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Host Matrix Modulation by Tumor

Exosomes Promotes Motility
and Invasiveness'~

Abstract

Exosomes are important intercellular communicators, where tumor exosomes (TEX) severely influence hematopoiesis
and premetastatic organ cells. With the extracellular matrix (ECM) being an essential constituent of non-transformed
tissues and tumors, we asked whether exosomes from a metastatic rat tumor also affect the organization of the ECM
and whether this has consequences on host and tumor cell motility. TEX bind to individual components of the ECM,
the preferential partner depending on the exosomes’ adhesion molecule profile such that high CD44 expression is
accompanied by hyaluronic acid binding and high agf34 expression by laminin (LN) 332 binding, which findings were
confirmed by antibody blocking. TEX can bind to the tumor matrix already during exosome delivery but also come in
contact with distinct organ matrices. Being rich in proteases, TEX modulate the ECM as demonstrated for degradation
of collagens, LNs, and fibronectin. Matrix degradation by TEX has severe consequences on tumor and host cell adhe-
sion, motility, and invasiveness. By ECM degradation, TEX also promote host cell proliferation and apoptosis resistance.
Taken together, the host tissue ECM modulation by TEX is an important factor in the cross talk between a tumor and
the host including premetastatic niche preparation and the recruitment of hematopoietic cells. Reorganization of the
ECM by exosomes likely also contributes to organogenesis, physiological and pathologic angiogenesis, wound healing,

and clotting after vessel disruption.
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Introduction

Tumors depend on a cross talk with the surrounding [1] to guarantee
survival (angiogenesis, immune escape) [2,3], for phenotypic changes
(epithelial-to-mesenchymal transition) required to leave the primary
tumor mass [4], and for preparing the bone marrow and premetastatic
organs allowing migrating tumor cells to settle and grow [5]. Recently,
evidence is accumulating that this tumor cell-host cross talk, which in-
cludes long distance communication, mostly relies on tumor exosomes
(TEX) [6-9].

Exosomes are small vesicles delivered by many cells in the organism
and abundantly by thrombocytes and tumor cells [10]. Exosomes de-
rive from early endosomes, which fuse to multivesicular bodies, from
where the individual vesicles are released as exosomes in the extracel-
lular space [11-14]. Accordingly, the exosomal protein profile is rich
in molecules located in membrane domains prone for internalization
such as rafts and tetraspanin-enriched microdomains as well as mole-
cules engaged in fission, scission, and vesicular transport, adhesion
molecules, and proteases [14-17]. Exosomes also harbor mRNA and
miRNA [18], where the delivery of miRNA may be the most important
factor in target cell modulation [18-21]. Nonetheless, the exosomal

membrane takes over an important function in binding and uptake by
selected target cells, where exosomal annexins, adhesion molecules, and
tetraspanins are involved [13,22,23]. For dendritic cells, it is known
that they can be replaced by exosomes, which provide peptide-loaded ma-
jor histocompatibility complex (MHC) and co-stimulatory molecules
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[24,25] and exosomal heat shock proteins that support non-adaptive
immune responses [26,27]. Finally, exosomes are rich in proteases that
are functionally active [28-31]. This has been explored for the impact
of exosomal proteases on the protein profile of exosomes, the release of
cytokines and soluble receptors [31-34], though to our knowledge the
impact of exosomal proteases on the extracellular matrix (ECM) has
not yet been explored.

We showed in a rat pancreatic adenocarcinoma model [35,36] that
exosomes are an important factor in premetastatic niche preparation
[37]. A CD44v4-v7*¢ of the highly metastatic BSp73ASML tumor
line (ASML", ASML-CD44v"%) poorly metastasizes but gains in
metastatic capacity, when rats are pretreated with conditioned me-
dium (CM) of the ASML™" line. While exosome-depleted CM
(CM™°) does not promote metastasis and exosomes by themselves
exert a weak effect, a mixture of ASMLY" CM™**° with exosomes
accelerates metastasis formation [37]. This finding pointed toward
a possible cross talk of exosomes not only with stroma cells but also
with the tumor and/or host matrix. We here explored this question
for the matrix of non-transformed lymph node stroma (LnStr) and
lung fibroblasts (LuFb) as lymph nodes and lungs are the metastatic
organs of ASML cells [35]. TEX have a strong impact on the stroma

cell matrix, which supports stroma cell motility and invasiveness.
Materials and Methods

