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We study a nonlinear integral equation for a center manifold of a semilinear non-
autonomous differential equation having mild solutions. We assume that the linear
part of the equation admits, in a very general sense, a decomposition into center
and hyperbolic parts. The center manifold is obtained directly as the graph of a
fixed point for a Lyapunov�Perron type integral operator. We prove that this
integral operator can be factorized as a composition of a nonlinear substitution
operator and a linear integral operator 4. The operator 4 is formed by the Green's
function for the hyperbolic part and composition operators induced by a flow on
the center part. We formulate the usual gap condition in spectral terms and show
that this condition is, in fact, a condition of boundedness of 4 on corresponding
spaces of differentiable functions. This gives a direct proof of the existence of a
smooth global center manifold. � 1997 Academic Press

Key Wordsy smooth invariant manifolds; operators of substitution.

1. INTRODUCTION

In this paper we give a direct proof of the existence of global smooth
center manifolds of mild solutions of nonautonomous differential equations
with sufficiently small nonlinearities defined on infinite dimensional Banach
spaces. From its inception in now classic works, [5, 13, 19, 20, 28], the
center manifold theory plays an important role in the modern theory of
infinite dimensional dynamical systems. We refer the reader to [2�4, 6, 10,
11, 14, 16, 23, 31, 38, 39, 43] and to the literature cited therein. Recently,
several advances in the center manifold theory have been made using
techniques related to scales of Banach spaces of exponentially growing
functions, see [6, 12, 15, 40�44]. However, in this paper we will use the
perhaps more direct traditional approach, see [6, 9, 13].

article no. DE973343

356
0022-0396�97 �25.00
Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* The first author's research was supported by the National Science Foundation under
Grant DMS-9303767; the second author was supported by the National Science Foundation
under Grant DMS-9622105 and by the Research Board of the University of Missouri.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82072315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


File: DISTIL 334302 . By:DS . Date:02:12:97 . Time:11:08 LOP8M. V8.B. Page 01:01
Codes: 3227 Signs: 1936 . Length: 45 pic 0 pts, 190 mm

To explain our main innovation, consider an autonomous semilinear
differential equation on a Banach space X:

x$=Ax+ g(x), t # R, g # Ck, 1(X, X ), (1.1)

where A is the infinitesimal generator of a strongly continuous semigroup,
[etA]t�0 such that the spectral mapping theorem holds, that is, _(etA)"[0]
=exp t_(A), t>0. Further, suppose that the spectrum _(A) splits as

_(A)=_c _ _h , _c , _h{<, |c<;h , (1.2)

where the numbers |c and ;h are computed as follows:

|c=sup[ |Re z| : z # _c], ;h=inf[ |Re z| : z # _h]. (1.3)

Under these assumptions there exists an A-invariant decomposition X=
Xc�Xh such that, for the restrictions Ac=A | Xc , Ah=A | Xh one has
_c=[z : z # _(Ac)] and _h=[z : z # _(Ah)]. Moreover, [etAc] is a group on
Xc , the semigroup [etAh] is hyperbolic on Xh , and there are complemen-
tary projections P\ on Xh , restrictions of operators A\

h =Ah | Im P\, and
constants Mc=Mc(|), Mh=Mh(;) for which the following estimates hold

&etAc&�Mce| |t|, t # R,

&etAh
+

&�Mh e&;t, t>0, (1.4)

&etAh
&

&�Mh e;t, t<0

whenever |>|c and ; # (0, ;h).
We assume that k # [0, 1, 2, ...] and let Ck, 1(X, X ) denote the space of k

times continuously differentiable functions with Lipschitz kth derivative. As
usual, we seek a center manifold for (1.1) of the form M�=[!+�(!) : ! # Xc]
where the function � : Xc � Xh is in � # B (k)

$ , a $-ball at the origin of
Ck, 1(X, X ). If we fix � # B (k)

$ , project (1.1) on Xc�Xh to obtain ``c and h
equations'', and use the Green's function K, to be defined explicitly below,
for the hyperbolic semigroup [etAh]t�0 , we see that M� is invariant if and
only if � is a fixed point of the operator T defined by

T(�)(!)=|
�

&�
K(&{) gh(xc({, !)+�(xc({, !))) d{,

where ! # Xc , and xc( } , !) is the solution of the c-equation x$c=Acxc+
gc(xc+�(xc)) with the initial condition xc(0, !)=!.

The solution xc( } , !) defines a flow St=S t
� on Xc given by St(!)=xc(t, !).

Using it, we introduce a group of composition operators, Vt, on Ck, 1(Xc , Xh)
given by (Vt.)(!)=.(St!). The operator T can be factored as a composition,
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T(�)=4� b G(�), where 4� is a linear operator and G is a nonlinear
operator defined as follows:

4�=|
�

&�
K(&{)Vt d{, G(.)(!)= gh(!+.(!)), ! # Xc . (1.5)

The ball B (k)
$ is closed in the Ck-norm. To find a fixed point � for T one

needs to show, first of all, that T preserves B (k)
$ provided ==&g&Ck, 1 is

sufficiently small. Using the factorization of T, it is easy to see that T

preserves such a small ball provided that 4� is a bounded operator
on Ck, 1.

A key feature of our analysis is the observation that the boundedness of
4� on Ck, 1 is implied by the spectral gap condition

;h&(k+1) |c>0.

Indeed, a direct (but long) calculation using the estimates (1.4) shows that
the growth of &Vt& on Ck, 1 is bounded by exp[(k+1)(|+Mc=) |t|]. Also,
by (1.4), the growth of the norm of the Green's function, &K(t)&, is
bounded by exp[&; |t|]. Using these facts together with the definition of
4� and the gap condition, it is easy to see that for = small enough, 4� is
bounded.

A similar argument, again using (1.4) and (1.5), shows that T is a con-
traction in the Ck-norm for sufficiently small = provided the gap condition
is satisfied. We remark that the Ck-contractivity of T for k>0 is more
than is needed to prove the desired result. In fact, by a lemma of D. Henry
(see, e.g., [9]), the ball B (k)

$ is closed in the C0-norm. Thus, it suffices to
prove that T is a C0-contraction.

The arguments outlined above do not use the bounds |c and ;h that
appear in (1.3) directly. Instead, they use the fact that ;h is the dichotomy
bound and |h is the growth bound for the corresponding semigroups in the
following sense: ;h=sup ; and |h=inf | for ; and | satisfying (1.4). We
stress that the calculation (1.3) of ;h=sup ; and |h=inf | in terms of
_(A) is possible because we assume the validity of the spectral mapping
theorem for [etA]. These calculations are invalid for an arbitrary generator
A. The spectral mapping theorem holds, for instance, for analytical semi-
groups, uniformly continuous semigroups, etc., see [29] for details. This
point of view is helpful in understanding the corresponding spectral results
in [3, 41].

In the present paper we will consider a generalization of (1.1) to
nonautonomous differential equations of the form

x$=A(t)x+g(t, x(t)), g # Ck, 1(R_X, X ), t # R. (1.6)
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We do not require that the linearization of (1.6) is well-posed, that is, that
it has a differentiable propagator. Instead, our starting point is a strongly
continuous evolutionary family (propagator) [U(t, s)]t�s . Thus, we con-
sider mild solutions of (1.6). The operators A(t) that appear in (1.6) can be
unbounded, can have variable domains, etc.

One of the difficulties encountered in our general setting is to formulate
the correct assumptions on the decomposition of [U(t, s)]t�s into its
``center'' and ``hyperbolic'' parts. The spectra of the operators A(t) do not
give the appropriate information for this decomposition even when these
operators are bounded. To remedy this, we introduce the so-called
evolutionary semigroup, [T t], acting on a ``super-space'' C0(R, X ) of con-
tinuous X-valued functions that vanish at infinity, by the rule (T t,)({)=
U({&t, {) ,({&t), { # R, t>0. Let 1 denote the infinitesimal generator for
[T t]. For example, in the autonomous case above, 1 is just the closure of
the operator &d�d{+A. It is known, see [24, 25, 34, 35] that the spectral
mapping theorem holds for [T t], that _(1 ) is invariant with respect to
translations along the imaginary axis, and that [U(t, s)]t�s has an
exponential dichotomy on X if and only if 1 is invertible, or, equivalently,
if T t, for some t>0, has no spectrum on the unit circle. Moreover,
each spectral projection P for T t has the form (P,)({)=P({) ,({)
for a bounded strongly continuous projection-valued function P defined
on R.

Our conditions on [U(t, s)]t�s are given in terms of the existence of a
splitting of _(1 ) similar to (1.2). This splitting implies the existence of
a spectral decomposition for T t. Since spectral projections for T t are
operators of multiplication on projection-valued functions, we obtain the
existence of evolutionary families [Uc(t, s)](t, s) # R2 and [Uh(t, s)]t�s ,
generalizing [e(t&s) Ac](t, s) # R and [e (t&s) Ah]t�s , considered above. We
define |c and ;h that appear in the gap condition in terms of _(1 ), and
conclude that |c and ;h are the growth and the dichotomy bounds for
[Uc(t, s)] (t, s) # R 2 and [Uh(t, s)]t�s , respectively.

We construct an operator T and its factorization T=4 b G analogous
to the construction above. Again, the gap condition is seen to be a condi-
tion on the operator 4 that controls the ``race'' between the exponential
growth of the Green's function for [Uh(t, s)]t�s and composition operators
Vt induced by [Uc(t, s)] (t, s) # R 2 . The gap condition again implies that 4 is
bounded as long as the norm of g is sufficiently small. As a result, we prove
the existence of a center manifold M� for � # Ck, 1. We conjecture that, by
a standard technique (see, e.g., [9]), this result in fact implies � # Ck+1.

The main point of this paper is the presentation of a new direct proof of
the existence of a center manifold based on a factorization analogous to
(1.5). Our proof gives a clear understanding of the role of the gap condition
that is imposed on the linear part in (1.6). Moreover, as far as we know,

359CENTER MANIFOLDS



File: DISTIL 334305 . By:DS . Date:02:12:97 . Time:11:08 LOP8M. V8.B. Page 01:01
Codes: 2661 Signs: 1933 . Length: 45 pic 0 pts, 190 mm

a proof of the existence of center manifolds in our general setting has not
appeared in the literature.

The paper is organized as follows. In Section 2 we collect some facts
about evolutionary families, evolutionary semigroups, and composition
operators. In Section 3 we precisely describe our assumptions and prove
the existence of center manifolds using certain norm estimates on the com-
position operator Vt. Section 4 contains the technical proofs of the required
norm estimates. Finally, Section 5 contains an application of our result. In
particular, we prove the existence of a Lipschitz invariant manifold for a
semilinear skew-product flow. The existence of smooth invariant manifolds
in the analogous finite dimensional case is considered in [12].

2. NOTATIONS AND PRELIMINARIES

2.1. Evolution Families

Let X denote a Banach space with norm | } | and let L=L(X ) denote
the set of bounded linear operators on X. For a linear operator A, let _(A)
denote the spectrum, \(A) the resolvent set, D(A) the domain, and Im(A)
the image of the operator A. Also, let J=[(t, s) # R2 : t�s] or J=R2.

Definition 2.1. An evolution family is a family of bounded operators
[U(t, s)] (t, s) # J on X that satisfy, for (t, s) # J :

(i) U(t, s)=U(t, r) U(r, s) for all t�r�s;

(ii) U(t, t)=I ;

(iii) For each x # X the function (t, s) [ U(t, s)x is continuous;

(iv) There exist positive constants ; and c such that

&U(t, s)&L �ce ;(t&s), (t, s) # J.

We remark that usually an evolution family is defined to satisfy just (i)
and (ii) of the definition. If, in addition, it satisfies (iii) the family is called
strongly continuous and if it satisfies (iv) it is called exponentially bounded.
However, since we will only consider families satisfying all the properties of
the definition, we will not make these distinctions below.

