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Abstract

The iteration scheme for families of nonexparsmappings, essentially due to Halpern [Bull.
Amer. Math. Soc. 73 (1967) 957-961], is established in a Banach space. The main theorem extends
a recent result of O’'Hara et al. [NonlineAnal. 54 (2003) 1417-1426] to aaBach space setting.

For the same iteration scheme, with finitely many mappings, a complementary result to a result of
Jung and Kim [Bull. Korean Math. Soc. 34 (1997) 93-102] (also Bauschke [J. Math. Anal. Appl.
202 (1996) 150-159)) is ohined by imposing other condition on the sequence of parameters. Our
results also improve results in [C. R. Acad. Sci. Sér A-B Paris 284 (1977) 1357-1359; J. Math. Anal.
Appl. 211 (1997) 71-83; Arch. Math. 59 (1992) 486-491] in framework of a Hilbert space.
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1. Introduction

Let C be a nonempty closed convex subset of a Banach spaud letTy, ..., Ty be
nonexpansive mappings fro@into itself (recall that a mapping : C — C is nonexpan-
siveif |[Tx —Ty| < |lx —y| forall x, y € C).
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We consider the iteration scheme: 8, nonexpansive mappindgs, 7», ..., Ty and
a,xpeC,

Xp+1= Ap+1a + 1- A+ Tht1Xn, n2 0. (1)

In 1967, Halpern [9] firstly introduced the iteration scheme (1)jfer 0, N = 1 (thatis, he
considered only one mappirfg); see also Browder [3]. He pointed out that the conditions
lim,— o0 An =0 and)_;2 ; 1, = oo are necessary in the sensatthif the iteration scheme
(1) converges to a fixed point @f, then these conditions must be satisfied. Ten years later,
Lions [12] investigated the general edig Hilbert space under the conditions Jimy A,
=0, ij‘;l A =00 and lim,_ oo (A, — A,,+1)/A§+1 =0 on the parameters. However, Li-
ons’ conditions on the parameters were more restrictive and did not include the natural
candidate., = 1/n + 1. In 1980, Reich [16] gave the iteration scheme (1)No& 1 in the
case wherE is uniformly smooth and,, =n=* withO <a < 1.

In 1992, Wittmann [20] studied the iteration scheme (1)Xo£ 1 in the case whe®
is a Hilbert space anfh, } satisfies

(e.¢] (e.¢]

0<A, <1, lim A, =0, Ay =00 and [An41 — An| < 00.
In 1994, Reich [17] obtained a strong convergence of the iterates (1Y forl with two
necessary and decreasing conditions on patensiéor convergence in the case whén
is uniformly smooth with a weakly comuous duality mapping. 14996, Bauschke [2]
improves results of Wittmann to finitely mg mappings with additional condition on the
parameter$ . ; [A, — Anyn| < 00, WhereT,, =: T,modn, N > 1. He also provided an
algorithmic proof which has been used successfully, with modifications, by many authors
[5,13,18,21,22].1n 1997, Jung and Kim [10] extended Bauschke’s result to a Banach space
and Shioji and Takahashi [19] improved Wittmann's result to a Banach space. Shimizu
and Takahashi [18], in 1997, dealt withetlabove iteration scheme with the necessary
conditions on the parameters and some additional conditions imposed on the mappings in
a Hilbert space.

Very recently, O'Hara et al. [13] generalizéltk result of Shimizu and Takahashi [18]
and proved a result of Bauschke [1] by imposing a new condition on the parameters,
liM,— 00 An/An+n = 1, in the framework of a Hilbert e, which is not comparable with
Bauschke’s conditio} "2 ; |4, — Anyn| < 00.

In this paper, we establish the strong convergence of the iteration s¢hghtefined by
(1) for infinitely many nonexpansive mappings in a uniformly smooth Banach space with
a weakly sequentially continuous duality mapping. The results extend results of O'Hara et
al. [13] to a Banach space setting. Then we abtacomplementary result to a result of
Jung and Kim [10] (also Bauschke [2]) for the same iteration scheme, with finitely many
mappings. Our main results also improve and unify results in [12,18,20] in Hilbert spaces.