Cell Lines

The rat pancreatic adenocarcinoma lines BSp73ASML (ASML™)
[35] and BSp73ASML-CD44v4-v7"! (ASML-CD44v") [36], a rat
aortic endothelial cell line (RAEC), a rat lung fibroblast line (LuFb),
and a rat lymph node stroma line (LnStr) [38] are maintained in
RPMI 1640/10% fetal calf serum (FCS). Culture medium of ASML-
CD44v* contains, in addition, 750 pg/ml G418. Confluent cultures
are detached with trypsin or EDTA and split.

Antibodies
Antibodies are listed in Table W1.

Exosome Preparation

Cells were cultured (48 hours) in serum-free medium. Cleared
supernatants (2 x 10 minutes, 500g; 1 x 20 minutes, 2000g; 1 x
30 minutes, 10,000g) were ultracentrifuged (90 minutes, 100,000g)
and washed [phosphate-buffered saline (PBS), 90 minutes, 100,000g].
The supernatant was collected as CM ™. The pellet was resuspended
(10 ml of PBS), layered on 10 ml of 40% sucrose, and centrifuged
(90 minutes, 100,000g). The top layer was removed, and the sucrose
layer was diluted with PBS and centrifuged (90 minutes, 100,000g).
Where indicated, exosomes were rhodamine-DHPE—- or SP-Dio; g
(3)-labeled (1:10,000 dilution; Invitrogen, Karlsruhe, Germany; 30 min-
utes, 4°C) before sucrose gradient centrifugation and two washings
(90 minutes, 100,000g). Relative fluorescence intensity was evaluated
at 540-nm excitation, 590-nm emission or 497-nm excitation, 513-nm
emission (Fluoroskan Ascent; Thermo Scientific, Karlsruhe, Germany)
and adjusted to thodamine-DHPE or SP-Dio;4(3) standards.

Western Blot

CM (200 pg) or exosomes (100 pg) were lysed (Hepes buffer, 1%
Lubrol or 1% Brij96, 1 mM PMSE, protease inhibitor mix, 30 min-
utes, 4°C). Lysates were resolved on 7% to 12% sodium dodecyl
sulfate—polyacrylamide gel electrophoresis (non-reducing). After trans-

fer, blocking, and immunoblot analysis with primary and HRP-labeled
streptavidin or secondary antibodies, blots were developed with the
enhanced chemiluminescence (ECL) detection system.

Flow Cytometry

Flow cytometry followed routine procedures; for intracellular staining,
cells were fixed and permeabilized in advance. Dye-labeled exosomes
were incubated with 4-pm aldehyde-sulfate latex beads (Invitrogen).
Where indicated, latex beads (1 pl) were coated with antibody or matrix
proteins (10 pg/ml) blocking free aldehyde groups [PBS/100 mM
glycine, 20 minutes, room temperature (RT)] before incubation with
exosomes. In blocking studies, exosomes were preincubated with
antibody and non-bound antibody was removed by washing and
ultracentrifugation. Samples were analyzed in a FACSCalibur using

the CellQuest program.

Immunofluorescence

Cells were seeded on glass cover slides and stained with the indi-
cated antibody. Alternatively, dye-labeled exosomes (15 pl, 40 pg/ml)
were seeded on matrix protein—coated slides (Table W2) or exosomes
(10 pg) were incubated with CM ™ (100 pg) for 24 hours at 37°C.
Free exosomes were removed by ultracentrifugation. CM with bound
exosomes was seeded on glass cover slides. Coated cover slides were
counterstained with matrix protein—specific antibodies. Digitized im-
ages were generated using a Carl Zeiss LSM710 confocal microscope
and Carl Zeiss Axioview Rel. 4.6 software. Quantification of fluores-
cence intensity was performed with the Image] program.

Enzyme-linked Immunosorbent Assay

Dye-labeled exosomes were incubated for 24 hours in F-bottom
96-well plates that had been coated with CM or matrix proteins. Free
exosomes were removed by washing. The content of matrix-bound
exosomes was evaluated in a fluorescence ELISA reader (Fluoroskan
Ascent; Thermo Scientific).