Definition 2.2. An evolution family [U(t, s)]t�s is said to solve the
abstract Cauchy problem

x$(t)=A(t) x(t), x(s)=xs , xs # D(A(s)), t�s, t, s # R, (2.1)
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if x( } )=U( } , s)xs is differentiable, x(t) # D(A(t)) for t�s, and if x satisfies
the differential equation defined in (2.1). The abstract Cauchy problem
(2.1) is called well-posed if it is solved by an evolution family.

Note that under our definition, the operators A(t) in (2.1) are allowed
to be unbounded. However, we will work in an even more general setting.
In fact, we will not require that the evolution family [U(t, s)]t�s is differen-
tiable. Thus, we do not assume that our evolution family solves an abstract
Cauchy problem. We note that there are examples [33] of well-posed
autonomous Cauchy problems x$=A0x such that (even for a bounded
continuous function B : R � L(X )) the abstract Cauchy problem (2.1) with
A(t)=A0+B(t) is not well-posed.

Definition 2.3. Assume J=R2. The growth bound |U for an evolution
family [U(t, s)] (t, s) # R 2 on X is defined as the infimum over all |>0 such
that there exists a positive constant M=M(|) so that the following
estimate holds:

&U(t, s)&L �Me| |t&s|, (t, s) # R2. (2.2)

If A(t)#A is a generator of a strongly continuous semigroup, [etA]t�0 ,
on X, then U(t, s) :=e(t&s)A, t�s, defines an evolution family that solves
(2.1). If A generates a strongly continuous group, then this evolution family
is defined on J=R2. We stress that, in the last case, the growth bound for
U(t, s) :=e(t&s)A, t, s # R is, generally, strictly greater then the spectral
bound for A defined as sup[ |Re z| : z # _(A)], see [29].

We recall the definition of exponential dichotomy for a strongly con-
tinuous evolution family, see [13, 19, 24, 28, 30]. For a projection-valued
function P+: R � L(X ), the complementary projection will be denoted by
P&(t)=I&P+(t), t # R. Suppose that [U(t, s)]t�s is an evolution family.
If P+(t) U(t, s)=U(t, s) P+(s) for all t�s, we define the restrictions
U+(t, s) :=P+(t) U(t, s) P+(s) and U&(t, s) :=P&(t) U(t, s) P&(s). We
stress that U+(t, s) is an operator from Im P+(s) to Im P+(t) and U&(t, s)
acts from Im P&(s) to Im P&(t).

Definition 2.4. An evolution family [U(t, s)]t�s is said to have an
exponential dichotomy with constant ;>0 if there exists a projection-
valued function P+ : R � L(X ) such that the function t [ P+(t)x is
continuous and bounded for each x # X, and if, for some constant M=
M(;)>0 and all t�s, the following hold:

(i) P+(t) U(t, s)=U(t, s) P+(s);

(ii) U&(t, s) is invertible as an operator from Im P&(s) to Im P&(t);
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(iii) &U+(t, s)&L �Me&;(t&s);

(iv) &U&(t, s)&1&L �Me&;(t&s).

If an evolution family [U(t, s)]t�s has an exponential dichotomy, the
dichotomy bound ;U for [U(t, s)]t�s is defined as sup[;>0: [U(t, s)]t�s

has exponential dichotomy with constant ;]. The Bohl spectrum, B, for
[U(t, s)]t�s is defined as

B=[* # R : [e*(t&s)U(t, s)]t�s does not have exponential dichotomy].

We note that Bohl spectrum, see [13], is in fact the same as the Sacker�
Sell dynamical spectrum as defined in [36, 37], see [25] for more details.

2.2. Evolution Semigroups

Consider an exponentially bounded evolution family [U(t, s)]t�s defined
on the Banach space X and let C0(R, X ) denote the space of continuous
functions from R to X that vanish at infinity with the uniform norm. There
is a natural evolution semigroup, [T t]t�0 , defined on C0(R, X ) as follows:

(T t,)({)=U({, {&t) ,({&t), t�0. (2.3)

This semigroup is, by our definition of exponentially bounded evolution
families, strongly continuous and therefore it has an infinitesimal generator
1. For example, if A : R � L is bounded, then 1 is the closure of the
operator &d�d{+A({), see [25].

The evolution semigroup defined using the propagator of a nonperiodic
differential equation plays the same role as the monodromy operator does
for the periodic case.

The following is a list of facts about evolution semigroups and their
infinitesimal generators that we will use in our analysis, see [24, 25, 34, 35]
for details and further references.

1. The spectrum of 1 is invariant with respect to translations along
the imaginary axis; the spectrum of T t is invariant with respect to rotations
centered at origin.

2. The semigroup spectral mapping theorem holds; that is, _(T t)"[0]
=et_(1), t>0.

3. If P is a spectral projection for T 1 that corresponds to a connected
component in _(T 1), then there is a bounded strongly continuous projection-
valued function P : R � L(X ) such that (P,)({)=P({) ,({), { # R. Also,
P(t) U(t, s)=U(t, s) P(s) for all t�s.

4. The evolution family [U(t, s)]t�s has an exponential dichotomy if
and only if 0 # \(1 ) or, equivalently, _(T t) does not intersect the unit
circle. If this is the case, then the Riesz projection P+ that corresponds to
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the part of _(T t) inside the unit disk is of the form (P+,)({)=P+({) ,({),
where P+( } ) is the bounded projection-valued function mentioned in the
definition of dichotomy.

5. The Bohl spectrum B for [U(t, s)]t�s and _(1 ) are related by the
formula B=_(1 ) & R. As a result, the growth bound |U for the evolution
family [U(t, s)] (t, s) # R 2 , defined for (t, s) # R2 and the dichotomy bound ;U

for a dichotomic evolution family [U(t, s)]t�s can be computed as follows:

|U=sup[ |*| : * # _(1 ) & R], ;U=inf[ |*| : * # _(1 ) & R].

2.3. Spaces of Multilinear Operators

For each integer n # [1, 2, ...], let Ln=Ln(X ) denote the set of n-multi-
linear operators on X. For a function . : R_X � X, let Dk.(t, x) # Ln

denote its n th differential with respect to x # X. Also, for each integer
k # [0, 2, ...], let Ck, 1=Ck, 1(R_X, X ) denote the set of continuous
functions . : R_X � X that are k times differentiable with respect to x # X
with each such derivative globally Lipschitz and with the uniform norm
given by

&.&C k , 1=sup
t # R

max { max
j=1, ..., k

sup
x # X

&D j.(t, x)&Lj
,

_ sup
x1{x2

&Dk.(t, x1)&Dk.(t, x2)&Lk

|x1&x2 | = .

Also, for $>0 and for k # [0, 1, 2, ...], let

B(k)
$ =[. # Ck, 1 : &.&Ck, 1�$]

denote the $-ball at the origin of Ck, 1.
Recall the chain rule for the nth derivative of the composition of differen-

tiable functions G, F : X � X, (see, e.g., [1, p. 97]):

Dn(G b F )(x)(e1 , ..., en)

= :
k

i=1

:
j1+ } } } +ji=k

:
[l]

DiG(F(x)) (D j1 F(x)(el1
, ..., elj1

), ...,

D ji F(x)(elj1 + } } } +ji&1+1
, ..., eln

)), (2.4)

where the last sum is taken over all l1< } } } lj1
, ..., lj1+ } } } +li&1+1<ln , and

e=(e1 , ..., en) # Xn. Also, for r=1, ..., i, we define

ur(x, F )=D jr F(x)(elj1+ } } } +ljr&1
+1 , ..., elj1+ } } } +ljr

). (2.5)
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If A # Ln and e(&)=(e (&)
1 , ..., e (&)

n ) # Xn, &=1, 2, we have the following
estimate:

|A(e (1)
1 , ..., e (1)

n )&A(e (2)
1 , ..., e (2)

n )|X

�&A&Ln
:
n

j=1 \ `
p< j

|e (1)
p |+ |e (1)

j &e (2)
j | \ `

p> j

|e (2)
p |+ . (2.6)

Also, for A, B # Ln and e # Xn we have

|A(e)|�&A&Ln
`
n

j=1

|ej |, |A(e)&B(e)|�&A&B&Ln
`
n

j=1

|ej |. (2.7)

2.4. Gronwall 's Inequality

We will use the following simple consequence of Gronwall's inequality.

Proposition 2.5. Suppose |, a, b are all positive real numbers and n is
a nonnegative integer. If, for some t>0, we have

v(t)�a |
t

0
e|(t&{)[v({)+ben(a+|){] d{,

then

v(t)�
ab

(n&1)(a+|)
en(a+|) t for n�2,

v(t)�abte(a+|) t for n=1, and

v(t)�
ab

a+|
e(a+|) t for n=0.

Proof. Define u(t) :=e&|tv(t) and note that

u(t)�a |
t

0
u({) d{+c(t), c(t)=ab |

t

0
e[(n&1) |+na]{ d{.

The desired result follows from the version of Gronwall's inequality in
[17], Lemma 4.1.2. K

2.5. Composition Operators

Consider an evolution family [U(t, s)](t, s) # R 2 on X with finite growth
bound. In particular, there are constants M>0 and |>0 such that the
evolution family satisfies the inequality (2.2).
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Proposition 2.6. Suppose f # Ck, 1 and (s, !) # R_X. If the evolution
family [U(t, s)] (t, s) # R2 defined on a Banach space X has a finite growth
bound, then there is a unique continuous function x=x( } , !), defined for all
t # R with range in X, that satisfies the integral equation

x(t, !)=U(t, s) !+|
t

s
U(t, {) f ({, x({, !)) d{. (2.8)

Proof. The proof is similar to the proof given for the semigroup case in
[32, p. 184]. K

Using the solution of (2.8), we define a flow St on R_X by

St(s, !)=(t+s, x(t+s, !)),

and a family of composition operators Vt on Ck, 1 given by

(Vt.)(s, !)=.(St(s, !)), (s, !) # R_X, t # R. (2.9)

In the next section we will need the following estimates for Vt.

Theorem 2.7. Suppose k # [0, 1, 2, ...] and f # Ck, 1 with = :=& f &Ck, 1 . If
Vt is a family of composition operators defined, relative to an evolution
family satisfying (2.2), by (2.9), then there exist positive constants c1=
c1(|, k) and c2=c2(|, k) such that:

&Vt&L(C k, 1)�c1e(k+1)(|+M=) |t|, (2.10)

&Vt&L(Ck)�c2ek(|+M=) |t|, t # R. (2.11)

Next, in addition to a given f # Ck, 1, fix $>0 and let �1 , �2 # B (k)
$ . For

each (s, !) # R_X let x&=x&( } , !), &=1, 2, denote the solutions of

x&(t, !)=U(t, s) !+|
t

s
U(t, {) f ({, �&({, x&({, !))) d{. (2.12)

Moreover, for &=1, 2, define the corresponding flows and composition
operators as follows:

St
&(s, !)=(t+s, x&(t+s, !)), t # R,

(2.13)
(V t

&.)(s, !)=.(S t
&(s, !)), (s, !) # R_X, . # Ck, 1.

Theorem 2.8. Suppose k # [0, 1, 2, ..., �], the function f # Ck, 1, and
$>0. If V t

& , for &=1, 2, are the composition operators defined by (2.13)
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relative to an evolution family satisfying (2.2), then there are positive
constants c3=c3(|, $, k) and d=d(|, $, k) such that, for each �1 , �2 # B (k)

$

and all . # Ck, 1

&[V t
1&V t

2].&Ck�c3e(k+1)(|+d=) |t| &�1&�2&Ck &.&C k, 1 , t # R. (2.14)

The proofs of Theorems 2.7�2.8 are straightforward, and will be given in
Section 4. They use only the chain rule (2.4) and the version of Gronwall's
inequality given in Proposition 2.5.