2. Preliminariesand lemmas

Let E be a real Banach space with notm || and let E* be its dual. The value of
f € E* atx € E will be denoted by(x, f). When{x,} is a sequence ik, thenx, — x
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(respectivelyc, — x, x, A x) will denote strong (respectively weak, w&akonvergence
of the sequencex,} to x.
The norm ofE is said to beGateaux differentiabléandE is said to besmooth)f
im llx + eyl —lixll o)
t—0 t
exists for eachy, y in its unit spherel/ = {x € E: ||x| = 1}. It is said to beuniformly
Fréchet differentiabléand E is said to beuniformly smooth)f the limit in (2) is attained
uniformly for (x,y) e U x U.
The (normalizedyluality mappingJ from E into the family of nonempty (by Hahn—
Banach theorem) weak-star compact subsets of its Btigdd defined by

J)y={feE* (x, )= IxII*=IfI?}

for eachx € E. Itis single valued if and only i¥ is smooth. It is also well known that i
has a uniformly Fréchet differentiable norvhis uniformly continuous on bounded subsets
of E (cf. [4,6]). Suppose that is single valued. Thed is said to beveakly sequentially
continuousf for each{x,} € E with x,, — x, J (x) A J(x).

We need the following lemma for the proof of our main results, which was given in Jung
and Morales [11]. It is actually Lemma 1 of Petryshyn [15] (also see Asplund [1]).

Lemma 1. Let X be a real Banach space and létbe the normalized duality mapping.
Then for any given, y € X, we have

e+ y1I2 < x4+ 2{y, j (x + ) 3
forall j(x +y) e J(x +y).
A Banach spac# is said to satisfyDpial’s condition[14] if for any sequencéx, } in E,
x, — x implies

limsup|jx, — x| < limsup|lx, — yl|
n—o0 n—0o0
for all y € E with y # x. We know that if E admits a weakly sequentially continuous
duality mapping, therk satisfies Opial’s condition; see [8].
Recall that a mappin@ defined on a subsét of a Banach spacg (and taking values
in E) is said to bedemiclosedf for any sequencgu,} in C the following implication
holds:

u, —u and nﬂ)ryo I Tu, —w||=0
implies
ueC and Tu=w.
The following lemma can be found in [7, p. 108].
Lemma 2. Let E be a reflexive Banach space whicttistes Opial’s condition, leC be

a nonempty closed convex subsekofind supposé& : C — E is honexpansive. Then the
mapping/ — T is demiclosed o€, where/ is the identity mapping.
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Let C be a nonempty closed convex subsetzofA mappingQ of C into C is said to
be aretractionif 02 = Q. If a mappingQ of C into itself is a retraction, the@z = z for
everyz € R(Q), whereR(Q) isrange ofQ. Let D be a subset of and letQ be a mapping
of C into D. ThenQ is said to besunnyif each point on the rayQx + ¢ (x — Qx): ¢t > 0}
is mapped byQ back ontoQx, in other words,

0(Qx+1(x — Qx)) = 0x

forall r > 0 andx € C. A subsetD of C is said to be @unny nonexpansive retract C if
there exists a sunny nonexpansive retractio@ @ito D; for more details, see [6].
The following lemma is well known (cf. [6, p. 48]).

Lemma 3. Let C be a nonempty closed convex subset of a smooth Banach Epdze
subset ofC, J: E — E* the duality mapping of, andQ : C — D aretraction. Then the
following are equivalent

@) (x—0x,J(y— 0x))<O0forall x e C andy € D;
(b) 10z — Qw|?> < (z — w, J(Qz — Qw)) forall zandw in C;
(c) Q is both sunny and nonexpansive.

Finally, we need the following lemma.