Protease Activity

Exosomes (20 pg) were incubated with matrix proteins (1 pg) or
CM ™ (50 pg) for 24 hours. After dissolving in Laemmli buffer and
sodium dodecyl sulfate—polyacrylamide gel electrophoresis separation,
matrix protein degradation was evaluated by Western blot (WB) or
zymography (separation in a 10% acrylamide/1 mg/ml gelatin gel,
washing, and Coomassie Blue staining).

Adbhesion Assay

Cells (2 x 10%/100 pl) were seeded on matrix protein—coated
F-bottom 96-well plates for 2 hours at 37°C. After washing, adherent
cells were stained with crystal violet and dissolved in 10% acetic acid,
evaluating staining intensity photometrically. Adhesion is presented
as percentage of seeded cells.

Cell Migration and Invasion

Cells (5 x 10? in 40 pl) were seeded in the upper part of a Boyden
chamber in 30 pl of RPMI/0.1% BSA. The lower part, separated by an
8-pum pore size polycarbonate membrane (Neuroprobe, Gaithersburg,
MD), contained 30 ul of RPMI/20% FCS or CM™* with/without
exosomes (10 pg/ml). Migration was evaluated after 16 hours by stain-
ing the lower membrane side with crystal violet, measuring ODs95
after lysis. Migration is presented as percentage of input cells. For
invasion, matrigel was mixed (1:1) with RPMI 1640 or TEX and
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incubated for 24 hours at 37°C. Thereafter, matrigel was seeded on
the lower membrane site of a transwell insert. LuFb, LnStr, and RAEC
(5 x 10%) were layered on the upper site of the insert. After 24 hours,
cells at the upper site of the membrane were removed. Cells within
the matrigel were documented by light microscopy and were counted.

For video microscopy, Hoechst 33342—stained tumor cells (5 x 10%)
were mixed with CM™ pretreated for 24 hours with exosomes. Cell
migration in untreated or exosome-pretreated CM™*** was evaluated
for 24 hours using an Olympus IX81 inverse microscope with an
Hg/Xe lamp, an incubation chamber (37°C, 5% CQO,), a charge-coupled
device (CCD) camera (Hamamatsu, Herrsching, Germany), and a ScanR
acquisition software (Olympus, Hamburg, Germany). Two pictures
(20-fold magnification) per chamber (2-millisecond exposure) were taken
every 20 minutes for 12 hours. Migration was quantified according
to Manual_tracking plugin (F.P. Cordeliére, Centre de Recherche de
I'Institute Curie) running in the open-source software Image]. Path
length of 20 individual cells in each setting was calculated for every
15 minutes by customized programs. The mean pathway length per
1 hour is presented.

Animal Experiments

BDX rats (five per group) received 400 pl of matrigel subcutane-
ously (s.c.). Where indicated, matrigel was pretreated at 37°C for
24 hours with 100 pg of ASML"* or ASML-CD44v*! exosomes. Rats
were sacrificed after 5 days to excise the matrigel pellet, which was
shock frozen for immunohistochemistry. To control for TEX binding
to the ECM, rats (three per group) received an intravenous (i.v.) injec-
tion of 400 pg of SP-Dio;g(3)-labeled ASML™ or ASML-CD44v<¢
exosomes. Rats were sacrificed after 48 hours. Organs were excised,
shock frozen, and analyzed using a confocal microscope for the recovery
of exosomes, particularly those attached to the ECM. Metastatic
ASML growth after intrafootpad injection was evaluated in shock-
frozen tissue sections after autopsy.

Statistical Analysis
P values < .05 (two-tailed Student ¢ test, analysis of variance) were
considered significant.

Results

Exosomes are appreciated as important intercellular communicators
[14]. We here explored whether exosomes also communicate with the
ECM. Using TEX as a model, we evaluated whether exosomes modu-
late the host matrix to favor cell motility, activation, and survival.