2.6. Substitution Operator

For f # Ck, 1, we define a (nonlinear) substitution operator, F, by

F(.)(t, !)= f (t, .(t, !)). (2.15)

An application of the chain rule (2.4) yields the following result.

Proposition 2.9. Suppose k # [0, 1, 2, ...] and f # C k, 1. If $>0 and F is
the composition operator defined by (2.15), then there are positive constants
c4=c4($, k) and c5=c5($, k) such that for all �, �1 , �2 # B(k)

$

&F(�)&C k, 1�c4 & f &C k, 1 ,

&F(�1)&F(�2)&Ck�c5 & f &Ck, 1 &�1&�2 &Ck .

We omit the proof. However, the proof is similar to the proofs of
Lemmas 4.1 and 4.2 below.

3. SETTING AND MAIN RESULT

If we are given a strongly continuous exponentially bounded evolution
family [U(t, s)]t�s and a function g # C k, 1 where k # [0, 1, ...], then we will
consider the following integral equation for functions x : R � X:

x(t)=U(t, s) x(s)+|
t

s
U(t, {) g({, x({)) d{, t�s. (3.1)

In fact, in this section we will formulate sufficient conditions on [U(t, s)]t�s

and g, so that the integral equation has a center manifold. Note, that if
[U(t, s)]t�s solves a well-posed nonautonomous abstract Cauchy problem
(2.1), then each solution of (3.1), by definition, is a mild solution of (1.6).
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3.1. Linear Setting

We will consider an evolution family [U(t, s)]t�s that admits a splitting
into ``center'' and ``hyperbolic'' parts. To be more precise, consider the
evolution semigroup T t=et1 on C0(R, X ) defined in (2.3).

Spectral assumptions (S). The spectrum _(1 ) splits as

_(1 ) & R=7c _ 7h , 7c & 7h=<, 7c , 7h{<. (3.2)

Moreover, if

|c :=sup[ |*| : * # 7c], ;h :=inf[ |*| : * # 7h], (3.3)

then |c<;h .

Recall that the Bohl spectrum of [U(t, s)]t�s is given by B=_(1 ) & R.
Thus, the spectral assumption (S) has an equivalent reformulation in terms
of the evolution family [U(t, s)]t�s . To make this precise, we need the
following assumptions. Assume there exists a bounded strongly continuous
projection valued function P : R � L(X ) such that U(t, s) P(s)=P(t) U(t, s)
for all t�s. For Q(t) :=I&P(t) define the subspaces Xc(t) :=Im P(t) and
Xh(t) :=Im Q(t), and, for t�s define the restricted operators

Uc(t, s) :=U(t, s) | Xc(s): Xc(s) � Xc(t),

Uh(t, s) :=U(t, s) | Xh(s): Xh(s) � Xh(t).

Center part. Assume that, for all t�s, the operator Uc(t, s) is invertible
as an operator from Xc(s) to Xc(t), and define Uc(s, t) :=[Uc(t, s)]&1.
Note that the elements of the family [Uc(t, s)], for (t, s) # R2, are operators
on X that satisfy (i) and (iii) in Definition 2.1, and the replacement of
condition (ii) given by the identity Uc(t, t)=P(t), t # R. Assume there exists
a positive constant | and a constant Mc=Mc(|)>0, such that for all
(t, s) # R, we have the estimate

&Uc(t, s)&L �Mce| |t&s|. (3.4)

Also, let |c�0 denote the growth bound for [Uc(t, s)] (t, s) # R2 , that is, the
infimum over all |>0 such that (3.4) holds with some Mc .

Hyperbolic part. Assume that [Uh(t, s)]t�s has an exponential dichotomy.
To be more precise, assume that there exist bounded strongly continuous
operator-valued functions P\: R � L such that P+(t)+P&(t)=P(t), and
for all t�s,

Uh(t, s) P\(s)=P\(t) Uh(t, s).
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In addition, consider the restrictions

U \
h (t, s)=Uh(t, s) | Im P\(s) : Im P\(s) � Im P\(t), t�s.

We assume that the operator U &
h (t, s) is invertible as an operator from

Im P&(s) to Im P&(t) and that there exist positive constants ; and Mh=
Mh(;)>0 such that, for all t�s,

&U +
h (t, s)&L �Mhe&;(t&s),

(3.5)
&[U &

h (t, s)]&1&L �Mh e&;(t&s).

Let ;h>0 denote the dichotomy bound for [Uh(t, s)]t�s , that is, the
supremum over all ;>0 such that (3.5) holds for some Mh .

With a slight abuse of terminology we summarize our assumptions on
the evolution families [Uc(t, s)] (t, s) # R 2 and [Uh(t, s)]t�s as follows:

Assumption (C). [Uc(t, s)] is an evolution family, defined for all
(t, s) # R2, with the growth bound |c .

Assumption (H). [Uh(t, s)]t�s is a dichotomic evolution family with
dichotomy bound ;h such that ;h>|c .

We claim that (S) is equivalent to the assumptions (C) and (H). In fact,
since _(1 ) is invariant with respect to translations along the imaginary
axis, (3.2) is equivalent to the existence of a splitting for _(1 ). By the
spectral mapping theorem for [T t], the existence of the splitting for _(1 )
is equivalent to the existence of a corresponding splitting for _(T t) for each
t>0. Such a splitting exists if and only if T t has complementary spectral
projections P and Q on the space C0(R, X ) with the following properties:
The projections are of the form P=P( } ) and Q=I&P( } ). The function
P( } ) : R � L is the bounded strongly continuous projection valued function,
mentioned in the definition of Uc(t, s) and Uh(t, s) above with Xc(t)=
Im P(t) and Xh(t)=Im Q(t). With C0, c=Im P and C0, h=Im Q, there
is a T t-invariant decomposition C0(R ; X )=C0, c�C0, h such that 7c=
_(1 | C0, c) & R and 7h=_(1 | C0, h) & R. Thus, (S) is equivalent to (C)
and (H).

In what follows we will need subspaces of ``Xh -valued'' functions on R
and functions ``from Xc to Xh ''. In fact, we define these subspaces as
follows:

Cb(R, Xh)=[, # Cb(R, X ) : ,(t)=Q(t) ,(t), t # R] ;

C 0
ch(R_X, X )=[. # C0=C 0(R_X, X ) : (3.6)

.(t, x)=Q(t) .(t, P(t)x) for all (t, x) # R_X],
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where Cb(R, X ) is the space of bounded continuous X-valued functions
on R.

We will need the following standard consequence of assumption (H)
(see, e.g. [13] or [25]). For each (t, s) # R2 with t{s, there is a bounded
operator (Green's function) K(t, s) : Xh(s) � Xh(t) defined as follows:

K(t, s)=U +
h (t, s) if t>s, and

K(t, s)=&[U &
h (t, s)]&1 if t<s.

Proposition 3.1. Assume hypothesis (H). If ; # (0, ;h) then, with the
constant Mh=Mh(;) from (3.5), the following estimate holds:

&K(t, s)&L �Mhe&; |t&s|, (t, s) # R2.

Moreover, for each , # Cb(R, Xh), there exists a unique function u # Cb(R, Xh)
such that

u(t)=Uh(t, s) u(s)+|
t

s
Uh(t, {) ,({) d{, t�s.

In fact, u is given by

u(t)=|
�

&�
K(t, {) ,({) d{, t # R.

We remark, see [27], that the existence of the unique u # Cb(R, X )
for each , # Cb(R, X ), as in the proposition, is, in fact, equivalent to the
assumption (H).

3.2. An Integral Equation

In this section, we consider an evolution family U(t, s) that satisfies
Assumption (S) (or, equivalently, (C) and (H)). Also, we fix k # [0, 1, ...]
and g # Ck, 1.

Definition 3.2. A set M/R_X is called an invariant set for (3.1) if,
for each (s, !) # M, the solution x( } , !) of (3.1) with x(s, !)=! is such that
(t, x(t, !)) # M for all t�s.

For '>0 and for k # [0, 1, 2, ...], we define

L (k)
' =[. # C 0

ch(R_X, X ) & Ck, 1(R_X, X ) : &.&Ck, 1�'].

From the definitions in (3.6), we note that if . # L (k)
' , then .(t, x)=

Q(t) .(t, P(t)x) for all (t, x) # R_X. In other words, .(t, } ) : Xc(t) � Xh(t)
for each t # R.
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We will look for an element � # L (k)
' such that

M�=[(t, P(t)x+�(t, P(t)x)) : (t, x) # R_X] (3.7)

in an invariant set for (3.1). To this end we will construct an appropriate
(nonlinear) integral operator T such that M� is an invariant set for (3.1)
whenever � is a fixed point of T in L (k)

' .
To construct T, we begin by defining

gc(t, x)=P(t) g(t, x), gh(t, x)=Q(t) g(t, x), (t, x) # R_X,

as well as xc(t)=P(t) x(t) and xh(t)=Q(t) x(t). With these definitions, we
rewrite (3.1) as a system:

xc(t)=Uc(t, s) xc(s)+|
t

s
Uc(t, {) gc({, xc({)+xh({)) d{,

xh(t)=Uh(t, s) xh(s)+|
t

s
Uh(t, {) gh({, xc({)+xh({)) d{, t�s.

Moreover, for � # L (k)
' , define f # Ck, 1 by

f (t, x)= gc(t, P(t) x+�(t, P(t)x)), (t, x) # R_X. (3.8)

Since � # B (k)
' and P : R � L is bounded, an application of Proposition 2.9

shows there is a constant c>0 such that

& f &C k, 1�c &g&C k, 1 , c=c(', k). (3.9)

Fix (s, !) # R_X. By Proposition 2.6, the integral equation

x(t)=Uc(t, s) !+|
t

s
Uc(t, {) f ({, x({)) d{, t�s,

has a unique solution xc( } , !). Note that Uc(t, s)=Uc(t, s) P(s) and that,
without loss of generality, we may as well assume ! # Xc(s). By assumption
(C), the solution xc( } , !) is defined for all t # R. Moreover, since P(s) ! #
Xc(s) and f (t, x) # Xc(t), one has xc(t, !) # Xc(t) for all t # R. Define a flow
St=S t

� on R_X by

St(s, !)=(t+s, xc(t+s, !)), t # R. (3.10)

Also, for (s, !) # R_X, we let ? denote the projection given by ?(s, !)=!.
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The set M� is invariant for (3.1) if and only if xh(t)=�(t, xc(t, !))
satisfies

xh(t)=Uh(t, s) xh(s)+|
t

s
Uh(t, {) gh({, xc({, !)+�({, xc({, !))) d{, t�s.

(3.11)

Also, we have (t, xc(t, !))=St&s(s, !), and xh(t)=�(St&s(s, !)). Since the
function t [ gh(t, xc(t, !)+�(t, xc(t, !)) is an element of Cb(R, Xh), we use
Proposition 3.1, to conclude that (3.11) can be rewritten as

�(St&s(s, !))=|
�

&�
K(t, {+s) gh({+s, ?(S{(s, !))+�(S {(s, !))) d{.

Set t=s in the last formula and conclude that M� is an invariant set for
(3.1) if and only if � # C 0

ch(R_X, X ) is a fixed point of the nonlinear
integral operator T defined as follows:

(T�)(s, !)=|
�

&�
K(s, {+s) gh({+s, ?(S{(s, !))+�(S{(s, !))) d{.

(3.12)

3.3. Main Theorem

Our main idea is to express the operator T as a composition of a linear
and a nonlinear operator that are then analyzed separately. To do this, we
use the flow St=S t

� as in (3.10) and consider the composition operators
Vt defined in (2.9). The linear operator 4� on Ck, 1 is defined by the
formula

(4�.)(s, !)=|
�

&�
K(s, {+s)(V{.)(s, !) d{.