Lemma 4 (Xu [21]). Let{A,} be a sequence if0, 1) that satisfiedim,,_, . A, = 0 and
ij‘;l An = 00. Let{a,} be a sequence of nonnegative real numbers that satisfies any one
of the following conditions
(a) Forall ¢ > 0, there exists an integgy > 1 such that forallz > N,
an+1 < A —Arp)ay + Ane;
(b) ant1 < (1 —An)an + pn, n >0, wherep,, > 0 satisfiedim, ., o ttn/An = 0;
(©) ant1 < (A —Ary)ay + rycn, Wherelimsup,_, o, ¢n < 0.

Thenlim, - a, =0.

3. Main results

First, we study the strong convergence resul Banach space which generalizes The-
orem 3.3 of O'Hara et al. [13].

Theorem 5. Let E be a uniformly smooth Banach space with a weakly sequentially con-
tinuous duality mapping/ : E — E*, C a nonempty closed convex subsetEfand
T,:C— C (n=1,2,3,...) nonexpansive mappings such that

F:= ﬂ Fix(T;,) 9.

n=1



J.S. Jung / J. Math. Anal. Appl. 302 (2005) 509-520 513

Assume thavs, ..., Vy :C — C are nonexpansive mappings with the propeftyr all
k=1,2,..., N and for any bounded subs€tof C, there holds

lim sup|| T,x — Vi(Tx)| =0. (4)
"% xeC

Let {1,} be a sequence i, 1) which satisfiedim,—.oc 1, =0and ), ; 1, = co. For
any a andxg in C, define
Xp4+1=Apt1a + a- )\n—i-l) Thy1xn, n= 0.

Then the sequende,} converges strongly t@ r(yvya, whereQ is a sunny nonexpansive
retraction of C onto F (V) := N, Fix(Vy).

Proof. First, we note that assumption (4) implies thaﬁ’zl Fix(Vy) D F. Note that{x,}
is bounded sincd& # @. In fact, by induction, we show thatx, — z|| < max{|lxo — z||,
la —z||} foralln > 0 and allz € F. The result is clearly true for = 0. Suppose the result
is true forn. Letz € F. Then by the nonexpansivity @f, 41,
lxn+1 —zll = H)LnJrla + Q= A D) Toyrxn — ZH

S Antlla —zll + X = Ang D1 T2 xn — 2l

< Mpalla — zll + (1 = Apg 1) [lxn — 2|l

< Anprmax{|lxo —zl|, lla — 2|}

+ (1= Ans) max{flxo — zll, fla — z}
=max{||xo — zll, la — z|}.

Moreover, since for alk > 0 and for any; € F,

I Tnr1xn — 2l + Nzl < llxn = 2l + 2]l

max{ ||lxo — zll, lla — zlI} + llzll,

I Tn+1xn |l

NN

it follows that{7},+1x,} is bounded. Since

I2%n+1 = Tnta2n |l = Ansalla — Tugaxnll < A (lall + 1 Tugaxnll) < ApraM

for someM, we also have
lim lxn+1 — Tat1xal = 0. 5)
n—>oo
Let a subsequendd;,; +1x,;} of {7, +1x,} be such that

lim (a — Qrwya, J(xnj+1 — QF(V)")>

j—o0

=limsupla — Qrvya, J (xns1— Qr(v)a))

n—oo

and Tp;41Xn; = p for somep € C. By assumption, we have for aiky=1,2,..., N and
for C = {x,},
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0= lim sup| Tht1x — Vi(Tys1x) || = limsup| Taxn — Vi(Tgrxn) ||
ni}ooxeé n—00

> lim sup|| Ty 4150, — Vi (T 1%n;)

j—o0

bl

and so

Lmoo | T 1%n; — Vi(Tn;41x0,)| =0 forallk=1,2,....N.

J

Thus, by Lemma 2, we havee Fix(V;) fork=1,2,..., N, thatis,p € ()}, Fix(Vy).