TEX Bind to the Host Matrix

Exosomes were derived from the metastatic rat pancreatic adeno-
carcinoma ASML [35] or the poorly metastatic ASML-CD44v* line
[36]. Tumor cells, LnStr, and LuFb as well as CM™° derived thereof
contain matrix proteins, with tenascin, vitronectin (VN), and fibro-
nectin (FN) being abundant in LnStr and LuFb CM™°, coll II in
LnStr, and coll IV in LuFb CM™*° (Figure W1). Using dye-labeled
exosomes revealed binding to matrix protein—coated latex beads.
Major differences in binding to individual matrix proteins was not
observed. However, binding of ASML-CD44v* exosomes was weaker,
particularly binding to hyaluronic acid (HA; Figure 14). TEX also
bind to their own as well as to stroma cell CM™*°, the ASML-CD44v*¢
CM ™ exerting strongly reduced binding capacity (Figure 1, B-D),
supporting a non-random process. Importantly, demonstrated for
i.v. injected dye-labeled TEX, exosomes also bind iz vivo to selected

matrices, particularly of skeletal muscles, heart, lung, and vessels.
Though, due to the ECM being composed of mixtures of matrix pro-
teins, counterstaining of matrix proteins did not allow for a clear coordi-
nation of TEX to individual matrix proteins, there is strong evidence
for collagen (coll) and laminin (LN) binding (Figures 1E and W2).

Being concerned about the potential functional relevance of TEX
binding to selected matrices, we noted that ASML cells, though pref-
erentially metastasizing through the lymphatic system to the lung, may
settle and grow along the basal lamina of the skin without invading the
epidermis or forming solid tumor nodules (data not shown). Similarly,
without destroying the muscle, ASML cells invade and grow along the
basement membrane of muscles (Figure 1F), both the lamina basalis of
the skin and the basement membrane surrounding skeletal myofibers
being strong attractants for ASML-TEX.

Exosomes bind to matrix proteins through adhesion molecule recep-
tors. ASML exosomes express CD49c and CD44 at a high level and
P4 at a medium high level (Figure 1G). Exosomes were preincubated
with antibody against these highly expressed adhesion molecules and
non-bound antibodies were removed by ultracentrifugation before
evaluating exosome binding to matrix protein—coated latex beads. As
demonstrated for coll IV, FN, LN111, and HA binding, antibody
preincubation of exosomes significantly affected binding, the strongest
reduction being provoked by anti-CD49¢ toward LN111 and by anti-
CD44 toward HA (Figure 1H).

Taken together, exosome binding to the ECM is a non-random pro-
cess that varies depending on the composition of the host/tumor cell
matrix and the adhesion molecule profile of the exosomes. Importantly,
TEX binding to selected matrices appears to attract tumor cells and/or
to facilitate tumor cell migration along TEX-decorated matrices. Thus,
the question arose on the impact of bound TEX on the host matrix.

Host Matrix Modulation by TEX

Exosomes are rich in proteases, and exosomal proteases are func-
tionally active [28-31]. ASML"™" exosomes are rich in uPAR, MMP3,
ADAM17 (TACE), ADAMTSI1, ADAMTSS, and CD13. The pro-
tease profile of ASML-CD44v*! exosomes differs for uPAR, MMP9,
MMP13, and ADAM17, which are less abundant, whereas HAdase is
enriched [37,39] (Figure 2, A-C). Having demonstrated functional
activity of exosomal MMP2 and MMP9 by zymography (Figure 2D),
we evaluated matrix protein degradation by ASML™ and ASML-
CD44v*! exosomes. Coll 1I is degraded by ASML™" and ASML-
CD44v* exosomes. Coll I, coll IV, LN111, LN332, and FN were
more efficiently degraded by ASML™" exosomes. VN was hardly de-
graded (Figure 2E). As demonstrated for FN, tenascin, VN, LN111,
LN332, and coll I, upon co-incubation of LnStr-, LuFb-, and RAEC-
CM ™, TEX efficiently degrade naturally organized matrix proteins,
where ASML™ exosomes display higher efficacy particularly in LN
and coll I degradation (Figure 2F).

Thus, TEX modulate the stroma matrix by matrix protein degradation.

The Exosome-Modulated ECM Promotes Stroma Cell
Migration and Invasiveness

The ECM is not only a static scaffold that keeps cells in their organ
context but also plays an important role in tissue remodeling. This
poses the question of whether the TEX-modulated stroma matrix
better serves the demands of metastasizing tumor cells.