The nonlinear operator G is defined on L (k)
' by

G(�)(s, !)= gh(s, P(s) !+�(s, P(s)!)).

For � # L (k)
' , we clearly have

T(�)=4� b G(�),

the desired decomposition of T.
In addition to Assumption (S) (or, equivalently, Assumptions (C) and

(H)), we also impose the following Ck spectral gap condition, k # [0, 1, 2, ...]:
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Assumption (G). The spectral bounds |c and ;h , defined in (3.3), are
such that

;h&(k+1) |c>0. (3.13)

The spectral gap condition has the following operator theoretic inter-
pretation: If it holds, then the linear operator 4� is uniformly bounded as
an operator on Ck, 1 over � # L (k)

' and all g # Ck, 1 with sufficiently small
Ck, 1-norm. Moreover, for all �1 , �2 # L (k)

' , the norm of 4�1
&4�2

, as an
operator from Ck, 1 to Ck, is O(&�1&�2&C k). To be more precise, we have
the following lemma.

Lemma 3.3. Suppose k # [0, 1, 2, ...] and '>0. If the Ck spectral gap
condition (3.13) holds, then there exist positive constants =0==0(', k, |c , ;h)
and c0=c0(', k, |c , ;h) such that for each g # Ck, 1 with &g&C k, 1�=0 and all
�, �1 , �2 # L'

(k),

&4�&L(C k, 1)�c0 , (3.14)

&4�&L(Ck)�c0 , (3.15)

&[4�1
&4�2

].&C k�c0 &�1&�2&C k &.&C k, 1 , . # Ck, 1. (3.16)

Proof. Define # :=;h&(k+1)|c and note that #>0. Fix |=|c+
#�(4(k+1)) and ;=;h&#�4 such that ;&(k+1)|=#�2>0. Find
Mh=Mh(;) and Mc=Mc(|) such that estimates (3.4) and (3.5) hold. By
(2.10) in Theorem 2.7, there is a constant c1=c1(|, k) such that

&Vt&L(C k, 1)�c1 exp[(k+1)(|+Mc & f &C k, 1) |t| ],

where f is defined in (3.8). By (3.9), one has & f &C k , 1�c(', k) &g&C k, 1 for all
� # Ck, 1 with &�&C k, 1�'. Choose =0<#[4(k+1) c(', k) Mc]&1. Then, for
each g # Ck, 1 with &g&Ck, 1�=0 and � # L (k)

' one has

&4�&L(C k, 1)�|
�

&�
&K(s, {+s)&L &V {&L(Ck , 1) d{

�c1(|, k) Mh |
�

&�
exp |{| [&;+(k+1) |+#�4] d{

=8c1(|, k) Mh �#.

This proves (3.14). Using (2.11) in Theorem 2.7, the proof of (3.15) is
similar.
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To prove (3.16), choose =0<#[4(k+1) c(', k)d]&1, where d=d(', k, |c , ;h)
is given by Theorem 2.8. Then, with c3=c3(', k, |c , ;h) also from Theorem
2.8, we have

&(4�1
&4�2

).&C k�Mh c3 |
�

&�
exp |{ |[&;+(k+1)(|+d & f &C k, 1 )] d{

�8c3Mh�#,

as required.

We now have all the ingredients necessary to prove our main theorem.

Theorem 3.4. Suppose that k # [0, 1, 2, ...] and '>0. If the evolution
family [U(t, s)]t�s satisfies assumption (S) (or, equivalently, (C) and (H )),
and if its growth bound |c and dichotomy bound ;h satisfy the Ck spectral
gap condition

;h&(k+1) |c>0,

then there is a positive constant ===(', k, |c , ;h) such that for each g # C k, 1

with &g&C k, 1�= there exists a unique � # L (k)
' such that the manifold M� ,

given by (3.7), is an invariant manifold for the integral equation (3.1).

Proof. If � # L(k)
' , we claim that T(�) # L (k)

' provided = is sufficiently
small. Indeed, if we choose =�=0 with =0 as in Lemma 3.3, then

&T(�)&C k, 1=&4� b G(�)&C k, 1�&4&L(C k, 1) &G(�)&C k, 1

�c0c4 & f &Ck , 1�c0 c4c(', k) &g&C k, 1 ,

with c0 from Lemma 3.3, the constant c4 from Proposition 2.9, and c(', k)
from (3.9). In particular, T(�) # L (k)

' provided =<[c0 c4 c(', k)]&1 '.
We will show that T is a contraction in the Ck-norm, provided =>0 is

sufficiently small. Since L (k)
' is closed in the Ck-norm, an application of the

contraction principle then implies the existence of a unique fixed point for
T on L (k)

' . We remark that, by a lemma due to D. Henry (see, e.g, [9]),
L(k)

' is closed in the C0-norm. Hence, it suffices to show that T is a
Ck-contraction for k=0. However, we will give the proof for an arbitrary
choice of k.

To prove the contraction property, choose =�=0 for =0 as in Lemma 3.3.
Then, with c0 as in this lemma, we have

&T(�1)&T(�2)&C k

�&(4�1
&4�2

) G(�1)&Ck+&4�2
&L(C k) &G(�1)&G(�2)&C k

�c0(&�1&�2&C k &G(�1)&Ck, 1+&G(�1)&G(�2)&C k).
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Define .&(t, x)=P(t) x+�&(t, P(t)x), (t, x) # R_X, &=1, 2. Since P : R � L

is bounded, .& # B (k)
$ for some $=$('). Also, there is some positive

constant d such that &.1&.2 &C k�d &�1&�2 &C k . Apply Proposition 2.9
with f (t, x)= gh(t, x) and �&=.& . Then, for some positive constant c(', k),
we have

&G(�1)&C k, 1=&F(.1)&C k, 1�c(', k) &g&C k, 1 ,

&G(�1)&G(�2)&Ck�c5($, k) &g&Ck, 1 &.1&.2&C k

�c(', k) &�1&�2 &C k &g&Ck, 1 .

As a result, we obtain

&T(�1)&T(�2)&Ck�c0 c(', k) &�1&�2&C k &g&C k, 1 .

By choosing =<[c0c(', k)]&1, we have the desired result. K

4. COMPOSITION OPERATORS

In this section we give the proofs of Theorems 2.7 and 2.8. For this, con-
sider a Banach space X, a function f : R_X � X in Ck, 1, and an evolution
family [U(t, s)] (t, s) # R2 on X that satisfies (2.2). Recall that, for a fixed
(s, !) # R_X, we let x( } , !) denote the solution of the equation (2.8). In
particular, the identity

x(t+s, !)=U(t+s, s) !+|
t

0
U(t+s, {+s) f ({+s, x({+s, !)) d{ (4.1)

holds for all (s, !) # R_X and t # R. Since we will have to differentiate (4.1)
with respect to !, it is convenient to introduce, for (s, !) # R_X, the
functional notations Gs(!) := f (s, !) and Fs(!) :=x(s, !) so that s is viewed
as a parameter. For example, in this notation, the identity (4.1) is
expressed as follows:

Ft+s(!)=U(t+s, s) !+|
t

0
U(t+s, {+s) Gt+s b Ft+s(!) d{. (4.2)

This notation together with several variants will be used throughout this
section.

We start with two lemmas that give estimates for x( } , !) and its derivatives.
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Lemma 4.1. Suppose that k # [0, 1, ...] and, as in (4.2), Fs(!)=x(s, !). If
f # Ck, 1 and ==& f &C k, 1 , then there exists a positive constant c=c(|, k) such
that, for all (s, !) # R_X and t # R,

&DkFt+s(!)&Lk
�cek(|+M=) |t|. (4.3)

Proof. We claim that it suffices to prove (4.3) for t�0. Indeed, for
t, s # R and ! # X, if we define

x$(t, !)=x(&t, !), U$(t, s)=U(&t, &s), f $(t, !)=&f (&t, !),

F $t(!)=x$(t, !), G$t(!)= f $(t, !),

then, by replacing t by &t and s by &s in (4.1), we obtain

x$(t+s, !)=U$(t+s, s) !+|
t

0
U$(t+s, {+s) f $(t+s, x$({+s, !)) d{.

Since, [U$(t, s)](t, s) # R2 satisfies (2.2), & f &C k=& f $&Ck , and DkF $t+s(!)=
DkF&t&s(!), the estimate (4.3) for x( } , !) and [U( } , } )] with t<0 is
exactly the same as the estimate for x$( } , !) and [U$( } , } )], but with t
replaced by &t. This proves the claim.

For the remainder of the proof we assume that t�0.
To prove (4.3) for k=1, we differentiate (4.2) and use (2.2) to obtain

&DFt+s(!)&L1
�Me|t+M= |

t

0
e|(t&{) &DF{+s(!)&L1

d{.

After multiplication by e&|t, an application of Gronwall's inequality yields
(4.3).

Proceeding by induction on k, assume that (4.3) holds for 1, 2, ..., k&1.
After differentiation of both sides of (4.2), we find that

DkFt+s(!)=|
t

0
U(t+s, {+s) Dk(G{+s b F{+s)(!) d{.

The chain rule (2.2) together with (2.2) yield the estimate

&DkFt+s(!)&Lk

�M |
t

0
e|(t&{) :

k

i=1

:
j1+ } } } + ji=k

:
[l]

& f &C i `
i

r=1

&D jr F{+s(!)&Ljr
d{.
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Note that, for i=2, ..., k, the condition j1+ } } } + ji=k, implies jr�k&1,
for r=1, ..., i. Using the induction assumption, we have

&DkFt+s(!)&Lk

�M= {|
t

0
e|(t&{) &DkF{+s(!)&Lk

d{

+ :
k

i=2

:
j1+ } } } +ji=k

:
[l ]

|
t

0
e|(t&{)c exp \ :

i

r=1

jr(|+M=){+ d{=
�M= {|

t

0
e|(t&{) &DkF{+s(!)&Lk

d{+c |
t

0
e|(t&{)+k(|+M=){ d{= .

The estimate (4.3) follows from Proposition 2.5. K

Lemma 4.2. Suppose that k # [1, 2, ...] and, as in (4.2), Fs(!)=x(s, !). If
f # Ck, 1 and ==& f &C k, 1 , then there exists a positive constant c=c(|, k) such
that, for all !1{!2 # X and s, t # R,

&DkFt+s(!1)&DkFt+s(!2)&Lk
�ce(k+1)(|+M=) |t| |!1&!2 |X . (4.4)

Proof. As in Lemma 4.1, it suffices to give the proof for t�0.
For k=0 the estimate (4.4) is proved in [13, Lemma VII.5.2].
Proceeding by induction on k, we fix k�1 and assume that (4.4) holds

for 0, 1, 2, ..., k&1.
Apply Dk in (4.2) and use the chain rule (2.4) with e=(e1 , ..., ek) and

|ei |=1 to obtain

[DkFt+s(!1)&DkFt+s(!2)](e)=|
t

0
U(t+s, {+s) :

k

i=1

:
j1+ } } } + ji=k

:
[l]

2i d{,

(4.5)

where

2i=DiG{+s(F{+s(!1))(u(1))&DiG{+s(F{+s(!2))(u (2)),

and u(&)=(u (&)
1 , ..., u (&)

i ), &=1, 2 with

u (&)
r =D jrF{+s(!&)(elj1+ } } } +ljr&1

+1 , ..., elj1+ } } } +ljr
), (4.6)
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for r=1, ..., i and i=1, ..., k. Since |ei |=1, using Lemma 4.1 we have

|u (&)
r |�cejr (|+M=) |{|, r=1, ..., i, i=1, ..., k, &=1, 2. (4.7)

For i=1, by (4.6) with j1=k, we obtain

|u(1)
1 &u (2)

1 |�&DkF{+s(!1)&DkF{+s(!2)&Lk
. (4.8)

For i=2, ..., k, we find jr�k&1, r=1, ..., i. Hence, by the induction
assumption,

|u(1)
r &u (2)

r |�ce( jr+1)(|+M=) |{| |!1&!2 |, r=1, ..., i. (4.9)

Also, for k=0, (4.4) gives

|x({+s, !1)&x({+s, !2)|�ce(|+M=) |{| |!1&!2 |. (4.10)

We will estimate |2i |, i=1, ..., k in (4.5). For this, apply (2.6) with n=i,
A=DiG{+s(F{+s(!2)), and e(&)=u(&)=(u (&)

1 , ..., u (&)
i ). Clearly,

|2i |�|[DiG{+s(F{+s(!1))&Di (G{+s(F{+s(!2))](u(1))|+|A(u(1))&A(u(2))|

�& f &Ci, 1 |x({+s, !1)&x({+s, !2)| `
i

r=1

|u (1)
r |

+& f &Ci :
i

r=1
\ `

p<r

|u (1)
p |+ |u (1)

r &u (2)
r | \ `

p>r

|u (2)
p |+ .

