: D \rightarrow E$ is said to be firmly nonexpansive if for each x and y in D, the convex function $\phi:[0,1] \rightarrow[0, \infty)$ defined by

$$
\phi(s)=\|(1-s) x+s T x-((1-s) y+s T y)\|
$$

is nonincreasing. Since ϕ is convex, it is easy to check that a mapping $T: D \rightarrow E$ is firmly nonexpansive if and only if

$$
\|T x-T y\| \leqslant\|(1-t)(x-y)+t(T x-T y)\|
$$

for each x and y in D and $t \in[0,1]$. It is clear that every firmly nonexpansive mapping is nonexpansive (cf. [6,7]).

The following result extends a Lions-type iteration scheme [12] with the condition (N3) to a Banach space setting.

Corollary 13. Let E be a uniformly smooth Banach space with a weakly sequentially continuous duality mapping $J: E \rightarrow E^{*}$ and C a nonempty closed convex subset of E. Let T_{1}, \ldots, T_{N} be firmly nonexpansive mappings from C into itself with $F:=\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$ nonempty and

$$
F=\operatorname{Fix}\left(T_{N} \ldots T_{1}\right)=\operatorname{Fix}\left(T_{1} T_{N} \ldots T_{3} T_{2}\right)=\cdots=\operatorname{Fix}\left(T_{N-1} T_{N-2} \ldots T_{1} T_{N}\right)
$$

Let $\left\{\lambda_{n}\right\}$ be a sequence in $[0,1)$ which satisfies (N1)-(N3) in Theorem 10. For any a and x_{0} in C, define

$$
x_{n+i}=\lambda_{n+1} a+\left(1-\lambda_{n+1}\right) T_{n+1} x_{n}, \quad n \geqslant 0 .
$$

Then the sequence $\left\{x_{n}\right\}$ converges strongly to $Q_{F} a$, where Q is a sunny nonexpansive retraction of C onto F.

Remark 14. (1) In Hilbert space, Lions [12, Théorèm 4] had used
(L1) $\lim _{n \rightarrow \infty} \lambda_{n}=0$;
(L2) $\sum_{k=1}^{\infty} \lambda_{k N+i}=\infty$ for all $i=0, \ldots, N-1$, which is more restrictive than (N2); and
(L3) ${ }^{\prime} \lim _{k \rightarrow \infty} \frac{\sum_{i=1}^{N}\left|\lambda_{k N+i}-\lambda_{(k-1) N+i}\right|}{\left(\sum_{i}^{N} \lambda_{k N+i}\right)^{2}}=0$ in place of (B3).
(2) In general, (B3) and (L3)' are independent, even when $N=1$. For more details, see [2].

Acknowledgment

The author thanks the referee for his/her valuable comments and suggestions for improving this paper.

References

[1] E. Asplund, Positivity of duality mappings, Bull. Amer. Math. Soc. 73 (1967) 200-203.
[2] H.H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space, J. Math. Anal. Appl. 202 (1996) 150-159.
[3] F.E. Browder, Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967) 82-90.
[4] J. Diestel, Geometry of Banach Spaces, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin, 1975.
[5] F. Deutsch, I. Yamada, Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim. 19 (1998) 33-56.
[6] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Dekker, New York, 1984.
[7] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., vol. 28, Cambridge Univ. Press, Cambridge, UK, 1990.
[8] J.P. Gossez, E.L. Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972) 565-573.
[9] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967) 957-961.
[10] J.S. Jung, T.H. Kim, Convergence of approximate sequences for compositions of nonexpansive mappings in Banach spaces, Bull. Korean Math. Soc. 34 (1997) 93-102.
[11] J.S. Jung, C. Morales, The Mann process for perturbed m-accretive operators in Banach spaces, Nonlinear Anal. 46 (2001) 231-243.
[12] P.L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Sér A-B Paris 284 (1977) 13571359.
[13] J.G. O'Hara, P. Pillay, H.K. Xu, Iterative approaches to finding nearest common fixed points of nonexpansive mappings in Hilbert spaces, Nonlinear Anal. 54 (2003) 1417-1426.
[14] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597.
[15] W.V. Petryshn, A characterization of strictly convexity of Banach spaces and other uses of duality mappings, J. Funct. Anal. 6 (1970) 282-291.
[16] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287-292.
[17] S. Reich, Approximating fixed points of nonexpansive mappings, Panamer. Math. J. 4 (1994) 486-491.
[18] T. Shimizu, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997) 71-83.
[19] N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997) 3641-3645.
[20] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 59 (1992) 486-491.
[21] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659-678.
[22] I. Yamada, N. Ogura, Y. Yamashita, K. Sakaniwa, Quadratic approximation of fixed points of nonexpansive mappings in Hilbert spaces, Numer. Funct. Anal. Optim. 19 (1998) 165-190.

[^0]: 4. This paper was supported by the Dong-A University Research Fund in 2002.

 E-mail address: jungjs@mail.donga.ac.kr.