When controlling for cell shape on the stroma matrix depending
on TEX modulation, cell shape was not strikingly altered, but focal
adhesion points were more pronounced, when cells were incubated
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Figure 2. Exosomes and matrix degradation. (A) Matrix-degrading enzymes in ASML"! and ASML-CD44v*® exosomes were evaluated by
WB and flow cytometry, (B) mean values of triplicates (percentage of stained beads and mean intensity of staining), and (C) representative
examples. (D) Zymography of ASML"! and ASML-CD44v*4 CM~®*° and exosomes. (E and F) WB of matrix proteins, LnStr-CM ™%, LuFb-CM ™,
and RAEC CM™~®° after co-culture with ASML"! and ASML-CD44v* exosomes. Blots were incubated with the indicated antibodies. The
expected size of matrix proteins and breakdown products is indicated. Coll Il is degraded by ASML™ and ASML-CD44v*? exosomes. Coll |,
coll IV, FN, LN111, and LN332 are more efficiently degraded by ASML™ than ASML-CD44v<® exosomes. This accounts for purified matrix
proteins and the stroma cell matrix.

than ASML-CD44v*¢

on TEX-modulated matrices, independent on whether the matrix de-
rived from the tumor or the host cell (Figures W3 and 3A). In line with
this finding, there has been a slight increase in adhesion to the donor
matrix when modulated by ASML exosomes. This accounted particu-

exosomes (Figure 3B). More striking has been
the impact on migration. Transwell migration of LnStr, LuFb, and
RAEC was significantly strengthened when the autologous CM was
preincubated with ASML™" exosomes, whereas ASML* exosomes

larly for LuFb and RAEC, ASML™ exosomes exerting a stronger effect ~ did not exert a considerable effect (Figure 3C). Increased migration

Figure 1. Exosome binding to matrix proteins. (A-D) Dye-labeled ASML™! and ASML-CD44v<? exosomes were incubated with (A) matrix
protein—coated latex beads or (B) matrix protein— or (C and D) CM~**°-coated ELISA plates or glass slides. Exosome binding was evaluated
by (A) flow cytometry, (B) OD, and (C and D) confocal microscopy. (A, B, and D) Mean values = SD of triplicates and (C) representa-
tive examples are shown (scale bar, 10 um). (E) Dye-labeled ASML"" and ASML-CD44v<? exosomes (200 ug) were i.v. injected. Rats were
sacrificed after 48 hours, and organs were excised and shock frozen. Tissue sections were counterstained with hematoxylin and eosin
(H&E), evaluating recovery of exosomes by confocal microscopy. For selected samples, overlays with immunohistochemistry staining for
matrix proteins are shown (scale bar, 10 um). (F) BDX rats received ASML cells intrafootpad. Abdominal wall muscle was excised at autopsy
and shock frozen. Tissue sections were stained with control IgG or B5.5 (anti-0gf34; scale bar, 20 um). (G) Flow cytometry and WB analysis of
adhesion molecule expression on ASML™" and ASML-CD44v*? exosomes. (H) Dye-labeled exosomes were incubated with the indicated
antibodies. Non-bound antibodies were removed by centrifugation (90 minutes, 100,000g). Exosomes (pellet) were collected and incubated
with the indicated matrix proteins coated on ELISA plates. After 2 hours at 4°C, non-bound exosomes were removed by washing and fluo-
rescence intensity (% of total exosomes) was evaluated. Means = SD of triplicates are shown. Significant inhibition of exosome binding is
indicated by an asterisk. Exosomes selectively bind matrix proteins and tissue matrices through adhesion receptors /n vitro and in vivo,
where TEX-decorated matrices appear to attract tumor cells.
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Figure 3. TEX-modulated CM and cell adhesion/motility. (A) Cells were seeded on cover slides coated with BSA, CM~®*°, or ASML"!
exosome-treated CM™®*° and were stained with phalloidin-fluorescein isothiocyanate (FITC) and anti~-CD44-Cy3, where indicated cultures
contained ASML"! exosomes. Representative examples (confocal microscopy; scale bar, 100 um) are shown. (B) LnStr, LuFb, and RAEC
were seeded on BSA, CM™°, or CM™%*° plus ASML"! or ASML-CD44v*? exosome—coated 96-well plates. Adhesion was evaluated after
2 hours (crystal violet staining of adherent cells). The mean = SD of the percent adherent cells is shown. (C) Cells were seeded in the upper
part of a Boyden chamber, and the lower part contained BSA, 20% FCS, or CM ™% pretreated with ASML"" or ASML-CD44v*? exosomes
as indicated. Migration was evaluated after 16 hours by crystal violet staining of the lower membrane site. Mean values (triplicates) = SD of
the percentage of migrating cells are shown. (D) Cells were seeded on CM ™ **° or TEX-pretreated CM~*°. Cell migration was observed
for 24 hours. Representative examples and the mean = SD track of 10 cells per 15 minutes are shown. (E) Cells were seeded on plates
coated with CM™%*° or TEX-pretreated CM~®*°. Subconfluent monolayers were scratched with a pipette tip and wound closure was fol-
lowed for 26 hours. Representative examples (scale bar, 250 um) and mean = SD (three wells) of wound closure are shown. (B-E) Signifi-
cant differences between CM™%*° and TEX-pretreated CM~**° are shown or indicated by asterisk. The TEX-modulated stroma matrix
promotes stroma cell motility.
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was confirmed by video microscopy, where migration of LuFb and
LnStr on their own matrix was nearly doubled in the presence of
ASML™" exosomes but increased only about 1.2-fold in the presence
of ASML-CD44v*¢ exosomes (Figure 3D). In vitro wound healing of
LnStr, LuFb, and RAEC was also significantly accelerated in the pres-
ence of ASML™" exosomes (Figure 3E).