For i=1, the estimates (4.7), (4.8), (4.10), with j1=k, yield

|21 |�=ce(|+M=){ |!1&!2 | } cek(|+M=){+= &DkF{+s(!1)&DkF{+s(!2)&Lk
.

(4.11)

For i=2, ..., k, the estimates (4.7), (4.9), (4.10) give

|2i |�=ce(|+M=){ |!1&!2 | } ce(|+M=) � i
r=1 jr{

+= :
i

r=1

ce(|+M=) � p<r jp{ } ce(|+M=)( jr+1){ |!1&!2 | } ce(|+M=) � p>r jp{.

Taking into account (see (4.5)) the fact that �i
r=1 jr=k, we conclude that

there exists a constant c=c(|, k) such that, for i=2, ..., k,

|2i |�=ce(k+1)(|+M=){ |!1&!2 |. (4.12)
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We substitute (4.11) and (4.12) in (4.5) and use (2.2) to obtain

&DkFt+s(!1)&DkFt+s(!2)&Lk

�M= |
t

0
e|(t&r)[&DkF{+s(!1)

&DkF{+s(!2)&Lk
+ce (k+1)(|+M=){ |!1&!2 |] d{.

Gronwall's inequality (Proposition 2.5) yields the estimate (4.4) for the
integer k. K

Proof of Theorem 2.7. In the proofs of (2.10) and (2.11) we will give
estimates only for the k th derivative; lower order derivatives are estimated
in a similar manner.

Fix . # Ck, 1. We will use the notation 8s(!)=.(s, !) and, for a solution
x( } , !) of (4.1), we will use Fs(!)=x(s, !).

We will estimate &Dk(. b S t)(s, !)&Lk
, that is, &Dk(8s b Fs)(!)&Lk

by
using the chain rule (2.4). In fact, we have

[Dk(8t+s b Ft+s)](!)(e1 , ..., ek)

= :
k

i=1

:
j1+ } } } +ji=k

:
[l]

Di8t+s(Ft+s(!))(u1 , ..., ui ).

Here, see (2.5), we define

ur=D jr Ft+s(!)(elj1+ } } } +ljr&1
+1 , ..., elj1

+ } } } +ljr
), r=1, ..., i.

Using (4.3) from Lemma 4.1, we obtain the estimate

&Dk(. b St)(s, !)&Lk
� :

k

i=1

:
j1+ } } } +ji=k

:
[l]

&.&C i `
i

r=1

&D jr Ft+s(!)&Ljr

�c(|, k) e� i
r=1 jr (|+M=) |t| &.&C k

=c(|, k) ek(|+M=) |t| &.&C k .

This proves (2.11).
To finish the proof of (2.10), fix !1{!2 . Again, apply the chain rule (2.4)

with 8 and F as above. This time, see (2.5), we define, for r=1, ..., i and
i=1, ..., k:

u (&)
r =D jr Ft+s(!&)(elj1+ } } } +ljr&1

+1 , ..., elj1+ } } } +ljr
), &=1, 2.
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Then, for e=(e1 , ..., ek) with |ei |=1 and i=1, ..., k, we have

|Dk(. b St)(s, !1)(e)&Dk(. b St)(s, !2)(e)|� :
k

i=1

:
j1+ } } } +ji=k

:
[l]

|2i |,

(4.13)

where, for i=1, ..., k,

|2i |� |Di8t+s(Ft+s(!1))(u (1)
1 , ..., u (1)

i )&Di8t+s(Ft+s(!1))(u (2)
1 , ..., u(2)

i )|

+|[Di 8t+s(Ft+s(!1))&Di 8t+s(Ft+s(!2))](u (2)
1 , ..., u (2)

i )|. (4.14)

To estimate the first norm in (4.14), we apply (2.6) with n=i, A=
Di8t+s(Ft+s(!)), and e(&)=u(&)=(u (&)

1 , ..., u (&)
i ), &=1, 2, to obtain

|Di8t+s(Ft+s(!1))(u(1))&Di8t+s(Ft+s(!1))(u(2))|

�&.&Ci :
i

r=1
\ `

p<r

|u (1)
p |+ |u (1)

r &u (2)
r | \ `

p>r

|u (2)
p |+

�&.&Ci :
i

r=1

[ce(|+M=) � p<r jp |t|

} ce(|+M=)( jr+1) |t| |!1&!2 | ce(|+M=) �p>r jp |t|]

�c(|, k) &.&Ci e(|+M=)(k+1) |t| |!1&!2 |.

Here, to estimate |u (&)
r |�&D jrFt+s(!&)&Ljr

and

|u (1)
r &u (2)

r |�&D jr Ft+s(!1)&D jr Ft+s(!2)&Ljr
,

we have used Lemma 4.1 and Lemma 4.2, respectively.
Returning to equation (4.14), we use Lemma 4.1 and Lemma 4.2 with k=0

to estimate the second norm in (4.14) as follows (recall, that �i
r=1 jr=k):

|[Di8t+s(Ft+s(!1))&Di8t+s(Ft+s(!2))](u (2)
1 , ..., u (2)

i )|

�&.&C i, 1 |x(t+s, !1 )&x(t+s, !2)| `
i

r=1

|u (2)
r |

�&.&C i, 1 ce(|+M=) |t| |!1&!2 | } e(|+M=) � i
r=1 jr |t|

�ce(k+1)(|+M=) |t| |!1&!2 | &.&C i, 1 .

Using this estimate in (4.13) yields

&Dk(. b St)(s, !1)&Dk(. b St)(s, !2)&Lk

�c(|, k) e(|+M=)(k+1) |t| |!1&!2 | &.&Ck, 1 ,

and the proof of (2.10) is complete. K
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Our next goal is to prove Theorem 2.8. Recall that the operators V t
& in

(2.14) are constructed using the solutions x&( } , !) of (2.12), where f, �& # Ck, 1

are given for &=1, 2. We also define ==& f &Ck, 1 and $=max[&�&&Ck, 1 :
&=1, 2], and assume that [U(t, s)] satisfies (2.2).

We know that x&( } , !) satisfies

x&(t+s, !)=U(t+s, s) !+|
t

0
U(t+s, {+s) f&({+s, x&({+s, !)) d{,

(4.15)

where, naturally, we let f&(t, x)= f (t, �&(t, x)) for &=1, 2. Since we will
have to differentiate (4.15), for notational convenience we define as above

Gt(!)= f (t, !), F &
t(!)=x&(t, !), 9 &

t(!)=�&(t, !). (4.16)

By Proposition 2.9, if k # [0, 1, ...] and $>0, then there exists a positive
constant d=d($, k) such that

& f&&C k, 1�d=, &=1, 2. (4.17)

The main step in the proof of Theorem 2.8 is contained in the following
lemma.

Lemma 4.3. Let x&( } , !), for &=1, 2, denote solutions of (2.12) and
define F &

s(!)=x&(s, !). If k # [0, 1, ...] and if | is the exponent in (2.2), then
there exist positive constants d=d(|, k) and c=c(|, k) so that, for all
(s, !) # R_X and t # R,

&DkF 1
t+s(!)&DkF 2

t+s(!)&Lk
�ce(k+1)(|+d=) |t| &�1&�2 &Ck . (4.18)

Proof. If k=0, then, using (4.15) and (2.2), we compute

|x1(t+s, !)&x2(t+s, !)|

�M & f &C 0, 1 |
t

0
e|(t&{)[ |�1({+s, x1({+s, !))&�2({+s, x1({+s, !))|

+|�2({+s, x1({+s, !))&�2({+s, x2({+s, !))|] d{

�M= |
t

0
e|(t&{)[&�1&�2&C0+&�2&C0, 1 |x1({+s, !)&x2({+s, !)|] d{,

and note that (4.18) follows from Proposition 2.5 with n=0.
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Fix k�1 and assume, by induction on k, that (4.18) holds for
0, 1, 2, ..., k&1. Apply Dk in (4.15), and use the notation (4.16) to obtain

DkF 1
t+s(!)&DkF 2

t+s(!)=|
1

0
U(t+s, {+s)[Dk(G{+s b 9 1

{+s b F 1
{+s)(!)

&Dk(G{+s b 9 2
{+s b F 2

{+s)(!)] d{. (4.19)

From the chain rule (2.4) we find that, for &=1, 2,

Dk(G{+s b (9 &
{+s b F &

{+s))(!)(e)

= :
k

i=1

:
j1+ } } } + ji=k

:
[l]

DiG{+s(9 &
{+s b F &

{+s)(u(&)), (4.20)

where e=(e1 , ..., ek) # Xk with |ei |=1 for i=1, ..., k, and (see the notations
(2.5)), u(&)=(u (&)

1 , ..., u (&)
i ) where, for r=1, ..., i,

u (&)
r =D jr (9 &

{+s b F &
{+s)(!)(elj1+ } } } +ljr&1

+1 , ..., elj1+ } } } +ljr
).

To compute u (&)
r , we again apply the chain rule (2.4). For &=1, 2 we

obtain

u (&)
r = :

jr

j=1

:
p1+ } } } + pj= jr

:
[l]

D j9 &
{+s(F &

{+s(!))(v(&)), (4.21)

where again, as in (2.5), for j=1, ..., jr , r=1, ..., i, i=1, ..., k we define

v(&) :=(v (&)
1 , ..., v (&)

j ), v (&)
_ =D p_ F &

{+s(!)(e), e # X p_, _=1, ..., j.

To complete the induction step for (4.18), we will use the estimates for
|u (&)

r | and |u (1)
r &u (2)

r | given in Proposition 4.5 below. To prove this
proposition, in its turn, we will need estimates for |v (&)

_ | and |v (1)
_ &v (2)

_ |,
given in the next Proposition 4.4. We remark, that for i=1 in (4.20) one
has j1=k and, for r=1 and j=1 in (4.21), also p1=k. For i=1 in (4.20)
and r=1, j=2, ..., k in (4.21) one has p_�k&1, _=1, ..., j. Finally, for
i=2, ..., k in (4.20) one has jr�k&1, r=1, ..., i, and, as a result, p_�k&1
for _=1, ..., j and j=1, ..., jr in (4.21).

Proposition 4.4. If k # [0, 1, ...], $>0, and |>0 is as in (2.2), then
there exist positive constants c=c(|, $, k) and d=d(|, $, k) such that the
following estimates hold :
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|v(&)
_ |�ce p_ (|+d=) |{|, for each p_ , _=1, ..., j ;

(4.22)

|v(1)
_ &v(2)

_ |�&DkF 1
{+s(!)&DkF 2

{+s(!)&Lk

for p1= j1=k, i=1, j=1; (4.23)

|v(1)
_ &v(2)

_ |�ce( p_+1)(|+d=) |{| &�1&�2&Cp_ for each p_�k&1.