On the other hand, sincg is uniformly smooth,F is a sunny nonexpansive retract
of C (cf. [6, p. 49]). Thus, by weakly sequentially continuity of duality mappih@nd
Lemma 3, we have

limsupla — Qrvya. J (Ths1xn — Qr(v)a))

n—0o0
= j'i_)moo(a — Qrw)a, J(Tn;41%n; — QF(v)a))
=(a— Qrya.J(p — Qr)a)) <O0. (6)
This together with (5) implies that
limsupla — Qrvya, J (xn+1— QF(vya)) < 0. (1)
n—0o0

Since(1 — Ay 1) (Tng1xn — QF(v)a) = (Xnt1 — QF(vya) — Anyi(a — QF(vya), by using
the inequality (3) in Lemma 1, we have
lns1 = Qraall? = | A= Ant) (Tus1xs — Qrnya) + Angala — Qrenya)|?
< L= Ts1xn — Qrevyall®
+ 2ntila — Qrovya, J (xns1 — Qr(vya))
<AL= s lxn — Qrvyall?
+ 2tila — Qroya, J (xny1 — Qrvya)). (8)
Now, lete > 0 be arbitrary. Then by (7), there exigts such that

(a - Orwya, J (Xpq1 — Qp(v)a)> < % foralln > N;.
Thus, from (8), we have

lxn+1 — QF(V)all2 <A - A1) xn — QF(vya 12 4+ Aps1e. 9
Puttinga, = |lx, — Qr(v)all?, we have from (9),

an4+1 < (L= Apy1)an + Anyre.

It follows from Lemma 4 that;, — 0 and hencéx,} converges strongly t@ r(yya This
completes the proof. O

As a direct consequence, we have the following
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Corollary 6 (O'Hara et al. [13, Theorem 3.3]Let H be a Hilbert spaceC a nonempty
closed convex subset #f, and7,,:C — C (n =1, 2, 3, ...) nonexpansive mappings such
that

F:= ﬂ Fix(T;,) 9.

n=1
Assume thavs, ..., Vy:C — C are nonexpansive mappings with the propeftyr all
k=1,2,..., N and for any bounded subs€tof C, there holds
lim sup||T,x — Vi(Tx)| =0.
n—>oo ~

xeC
Let{r,} be a sequence i(0, 1) which satisfieéim,_, - A, = 0and Z;’,"zl = A, = 00. For
anya andxg in C, define

Xptl = Apt1a + 1- )\n+l) Thi1xn, n2= 0.

Then the sequende, } converges strongly t®r(yya, whereP is the nearest point projec-
tion of C onto F(V) := (p_; Fix(Vi).

Proof. Note that the nearest point projectidghof C onto F is a sunny nonexpansive
retraction. Thus the result follows from Theorem 52

As in [13], by using Theorem 5 together with Lemmas 3.1 and 3.2 of [13] (Lemma 1
of [18]), we can also obtain the following result.

Corollary 7 (O'Hara et al. [13, Corollary 3.4])Let E be a Banach space&, a nonempty
closed convex subset Bf andT, S: C — C nonexpansive mappings with fixed points.

(a) SetT,(x) = 1 Z;?;é Tix forn>1andx e C. For xq,a € C, define
X1 =10 + (1= Ay ) Tpaxn, n20.

If E is a uniformly convex and uniformly smooth Banach space with a weakly sequen-
tially continuous duality mapping, then the sequefigg converges strongly t@ ra,
whereQ is a sunny nonexpansive_ re;raction(bfontoF = Fix(T).

(b) SetT,,(x) = 15 Y hZ0 i ik ST (x) forn > andc e C, define

Xn+1 = An+1@ + (1 = Apt1) Tpy1xn, n2=0.

Suppose tha§T = T'S andFix(S) NFix(T) # @. If E is a Hilbert spaceH, then the
sequencex, } converges strongly t®rsrya, whereP is the nearest point projection
of C onto F(ST) := Fix(S) NFix(T).

Remark 8. (1) Corollary 7(a) extends Corollary 3.4(a) in [13] to a Banach space setting.
(2) Theorem 1 of Shimizu and Takahashi [18] is just Corollary 7(b).

Now we consider the results developed by Bauschke [2] (also Jung and Kim [10]), in
which he defined the following control conditions on the parameters
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(Bl) Iimnaoo Ap = 0;
(B2) Y72 4 Ay = 00; equivalently[ ]2 1 (1 — 1,,) = 0;
(B3) Z?;l [An — Antn| < 00.