Finally, we asked whether TEX would also modulate the matrix
to support invasiveness. Matrigel was co-cultured with ASML™" and
ASML-CD44v" exosomes for 16 hours. Thereafter, LuFb, LnStr, or
RAEC were added and matrigel invasion was evaluated after 24 hours.
Matrigel invasion by LuFb and RAEC was strikingly increased in
ASML™ exosome-modulated matrigel. LnStr, spontaneously not in-
vading the matrigel, did so after matrigel modulation by ASML™ exo-
somes. ASML-CD44v*! exosomes exerted no or a much weaker effect
(Figure 4A). Fittingly, 7 days after s.c. injection of a matrigel plug, fibro-
blasts (vimentin®) and endothelial cells (CD31") were recovered in the
plug only when pretreated with exosomes, ASML™" exosomes exerting a
more pronounced effect than ASML-CD44v* exosomes (Figure 4B).
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Taken together, the TEX-modulated host matrix supports host cell
migration and strongly facilitates invasiveness.

The Exosome-Modulated ECM Supports Stroma Cell
Proliferation and Apoptosis Resistance

We and others demonstrated before the feedback of the tumor
matrix, inherently modulated by TEX, on the tumor cell [39-42].
Thus, it became likely that the TEX-modulated host matrix may also
affect host cells. The inherently exosome-modulated ASML™" matrix
supports LuFb and LnStr, weakly LNC and BMC, but not RAEC pro-
liferation. The ASML*! matrix also exerted a weak effect on LnStr,
LuFb, and LNC cells (Figure 54). An even stronger growth-promoting
stimulus was exerted on LnStr, LuFb, and RAEC upon modulation of
their own matrix by TEX (Figure 5B). Accelerated growth of LnStr,
LuFb, and RAEC is accompanied by up-regulation of CXCR4, epi-
dermal growth factor receptor (EGFR), fibroblast growth factor recep-
tor (FGFR; only LnStr), PDGEFR (only LuFb), and vascular endothelial
growth factor receptor 1 (VEGFR1), where in most instances the effect