(4.24)

Proof. Since x&( } , !) satisfies (4.15), one can apply Lemma 4.1 with
f =f& and k= p_ to obtain

|v (&)
_ |�&D p_ F &

{+s(!)&Lp_
�ce p_(|+M & f&&C

p_ , 1) |{|.

Now (4.17) implies (4.22).
For i=1, j=1, and p1= j1=k, the estimate (4.23) follows from the

definition of the quantity v (&)
1, 2 .

For i=1, j=2, ..., k, or for i=2, ..., k one has p_�k&1. Hence, one can
apply the induction assumption:

|v (1)
_ &v (2)

_ |�&D p_F 1
{+s(!)&D p_ F 2

{+s(!)&Lp_

�ce( p_+1)(|+d=) |{| &�1&�2&C p _ ,

and (4.24) is proved. K

Proposition 4.5. With the same assumptions as in Proposition 4.4, there
exist positive constants c=c(|, $, k) and d=d(|, $, k) such that the following
estimates hold :

|u (&)
r |�cejr(|+d=) |{| for r=1, ..., i ;

i=1, ..., k; &=1, 2; (4.25)

|u (1)
1 &u (2)

1 |�c[&DkF 1
{+s(!)&DkF 2

{+s(!)&Lk

+e(k+1)(|+d=) |{| &�1&�2&Ck] for i=1; (4.26)

|u (1)
r &u (2)

r |�ce( jr+1)(|+d=) |{| &�1&�2&C k for r=1, ..., i,

i=2, ..., k. (4.27)

Proof. To prove (4.25), we use (4.21) and apply (4.22) from Proposi-
tion 4.4 to obtain, for r=1, ..., i, i=1, ..., k, and &=1, 2,
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|u (&)
r |� :

jr

j=1

:
p1+ } } } + pj= jr

:
[l]

&�&&C j `
j

s=1

|v (&)
s |

� :
jr

j=1

:
p1+ } } } + pj= jr

:
[l]

c$e� j
s=1 ps(|+d=) |{|�ce jr (|+d=) |{|.

Similarly, for |u (1)
r &u (2)

r |, we use (4.21) to obtain

|u (1)
r &u (2)

r |� :
jr

j=1

:
p1+ } } } +pj=jr

:
[l]

[ |D j9 1
{+s(F

1
{+s(!))(v(1))

&D j (9 2
{+s(F

2
{+s(!))(v(2))|]

� :
jr

j=1

:
p1+ } } } pj=jr

:
[l]

[ |[D j9 1
{+s(F

1
{+s(!))

&D j9 2
{+s(F

2
{+s(!))](v(1))|+|D j9 2

{+s(F
2
{+s(!))(v(1))

&D j9 2
{+s(F

2
{+s(!))(v(2))|].

Using (2.6)�(2.7) with e(&)=v(&) and A=D j9 2
{+s(F

2
{+s(!)), we find that

|u (1)
r &u (2)

r | is bounded by

:
jr

j=1

:
p1+ } } } + pj= jr

:
[l] {[&D j9 1

{+s(F 1
{+s(!))&D j9 1

{+s(F
2
{+s(!))&Lj

+&D j9 1
{+s(F 2

{+s(!))&D j 9 2
{+s(F

2
{+s(!))&Lj

] `
j

s=1

|v (1)
s |

+&�2&C j :
j

s=1
\ `

l<s

|v (1)
l |+ |v (1)

s &v (2)
s | \`

l>s

|v (2)
l |+= . (4.28)

Note that, in (4.28) by the induction assumption (4.18) with k=0,

&D j9 1
{+s(F

1
{+s(!))&D j 9 1

{+s(F 2
{+s(!))&Lj

�&�1&C j, 1 |x1({+s, !)&x2({+s, !)|�ce (|+d=) |{| &�1&�2&Ck .

Also, we have

&D j (9 1
{+s b F 2

{+s)(!)&D j (9 2
{+s b F 2

{+s)(!)&Lj
�&�1&�2&C 0 .

Finally, we apply (4.22) from Proposition 4.4 in (4.28) to obtain

|u (1)
r &u (2)

r |� :
jr

j=1

:
p1+ } } } + pj= jr

:
[l]

[ce( jr+1)(|+d=) |{| &�1&�2&C k

+$ :
j

s=1
\ `

l<s

|v(1)
l |+ |v (1)

s &v (2)
s | \ `

l>s

|v (2)
l |+= . (4.29)
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To finish the proof of (4.26) and (4.27), we consider two cases: i=1 and
2�i�k.

For i=1, we apply the estimates (4.23), (4.24) in (4.29) to get

|u (1)
1 &u (2)

1 |�c {e(k+1)(|+d=) |{| &�1&�2 &C k+&Dk F 1
{+s(!)&DkF 2

{+s(!)&Lj

+ :
jr

j=2

:
p1+ } } } +ps=jr

:
[l]

e�l<s pl (|+d=) |{|

} e( ps+1)(|+d=) |{| &�1&�2&C p s } e�l>s pl (|+d=) |{|= .

This proves (4.26).
For i=2, ..., k and r=1, ..., i, we apply the estimates (4.24) and (4.22) in

(4.29) to get

|u (1)
1 &u (2)

1 |� :
jr

j=1

:
p1+ } } } + pj= jr

:
[l]

[c( jr+1)(|+d=) |{| &�1&�2 &C k

+ce� l<s pl (|+d=) |{| } e( ps+1)(|+d=) |{| &�1&�2&C p s

} e�l>s pl (|+d=) |{|].

This proves (4.27). K

We have all the ingredients to finish the proof of Lemma 4.3. To this
end, we will make an estimate in (4.19) using (4.20). Recall that, for
i=1 in (4.20), one has j1=k, while, for i=2, ..., k, one has jr�k&1 for
r=1, ..., i. We use (2.2) together with (4.19) to obtain

|[DkF 1
t+s(!)&DkF 2

t+s(!)](e)|

�M |
t

0
e|(t&{) { |DG{+s(9 1

{+s b F 1
{+s(!))(u (1)

1 )

&DG{+s(9 2
{+s b F 2

{+s(!))(u (2)
1 )| (4.30)

+ :
k

i=2

:
j1+ } } } +ji=k

:
[l]

|DiG{+s(9 1
{+s b F 1

{+s(!))(u(1)) (4.31)

&DiG{+s(9 2
{+s b F 2

{+s(!))(u(2))|= d{.
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First, we see that the expression in (4.30) is bounded by

|[DG{+s(9 1
{+s b F 1

{+s(!))&DG{+s(9 2
{+s b F 2

{+s(!))](u (1)
1 )|

+&DG{+s(9 2
{+s b F 2

{+s(!))&L1
|u (1)

1 &u(2)
1 |

�& f &C 1, 1 [ |�1({+s, x1({+s, !))&�1({+s, x2({+s, !))|

+|�1({+s, x2({+s, !))&�2({+s, x2({+s, !))|] |u (1)
1 |

+& f &C1 |u (1)
1 &u (2)

1 |

�& f &C 1, 1 [&�1&C0, 1 |x1({+s, !)&x2({+s, !)|+&�1&�2&C 0 ] |u (1)
1 |

+& f &C1 |u (1)
1 &u (2)

1 |.

We will apply Proposition 4.5. Since i=1 in (4.30), we have j1=k. We use
(4.25) and (4.26), together with the induction assumption (4.18) with k=0
to see that in fact the expression in (4.30) is bounded by

c=[&DkF 1
{+s(!)&DkF 2

{+s(!)&Lk
+e(k+1)(|+d=) |{| &�1&�2 &Ck]. (4.32)

Next, we use (2.6)�(2.7) to observe that the expression (4.31) is bounded
above by

:
k

i=2

:
j1+ } } } +ji=k

:
[l]

[ |[DiG{+s(9 1
{+s b F 1

{+s(!))

&DiG{+s(9 2
{+s b F 2

{+s(!))](u(1))|+|DiG{+s(9 2
{+s b F 2

{+s(!))(u(1))

&DiG{+s(9 2
{+s b F 2

{+s(!))](u(2))|]

� :
k

i=2

:
j1+ } } } +ji=k

:
[l] {[&[DiG{+s(9 1

{+s b F 1
{+s(!))

&DiG{+s(9 2
{+s b F 2

{+s(!))&Li
+&[DiG{+s(9 1

{+s b F 2
{+s(!))

&DiG{+s(9 2
{+s b F 2

{+s(!))&Li
] `

i

r=1

|u (1)
r |

+&DiG{+s(9 2
{+s b F 2

{+s(!))&Li
:
i

r=1 \ `
s<r

|u (1)
s |+ |u (1)

r

&u(2)
r | \ `

s>r

|u (2)
s |+=
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� :
k

i=2

:
j1+ } } } +ji=k

:
[l] {[& f &Ci, 1 &�1&C 0, 1 |x1({+s, !)&x2({+s, !)|

+& f &Ci, 1 &�1&�2&C0 ] ` |u (1)
r |

+& f &Ci :
i

r=1
\ `

s<r

|u (1)
s |+ |u (1)

r &u (2)
r | \ `

s>r

|u (2)
s |+= .

As before, we will apply the induction assumption (4.18) with k=0, and
the estimates (4.25) and (4.27) to conclude that the expression (4.31) is
bounded by

c=e(k+1)(|+d=) |{| &�1&�2 &C k . (4.33)

The estimates (4.32) and (4.33) for (4.30) and (4.31) yield the inequality

&DkF 1
t+s(!)&DkF 2

t+s(!)&Lk

�d= |
t

0
e|(t&{) [&Dkx1({+s, !)&Dkx2({+s, !)&Lk

+&�1&�2 &Ck e(k+1(|+d=) |{|] d{

with a positive constant d=d(|, $, k). Now Proposition 2.5 with n=k+1�2,
a=d=, and b=&�1&�2 &Ck gives the inequality

&Dkx1(t+s, !)&Dkx2(t+s, !)&Lk
�Re (k+1)(|+d=) |t|,

where

R=
d=

k(|+d=)
&�1&�2&Ck�c(|, $, k) &�1&�2&C k . K

Proof of Theorem 2.8. For a fixed t # R, we will estimate

sup[&Dk(8t+s b F 1
t+s(!)&Dk(8t+s b F 2

t+s)(!)&Lk
: s # R, ! # X],

where, as above, 8t(!)=.(t, !). The estimates for the lower order
derivatives follow similarly. Recall that x&( } , !) for &=1, 2 are the solutions
to (2.12) and that F &

t(!)=x&(t, !).
As usual, for &=1, 2 and for a fixed (s, !) # R_X, we will apply the

chain rule (2.4). In fact, we find that

Dk(8t+s b F 1
t+s)(!)(e)= :

k

i=1

:
j1+ } } } +ji=k

:
[l]

Di8t+s(F 1
t+s(!))(u(&)),
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where, see the notation of (2.5), e=(e1 , ..., ek) # Xk, with |ei |=1, for
i=1, ..., k, and for r=1, ..., i,

u(&)=(u (&)
1 , ..., u (&)

i ), u (&)
r =D jr F &

t+s(!)(elj1+ } } } +ljr&1
+1 , ..., elj1+ } } } +ljr

).

We have

|[Dk(8t+s b F 1
t+s(!)&Dk(8t+s b F 2

t+s(!)](e)|

� :
k

i=1

:
j1+ } } } +ji=k

:
[l]

[ |[Di8t+s(F 1
t+s(!))&Di8t+s(F 2

t+s(!))](u(1))|

(4.34)

+|Di8t+s(F 2
t+s(!))(u (1))&Di8t+s(F 2

t+s(!))(u (2))|]. (4.35)

We use (2.7) to show that the expression in (4.34) is bounded by

&.&C i, 1 |x1(t+s, !)&x2(t+s, !)| `
i

r=1

|u (1)
r |.