We will replace (B3) by the condition

(N3) lim,_ o0 ﬁ =1

This condition also improves Lions’ condition [12],

(L3) lim,_, o0 225041 = 0,
)\)H—l

Remark 9. Both (N3) and (B3) cover the natural candidate.pt= n—}rl but (L3) does not.
However, (B3) and (N3) are independentafch other. For more details, see [21].

We will give a complementary result to Theorem 1 of Jung and Kim [10] (also Theo-
rem 3.1 of Bauschke [2]) with coiitibn (B3) replaced by condition (N3).

We consideN mappings/i, 7o, ..., Ty. Forn > N, setT,, := T,, modn , Wheren modN
is defined as follows: it = kN +1,0<[ < N, then
if I #£0,

_|!
andN'_{N if =0,

Theorem 10. Let E be a uniformly smooth Banach space with a weakly sequentially con-
tinuous duality mapping : E — E* and C a nonempty closed convex subsetrofLet

T1, ..., Ty be nonexpansive mappings fra@minto itself with F := ﬂf"zl Fix(T;) nonempty

and

F=Fix(Ty...T) = FiX(TiTy ... T3T2) = - - - = FiX(Ty_1Tn—2. .. TaTy).

Let{A,} be a sequence iD, 1) which satisfies

(Nl) iMoo An = 0;
(N2) 32,21 An = 00;
(N3) lim, 00 22— = 1.

An+N

For any a andxg in C, define

Xn+1 = Ant1@ + (1 = Apt1) Tnt1xn, n2>0.
Then the sequenda,} converges strongly t@ ra, where Q is a sunny nonexpansive
retraction ofC onto F.

Proof. We follows the same idea as in the proof of Theorem 1 in [10]. So we just sketch it.
As in proof of Theorem 5, we can obtain the following facts and so the proofs are omitted:
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Q) lxn — zll <max]jxo—z||, la — z||} for all n > 0 and for allz € F;
(2) {x,}is bounded;

(3) {T+1xn} is bounded,;

(4) Xn4+1 — Tn+1xn — 0.

Since (N3) is different from the condition (A3) in [2] (that is, (B3) above), we give the
details of proof forx,+y — x, — 0 as in [13]. By (3) above, there exists a constant 0
such that for alk > 1,

lz = Tryaxnll < L.
Since foralln > 1, T,y = T,,, we have

lXn4n — xnll = H (AntN — An)(z — Tpy NXn+N-1)
+1- )\n—i-N)(Tnxn-i-N—l — Tyxp—1) ”
S LIAntN = Anl + (A = AptN) Ixn4 v -1 — Xp—1l

An

= (L= b ) s n1 — Xl + kn+NL‘1 _
)\n+N
By (N3), we have lim_o L|1— AL

n+N

=0, and so by Lemma 4,
Xn+N — X — 0.
By the proof in [2], we also have
Xn — TN - .. Tug1xn — 0. (10)

Finally we prove the strong convergence{of}. Let a subsequende,;} of {x,} be such
that

lim (a — Qra, J(xy; 41— Qra))=limsup(a — Qra, J (x,11— QFa)).

Jj—>00 n—00

We assume (after passing to anathebsequence if necessary) thatt- 1 modN =i for
somei € {1,..., N} and thatx,;+1 — x. From (10), it follows that lim_cc [lxn;+1 —
TitN - .- Tit1xn;+1ll = 0. Hence, by Lemma 2, we haves FiX(Ti4n ... Ti4+1) = F.