subcutaneous implant
+ ASMLwt exosomes  + -CD44vkd exosomes

Figure 4. TEX-modulated CM promotes invasiveness. (A) Matrigel was mixed (1:1) with RPMI 1640 or TEX and was seeded on the lower
membrane site of a transwell insert. LuFb, LnStr, and RAEC (5 x 10%) were layered on the upper site of the insert. Matrigel immigration was
evaluated after 24 hours. Representative examples (scale bar, 200 um) and mean numbers (triplicates) = SD of matrigel invading cells are
shown. Significant differences between matrigel and TEX-pretreated matrigel are indicated by asterisk. (B) Matrigel was mixed (1:1) with
PBS, which contained ASML" or ASML-CD44v*® exosomes, as indicated. Matrigel was incubated for 12 hours at 37°C and was thereafter
s.c. injected. The plug was removed after 5 days and was shock frozen. Plug sections were stained with anti-coll |, anti—coll IV, anti-LNy1,
anti-CD49c, anti-CD31, or anti-vimentin and were counterstained with H&E. Representative examples of the matrigel plug adjacent to host
tissue are shown (scale bar, 200 um). The exosome-modulated stroma matrix facilitates invasiveness.
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Figure 5. TEX-modulated CM promotes hematopoietic and stroma cell proliferation. (A and B) Cells were incubated with CM, CM ™%, or TEX-
pretreated CM™%*°, where TEX were removed by centrifugation. Proliferative activity was evaluated by *H-thymidine incorporation after 3 days
of culture. (C) Flow cytometry analysis of LnStr and LuFb that were treated o/n with CM ™% with or without ASML"* or ASML-CD44v*¢ exo-
somes. Mean values (three assays) of stained cells are shown. (D) LnStr and LuFb were incubated o/n with CM~*° or ASML"! exosome—
pretreated CM™%*°, where TEX were removed by centrifugation. LnStr and LuFb were stained with the indicated antibodies, evaluating protein
expression by flow cytometry. Representative examples and mean values (triplicates) are shown. (A-D) Significant differences between CM ™~
and TEX-pretreated CM ™~ are indicated by asterisk. (E) Evaluation of cytokines and chemokines in LnStr, LuFb, and RAEC CM™%*° by
WB. Growth promotion by TEX-treated LnStr and LuFb CM is accompanied by pronounced activation of the MAPK and JNK pathways and
could be initiated by the liberation of growth factors from the CM by TEX, the LnStr, LuFb, and RAEC CM being rich in bFGF, HGF, SDF1, and TF.

was stronger when the CM was treated with ASML™ than ASML-
CD44v"! exosomes (Figure 5C). Flow cytometry revealed pronounced
extracellular signal-regulated kinase 1/2(ERK1/2), Jun kinase (JNK),
and c-jun activation upon co-culture of LnStr and LuFb with their
own CM ™ that had been modulated by ASML™ exosomes (Fig-
ure 5D), which could be due to forced liberation/accessibility of matrix-
deposited growth factors, LnStr, LuFb, and RAEC CM ™ containing
basic FGF (bFGF), hepatocyte growth factor (HGF), stroma derived
factor 1 (SDF1), tissue factor (TF), and transforming growth fac-
tor B, bFGF being most abundantly recovered in LuFb and RAEC
CM ™ (Figures W4 and 5F).

TEX in concert with the tumor matrix can protect tumor cells from
apoptosis [39,43]. ASML™ CM exerted a slight apoptosis-protective
effect on LnStr, LuFb, and RAEC, though not on hematopoietic cells.
The ASML-CD44v*! CM exerted no protective effect (Figure 6A).
Exosome modulation of the matrix accounted for the protective effect,
as it was also seen when the LnStr or the LuFb matrix was pretreated
with ASML"™ exosomes (Figure 6B). The underlying mechanism has
not yet been elucidated. However, there is evidence that the TEX-

modulated host matrix delivers signals promoting activation of the
phosphatidylinositol 3-kinase (PI3K)/Akt pathway with pronounced
BAD phosphorylation and recovery of Bcl2 and BclXl even in cisplatin-
treated LnStr and LuFb, whereas recovery of Bax and Bak, cleaved
caspase-9, and activated caspase-3 was slightly reduced (Figure 6C).
Taken together, TEX modulate the host matrix such that it
strengthens stroma cell proliferation and drug resistance.

Discussion

As outlined by Hanahan and Weinberg [1], one important factor in
tumor biology relies on the capacity of tumor cells to create a micro-
environment by recruiting and modulating non-transformed cells that
favor tumor cell survival and spreading/propagation [44—46]. Though
the tumor-host talk is a conditio sine qua non for tumor development
and progression, the intensity of this tumor host communication may
vary, where tumors particularly prone for interacting with the host, like
the most deadly PaCa, which are characterized by desmoplasia, severe
paraneoplastic syndromes, and early metastatic spread, are burdened
with poor prognosis [47-50]. With the current state of knowledge
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not yet allowing an orchestrated view on the tumor-host cross talk,
there is evidence that TEX are of central importance.