To estimate |x1(t+s, !)&x2(t+s, !)|, we use Lemma 4.3 with k=0. To
estimate |u (1)

r | we use Lemma 4.1 with k= jr and f =f& in this lemma.
Then, using (4.17), we find that the expression (4.34) is bounded by

&.&Ci, 1 ce(|+d=) |t| &�1&�2&C 0 } ce� i
r=1 jr (|+M & f&&C

jr , 1 ) |t|

�ce(k+1)(|+d=) |t| &�1&�2&Ck &.&C k, 1. (4.36)

To estimate (4.35), we use (2.6)�(2.7) with n=i, A=Di8t+s(F 2
t+s(!)),

and e(&)=u(&), &=1, 2, to show that the expression (4.35) is bounded by

&.&C i :
i

r=1
\ `

p<r

|u (1)
p |+ |u (1)

r &u (2)
r | \ `

p>r

|u (2)
p |+ .

Now, for |u (&)
p | and |u (1)

r &u (2)
r |, we apply Lemma 4.1 with k= jp , f =f&

and Lemma 4.3 with k= jr , respectively, to show that the expression (4.35)
is bounded by

&.&C i c exp \ :
p<r

jp(|+M & f1 &C j p , 1 ) |t|+
_exp(( jr+1)(|+d=) |t| &�1&�2&C j r)

_exp \ :
p>r

jp(|+M & f2&C j p , 1) |t|+ .

387CENTER MANIFOLDS



File: DISTIL 334333 . By:DS . Date:02:12:97 . Time:11:08 LOP8M. V8.B. Page 01:01
Codes: 2670 Signs: 1677 . Length: 45 pic 0 pts, 190 mm

By (4.17), we find that the expression in (4.35) is bounded by

ce(k+1)(|+d=) |t| &�1&�2&C k &.&Ck, 1 . (4.37)

Finally, we apply (4.36)�(4.37) in (4.34)�(4.35) to obtain

&Dk(8t+s b F 1
t+s)(!)&Dk(8t+s b F 2

t+s)(!)&Lk

�ce(k+1)(|+d=) |t| &�1&�2&C k &.&C k, 1 ,

and Theorem 2.8 is proved. K

5. CENTER MANIFOLDS FOR SKEW-PRODUCT FLOWS

In this section we will give an application of Theorem 3.4. Actually, we
will apply this theorem in an autonomous situation where the evolution
family [U(t, s)] is, in fact, a specific semigroup, the evolution semigroup
generated by a linear skew-product flow. As a result, we will prove the
existence of a Lipschitz invariant manifold for a semilinear skew-product
flow. The existence of a differentiable invariant manifold for this situation
in the finite dimensional setting was proved by Chow and Yi in [12]. We
do not consider the question of the smoothness of the invariant manifold
in this paper, but we believe that our approach could be used to analyze
this question as well.

Let ,t denote a flow on a compact metric space 3, let Z denote a
Banach space, and let [8t]t�0 denote a linear cocycle over ,t ; that is, for
each % # 3, we have 8t(%) # L(Z) and, for all t, s�0, we have the follow-
ing identities:

8t+s(%)=8t(,s%) 8s(%), 80(%)=I.

Here, we assume that the cocycle [8t] is strongly continuous, that is
(t, %) [ 8t(%)z is continuous from R+_3 to Z for each z # Z.

For H : 3_Z � Z, a globally Lipschitz function, let us consider the
semilinear skew-product flow (t on 3_Z given by

(t(%, `)=(,t%, z(t ; %, `)), (5.1)

where, for % # 3 and ` # Z, the function t [ z(t ; %, `) is the solution of the
following integral equation:

z(t ; %, `)=8t(%)`+|
t

0
8t&s(,s%) H(,s%, z(s ; %, `)) ds. (5.2)
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If z( } ; %, `) and the cocycle 8t are differentiable, and if

A(%) :=
d
dt } t=0

8t(%),

then t [ z(t ; %, `) is the solution of the abstract Cauchy problem

z* =A(,t%)z+H(,t%, z), z(0)=`. (5.3)

The special case where the Banach space Z is finite dimensional and where
z is the solution of an abstract Cauchy problem is considered in [12].

Returning to the general equation (5.2) for a strongly continuous
cocycle, let 7 denote the Sacker�Sell spectrum for the linear skew-product
flow

,� t : 3_Z � 3_Z : (%, `) [ (,t(%), 8t(%)`).

In this section we will show that the semilinear skew-product flow (t has
a Lipschitz invariant manifold M/3_Z provided that &H&C0, 1 is
sufficiently small and the Sacker�Sell spectrum 7 satisfies a gap condition.
Our strategy is to reduce the existence of an invariant manifold for the
nonautonomous skew-product flow (t over 3 to a corresponding existence
problem in an autonomous setting on the space X of continuous vector
functions x : 3 � Z. A similar idea was used by R. Johnson in [21] in the
finite dimensional setting, see Remark 1 below. The philosophy of ``lifting''
the flow to a space of functions was exploited in [25] (see also [7, 22])
for the case of linear skew-product flows by the introduction of a special
semigroup of operators on the space of continuous vector-functions, the
evolution semigroup. This concept will play a fundamental role in the rest
of this section.

The evolution semigroup [Et]t�0 associated with a linear skew-product
flow is a semigroup on the space X=C(3 ; Z) of continuous functions
x: 3 � Z with sup-norm��a space that is isomorphic to the space of
continuous sections of the trivial bundle 3_Z � 3��that is defined by the
following rule:

(E tx)(%)=8t(,&t%) x(,&t%). (5.4)

We will formulate below three facts about these evolution semigroups. In
order to do this, let us recall that a semigroup [Et] is called hyperbolic
provided that _(E 1) & [z : |z|=1]=<. Also, the linear skew-product
flow ,� t is said to have an exponential dichotomy (see [36, 37]) if there
exists a strongly continuous projection-valued function P : 3 � L(Z) and
a complementary projection Q defined by Q(%) :=I&P(%) such that
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8t(%) P(%)=P(,t%) 8t(%), the restriction 8t
Q(%)=8t(%) | Im Q(%) is inver-

tible as an operator from Im Q(%) to Im Q(,t%), and if there are constants
;>0 and C>0 such that, for all % # 3 and t�0, the following estimates
hold:

&8t
P(%)&�Ce&;t, &[8t

Q(%)]&1&�Ce&;t.

We will need the following facts (see [25]).

Proposition 5.1. The evolution semigroup [Et] is hyperbolic on X if and
only if the linear skew-product flow ,� t on 3_Z has exponential dichotomy.

Proposition 5.2. Suppose that the evolution semigroup [Et] is hyper-
bolic. If P denotes the Riesz projection for E 1 on X=C(3, Z) corresponding
to the part of the spectrum of E1 that lies inside of the open unit disk, then
the projection P has a form (Px)(%)=P(%) x(%), where P is the projection-
valued function given in the definition of the exponential dichotomy for [,� t].
Conversely, if P is the projection-valued function given in the definition of the
exponential dichotomy for [,� t], then (Px)(%)=P(%) x(%) defines the Riesz
projection P for E1 on X=C(3, Z).

The following formula relates the spectrum of the evolution semigroup
on X and the Sacker�Sell spectrum of the linear skew-product flow.

Proposition 5.3. 7=ln |_(E 1)"[0]|.

As a result, the spectral projections for E1 give the Sacker�Sell spectral
decomposition for [,� t] that corresponds to the components of 7.

We formulate the gap condition for the linear skew-product flow [,� t]
as follows: Assume that 7=7c _ 7h with 7c & 7h=< and define ;h=
inf[ |*| : * # 7h] and |c=sup[ |*| : * # 7c]. The skew-product flow satisfies
the gap condition provided

;h&|c>0. (5.5)

By Proposition 5.3, the gap condition is, in fact, the spectral condition
(S) imposed on the evolution semigroup [Et]. Also, by Propositions
5.1�5.2, the existence of the decomposition 7=7c _ 7h implies the
existence of the corresponding spectral (cf. [36, 37]) decomposition of the
trivial bundle 3_Z into a direct sum of subbundles Zc and Zh where, in
its turn, Zh=Z+

h �Z&
h . The spectral subbundles Zc , Zh , and Z\

h are given
by the corresponding spectral projections Pc , Ph , P\

h for the operator E1.
We use the notation Zc, h(%)=Im Pc, h(%) to specify the fibers of the
spectral subbundles.
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Theorem 5.4. Consider the bundle 3_Z, a function H : 3_Z � Z, and
the corresponding (nonlinear) skew-product flow (t defined by equations
(5.1) and (5.2). For each '>0 there exists =>0 such that if &H&C0, 1�=, then
(t has an invariant manifold, given by the graph of a function � : 3_Z � Z.
In fact, the invariant manifold has the form

M�=[(%, `c+�(%, `c)) : % # 3, `c # Zc(%)],

where � is an element of the space

L' :=[� # C0(3_Z, Z) : &�&C 0, 1�', �(%, } ) : Zc(%) � Zh(%)].

Proof. Consider a semigroup [Et]t�0 of (nonlinear) operators on X=
C(3 ; Z) defined by

Et(x)(%)=z(t ; ,&t%, x(,&t%)). (5.6)

Using (5.2), we see that for each fixed x # X and all % # 3,

Et(x)(%)=8t(,&t%) x(,&t%)+|
t

0
8t&s(,s&t%) } H(,s&t%, Es(x)(,s&t%)) ds.

(5.7)

Define g : X � X by g(x)(%)=H(%, x(%)). From the definition (5.4) of the
evolution semigroup [Et]t�0, equation (5.7) becomes

Et(x)=Etx+|
t

0
Et&{ b g(E{(x)) d{.

Thus, if we fix x0 # X and define U(t, {)=Et&{, then the function R � X
given by t [ Et(x0) satisfies equation (3.1). Let X=Xc �Xh be the spectral
decomposition for the linear semigroup [Et]t�0 that satisfies

ln |_(E 1
c)"[0] |=7c , ln |_(E 1

h)"[0]|=7h .

By Proposition 5.2, the corresponding spectral projections Pc and Ph

for E 1 on X are multiplication operators whose multipliers are strongly con-
tinuous projection-valued functions Pc , Ph : 3 � L(Z); that is, (Pc, h x)(%)=
Pc, h(%) x(%). Thus, for j equal to c or h, we have that

Xj=[x # C(3 ; Z) : x(%) # Zj (%), % # 3].

Our strategy to complete the proof of the theorem is to first use Theorem
3.4 to prove the existence of a function 9 : Xc � Xh whose graph is
invariant for the flow Et on X. This 9 will be found as a fixed point of a
Lyapunov�Perron operator on C0(Xc , Xh). Next, we will ``push'' the graph
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of 9 back to 3_Z. To be more precise, we will show that 9 can be
``localized in the variable % ''; that is, there exists a function � : 3_Z � Z
such that �(%, } ) : Zc(%) � Zh(%), and the following condition holds: For
each fixed % # 3 and `c # Zc(%) we have �(%, `c)=9(xc)(%) for every
function xc # Xc with the property xc(%)=`c . The graph of this function �
will be the desired invariant manifold for (t.

To start, we define

L'=[9 # C0(X, X ) : &9&C 0, 1 (X, X )�' and 9 : Xc � Xh].