On the other hand, sincg is uniformly smooth,F is a sunny nonexpansive retract
of C (cf. [6, p. 49]). Thus, by weakly sequentially continuity of duality mappihgnd
Lemma 3, we have

limsupla — Qra, J(xp41— QFa))= lemoo(a — Qra, J(xn;41— Qra))

=(a— Qra,J(x — Qra)) < 0. (11)
Since(1 — A1) (Thy1x, — QFa) = (xp41 — QFa) — Apy1(a — Qra), by Lemma 1, we
have
IxXn+1 — QFall®* < (1= Ans )| Ts1xn — Qrall?
+ 2hni1fa — Qra. J (xp11— QFa))
< A= As) %0 — Qrall?
+ 2hniafa — Qra, J (xp1— QFa)). (12)
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Now, lete > 0 be arbitrary. Then by (11), there exig¥s such that
(a — Qra,J(xp+1— Qpa)> < % foralln > N;.
Thus, from (12), we have
ben+1 = Qrall® < (L= dnsd)|lxn — QrFall® + Anse.
Thus, it follows from Lemma 4 thdx,} converges strongly t@ ra. This completes the
proof. O

As an immediate consequence, we have the following

Corollary 11 (O'Hara et al. [13, Theorem 4.1]bet H be a Hilbert spaceC a nonempty
closed convex subset Af, andT1, ..., Ty nonexpansive mappings frafhinto itself with
F := (N, Fix(T;) nonempty and

F=Fix(Ty...Ty) = FiX(TiTy ... T3T2) = - - - = FiX(Ty_1TN—2 — T1Ty).

Let{),} be a sequence i(0, 1) which satisfiegsN1)—(N3) in Theoren?. For anya andxg
in C, define

X1 =App1a + (A — Apy) Toyaxn, n>0.

Then the sequende,} converges strongly t&ra, whereP is the nearest point projection
of C ontoF.

The following is a complementary result of the result of Wittmann [20].

Corollary 12. Let H be a Hilbert spaceC a nonempty closed convex subsetffand
T a nonexpansive mapping frof into itself with Fix(T) # @. Let {1, } be a sequence
in (0, 1) which satisfiegN1)—(N3) in Theoreml10. For anya and xg in C, define(with
N=1

X1 =Apr1a + (1 =23 )Tx,, n=0.
Then the sequende,} converges strongly t®ra, whereP is the nearest point projection
of ContoF.

Let D be a subset of a Banach spa€eRecall that a mappin@ : D — E is said to
be firmly nonexpansive if for eachandy in D, the convex functiom : [0, 1] — [0, co)
defined by

p(s)=|A—9)x+sTx - (L—s)y+sTy)|

is nonincreasing. Sinag is convex, it is easy to check that a mappihgD — E is firmly
nonexpansive if and only if

ITx =Tyl < |A=0)(x —y)+t(Tx—Ty)|

for eachx andy in D andr € [0, 1]. It is clear that every firmly nonexpansive mapping is
nonexpansive (cf. [6,7]).



J.S. Jung / J. Math. Anal. Appl. 302 (2005) 509-520 519

The following result extends a Lions-type iteration scheme [12] with the condition (N3)
to a Banach space setting.

Corollary 13. Let E be a uniformly smooth Banach space with a weakly sequentially
continuous duality mapping: E — E* andC a nonempty closed convex subseEot et

T1, ..., Ty be firmly nonexpansive mappings framinto itself with F := ﬂ,N:l Fix(T;)
nonempty and

F=Fix(Ty...T) = FiX(TiTy ... T3T2) = - - - = FiX(Ty_1Tn—2.. .. TaTw).

Let{Ar,} be a sequence ifD, 1) which satisfiegN1)—(N3) in Theoreml0. For anya and
xg in C, define

Xnpi = Anp1a + (A= Ay 1) Tpraxn, n20.

Then the sequenda,} converges strongly t@® ra, where Q is a sunny nonexpansive
retraction ofC onto F.

Remark 14. (1) In Hilbert space, Lions [12, Théorém 4] had used

(Ll) im0 An =0;

(L2) Z;fil)»kw =ooforalli =0,..., N — 1, which is more restrictive than (N2); and

L3) i Ty bavi—ra-mv4il _ g in place of (B3
(L3) limMg—oo SV =0in place of (B3).

(2) In general, (B3) and (L3)are independent, even wheh= 1. For more detalils,
see [2].
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