Thus, for 9 # L' and % # 3, if xc # Xc , we have xc(%) # Zc(%) and 9(xc)(%) #
Zh(%). The graph M9=[xc+9(xc) : xc # Xc] of the function 9 # L' is an
invariant set for the nonlinear evolution semigroup Et on X if and only if
9 is a fixed point of the Lyapunov�Perron integral operator T on
C0(Xc , Xh), see formula (3.12) above, given by

T(9)(x0
c)=|

�

&�
K(&s) gh(xc(s, x0

c)+9(xc(s, x0
c))) ds. (5.8)

Here, K denotes the Green's function for the hyperbolic linear semigroup
E t

h=Et | Xh , and we have defined gh(x) :=Phg(x) where Ph is the projec-
tion Ph : X � Xh , and t [ xc(t, x0

c) denotes the solution of the Xc-equation

xc(t, x0
c)=E t

cx0
c+|

t

0
E t&s

c gc(xc(s, x0
c)+9(xc(s, x0

c))) ds. (5.9)

In the course of the proof of Theorem 3.4, we showed that T is a strict
contraction of L' provided the gap condition (5.5) holds and &g&C 0, 1 (X, X )

is sufficiently small.
First, we note that

&g(x1)& g(x2)&X =sup
% # 3

|H(%, x1(%))&H(%, x2(%))| Z

�sup
% # 3

&H&C 0, 1 (3_Z, Z) |x1(%)&x2(%)|Z

�&H&C0, 1 (3_Z, Z) &x1&x2 &X

where the Lipschitz norm of H is defined by

&H&C 0, 1 (3_Z, Z)

=sup
% # 3

max[sup
z # Z

|H(%, z)|, sup
z1{z2

|H(%, z1)&H(%1 , z2)|�|z1&z2 |].

This implies &g&C0, 1 (X, X )�&H&C 0, 1 (3_Z, Z) .
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To prove the theorem, we will show that T preserves a closed subset
L', loc/L' , and, hence, has a fixed point 9 # L', loc . We define L', loc to be
the set of all functions 9 # L' with the following property: For each point
%0 # 3 and for all x1 , x2 # Xc , if x1(%0)=x2(%0), then 9(x1)(%0)=9(x2)(%0).

Lemma 5.5. T preserves the closed subset L', loc/L' .

We will postpone the proof of the lemma and complete the proof of the
theorem. To this end, let 9 # L', loc denote the unique fixed point of the
contraction T. We define the function � # L' , where L' is the space
defined in the statement of the theorem, by the following procedure: For
each (%, `c) # 3_Zc(%) choose a function xc # Xc such that xc(%)=`c and
then define

�(%, `c) :=9(xc)(%). (5.10)

Since 9 # L', loc , the function � is well defined.
Consider the graph M� of the function �. We want to see that M� is

invariant under (t in (5.1)�(5.2). Fix %0 # 3, `c # Zc(%0) and let `=`c+
�(%0 , `c). In fact, we want to show the following: If zc(t) :=Pc(,t%0) z(t, %0 , `)
satisfies

zc(t)=Pc(,t%0) 8t(%0) `c+|
t

0
Pc(,t%0) 8t&s(,s%0) Hc(,s%0 , zc(s)

+�(,s%0 , zc(s))) ds, (5.11)

then zh(t)=�(,t%0 , zc(t)) satisfies

zh(t)=Ph(,t%0) 8t(%0) �(%0 , `c)+|
t

0
Ph(,t%0) 8t&s(,s%0) Hh(,s%0 , zc(s)

+�(,s%0 , zc(s))) ds.

Here, Pc, h(%) : Z � Zc, h(%) are the projections associated with the Riesz
projections Pc, h : X � Xc, h for E 1. In particular, we have

(Pc, h x)(%)=Pc, h(%) x(%), and

Hc, h(%, z)=Pc, h(%)H(%, z), % # 3, z # Z.

Recall that M9 , the graph of 9, is invariant for Et on X=C(3 ; Z). This
means that, for each x0

c # Xc , if the function xc( } ; x0
c) : R+ � Xc solves
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equation (5.9), then the function 9(xc( } , x0
c)) : R+ � Xh satisfies the

equation

9(xc(t ; x0
c))=E t

h9(x0
c)+|

t

0
E t&s

h gh(xc(s, x0
c)+9(xc(s, x0

c))) ds. (5.13)

Choose x0
c # Xc such that x0

c(%0)=`c . If equation (5.9) holds, then for every
% # 3 we have

xc(t ; x0
c)(%)=Pc(%) 8t(,&t%) x0

c(,&t%)

+|
t

0
Pc(%) 8t&s(,s&t%) Pc(,s&t%) H(,s&t%, xc(s ; x0

c)(,s&t%)

+9(xc(s; x0
c))(,s&t%)) ds. (5.14)

Recall that 9 # L', loc . In particular, for % # 3 and for � as defined in
(5.10), we have

9(xc(s ; x0
c))(,s%)=�(,s%, xc(s ; x0

c)(,s%)).

Using this fact, the evaluation of equation (5.14) at the point %=,t%0 has
the following form:

xc(t, x0
c)(,t%0)=Pc(,t%0) 8t(%0) x0

c(%0)+|
t

0
Pc(,t%0) 8t&s(,s%))

_Pc(,s%0) H(,s%0 , xc(s ; x0
c)(,s%0)

+�(,s%0 , xc(s ; x0
c)(,s%0))) ds.

Thus, zc(t) :=xc(t ; x0
c)(,t%0) satisfies (5.11).

Similarly, in view of equation (5.13), for % # 3 we have

9(xc(t; x0
c)(%)

=Ph(%) 8t(,&t%) 9(x0
c)(,&t%)

+|
t

0
Ph(%) 8t&s(,s&t%) Ph(,s&t%) H(,s&t%, xc(s; x0

c)(,s&t%)

+9(xc(s; x0
c))(,s&t%)) ds. (5.15)

Moreover, since 9 # L', loc , we have

9(xc(t; x0
c))(,t%0)=�(,t%0 , xc(t, x0

c)(,t%0))=�(,t%0 , zc(t))=zh(t).

Using equation (5.15) evaluated at %=,t%0 , we have that zh(t) indeed
satisfies equation (5.12).
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Proof of Lemma 5.5. Fix 9 # L', loc and let the operator T be defined
as in Eq. (5.8). We will first show the following proposition: For each
%0 # 3 and every x1 , x2 # C(3, X ), if x1(%0)=x2(%0), then T(9 )(x1)(%0)=
T(9 )(x2)(%0).

Since 9 : Xc � Xh is in L', loc , we can define the function � as in (5.10).
Then, �(%, } ) : Zc(%) � Zh(%) and, for each xc # Xc , we have 9(xc)(%)=
�(%, xc(%)).

Fix %0 # 3 and x0
i # Xc , i=1, 2 such that x0

1(%0)=x0
2(%0). Let xc( } ; x0

i ) :
R � Xc denote the solutions of the equation

xc(t ; x0
i )=E t

cx0
i +|

t

0
E t&s

c gc(xc(s ; x0
i )+9(xc(s ; x0

i ))) ds. (5.16)

Claim. If t # R, then xc(t ; x0
1)(,t%0)=xc(t ; x0

1)(,t%0).
To prove the claim, we remark that using equation (5.16), if % # 3 and

i=1, 2, then

xc(t, x0
i )(%)=Pc(%) 8t(,&t%) x0

i (,&t%)

+|
t

0
Pc(%) 8t&s(,s&t%) H(,s&t%, xc(s; x0

i )(,s&t%)

+�(,s&t%, xc(s; x0
i )(,s&t%))) ds, (5.17)

where we have used the fact that 9(xc(s ; x0
i ))(,s&t%)=�(,s&t%, xc(s, x0

i )
(,s&t%)) for our function � defined by equation (5.10). For i=1, 2, if we
define zi (t)=xc(t; x0

i )(,t%0) and evaluate equation (5.17) at %=,t%0 , then
we see that zi ( } ) satisfies the equation

zi (t)=8t
c(%0) x0

i (%0)+|
t

0
8t&s

c (,s%0) H(,s%0 , zi (s)+�(,s%0 , zi (s))) ds.

Consider

h(t, `)=H(,t%0 , `+�(,t%0 , `)), t # R, ` # Zc(,t%0),

and U(t, {)=8t&{
c (,{%0). Clearly, h is globally Lipschitz and, by the cocycle

property, [U(t, {)]t�{ is an evolution family. By the assumption, x0
1(%0)=

x0
2(%0)=: `, and zi are the (mild) solutions to the following nonautonomous

equation

z(t)=U(t, 0)`+|
t

0
U(t, s) h(s, z(s)) ds.

395CENTER MANIFOLDS



File: DISTIL 334341 . By:DS . Date:02:12:97 . Time:11:08 LOP8M. V8.B. Page 01:01
Codes: 3067 Signs: 1870 . Length: 45 pic 0 pts, 190 mm

But, if h is Lipschitz, then this equation has a unique solution. Thus, we
conclude that z1(t)=z2(t) for all t # R, as required.

To finish the proof of the lemma, recall that

T(9 )(x0
i )=|

�

&�
K(&s) gh(xc(s; x0

i )+9(xc(s; x0
i ))) ds, i=1, 2, (5.18)

where the Green's function K for the hyperbolic evolution semigroup
[E t

h]t�0 is given (see, e.g., [26, Definition 4.1, Sect. 2], [25, formula
(5.2)],) as follows: K(s)=E s

+ for s>0 and K(s)=&E s
& for s<0. Here

E s
\=E s | Im P\ and P+ , resp. P&, is the Riesz projection for E 1

h that
corresponds to _(E 1

h) & [z : |z|<e&;h ], resp. to _(E 1
h) & [z : |z|>e;h]. In

other words, for the projections (P\ x)(%)=P\(%)x(%) one has:

K(s)(xh)(%)=P+(%) 8s
h(,&s%) xh(,&s%) for s>0,

K(s)(xh)(%)=&P&(%) 8s
h(,&s%) xh(,&s%) for s<0, % # 3, xh # Xh .

By the claim proved above, we have xc(s; x0
1)(,s%0)=xc(s ; x0

2)(,s%0), s # R.
If we evaluate equation (5.18) at %=%0 , we obtain

T(9 )(x0
i )(%0)=&|

�

0
P&(%0) 8&s

h (,s%0) H(,s%0 , xc(s ; x0
i )(,s%0)

+�(,s%0 , xc(s; x0
i )(,s%0))) ds

+|
0

&�
P+(%0) 8&s

h (,s%0) H(,s%0 , xc(s ; x0
i )(,s%0)

+�(,s%0 , xc(s ; x0
i )(,s%0))) ds.

The right-hand side of the last formula remains the same for i=1 and i=2.
Thus, T(9 )(x0

i )(%0)=T(9 )(x0
2)(%0), as required. K

Remark 1. We thank Yi for mentioning to us the paper [21] by Johnson
where a proof is given for the existence of invariant manifolds for skew-
product flows as in (5.3) in the finite dimensional setting with the base
metric space 3 taken to be the hull of a certain matrix-function. In this
paper, Johnson also used the idea of ``lifting'' the skew-product flow to a
space X of functions f : 3 � Z. Instead of X=C(3, Z), as we have used,
Johnson uses X=B(3, Z), the space of bounded functions. This allows him
to use results from [20] concerning the existence and smoothness of
invariant manifolds for the iterates of a map to prove the existence of
invariant manifolds for the flows that he considers. We note that for maps
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one can obtain 9 # B(3, Z) and then compute � as in (5.10) for the func-
tion xc # B(3, Z) defined so that xc(%)=`c and so that xc vanishes else-
where. Thus, for X=B(3, Z) our ``localization'' argument used to show
that 9 # L', loc is not needed. However, the advantage of our choice of
X=C(3, Z) for the flow case is related to the fact that we obtain a space
X where [Et] is a strongly continuous semigroup. Thus, our Theorem 3.4
is directly applicable, and the transition from maps to flows is not needed.
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