Exosomes are important intercellular communicators [14,20,51]
that are abundantly delivered by tumor cells [52]. Exosomes are known
to constitutively express tetraspanins and adhesion molecules [14],
which contribute to exosome-selective target cell binding [23,53].
Exosomes also express proteases [28-31] that can modulate the exo-
some and target cell protein profiles [31-34]. Exosome binding can
induce target cell activation, and through the transfer of mRNA and
miRNA, exosomes contribute to target cell modulation [18-21]. These
exosome activities will be of importance in the cross talk between cancer
stem cell exosomes and neighboring cancer cells, the subject being
heavily discussed but still awaiting a clear answer [54]; TEX are equally
important for the cross talk between tumor cells and surrounding as
well as distant stroma cells and hematopoietic progenitors. We and
other groups provided evidence that stroma cells in the niche are direct
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targets for TEX and that the impact of TEX reaches beyond activa-
tion toward reprogramming [28,55,56]. In concern of hematopoietic
progenitors, the paper by Peinado et al. [57] provided a proof on the
central importance of TEX, the precise mechanism remaining to be
explored. Furthermore, there is strong evidence that TEX also support
recruitment of mesenchymal stem cell, which contributes to shaping
the tumor microenvironment [58—60]. Besides this intercellular com-
munication, TEX apparently also affect ECM components that we
approached for the first time in the present manuscript. We became
aware of the phenomenon noting that the CM of the highly metastatic
ASML cells supports exosomes in premetastatic niche Ereparation,
whereas CM from the poorly metastatic ASML-CD44v"! cells does
not [37]. On the basis of this finding, we asked whether TEX also affect
the host cell matrix and whether host cell matrix modulation by TEX
affects host cells. We describe that TEX degrade the host matrix, which

strongly supports host cell migration and invasiveness as well as host
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Figure 6. TEX-modulated CM promotes stroma cell drug resistance. (A and B) Cells were incubated with ASML CM or TEX-pretreated
CM™®*° removing TEX by centrifugation. Apoptosis resistance was evaluated by annexin V/propidium iodide (AnnV/PI) staining after 3 days
of culture in the presence of titrated amounts of cisplatin. Mean values (triplicates) are shown. (C) Cells were incubated for 24 hours with
CM™®° or TEX-pretreated CM™®*°, where indicated cultures contained 10 ug/ml cisplatin. Cells were fixed and permeabilized, and expres-
sion of the indicated apoptosis/anti-apoptosis markers was evaluated by flow cytometry. Representative examples and mean values (three
assays) are shown. (A-C) Significant differences between CM~%° and TEX-pretreated CM ™~ are indicated by asterisk. Modulation of the
stroma matrix by TEX promotes drug resistance of stroma cells, initiated by pronounced activation of the PI3K/Akt pathway.
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cell proliferation and apoptosis resistance. Thus, the impact of TEX on
the host matrix can have severe consequences on tumor progression.

TEX Binding to the Host Matrix

TEX bind to selective components of the ECM, and selectivity of
binding is determined by the adhesion molecule profile of the exo-
somes. Thus, ASML™ bind more efficiently than ASML-CD44v*?
exosomes to coll I, II, III, and IV as well as to FN and, particularly
HA, whereas both exosomes bind equally well to LN111, LN332,
and VN. Antibody blocking studies revealed that coll binding proceeds
predominantly through as, LN binding through a3 and a¢fs, and HA
binding through CD44, where the lower efficacy of ASML-CD44v"
binding could rely on reduced agfs and CD44 expression [39]. In ad-
dition, ASML-CD44v*, distinct to ASML"* CM, mostly contains low
molecular weight HA [39], which could explain the poor adhesion of
ASML"* and ASML-CD44v*" exosomes to the ASML-CD44v" CM.
Not performing a detailed pulldown proteome analysis, we cannot
exclude a contribution of additional exosomal adhesion molecules. It
is, however, important to note that TEX do not only bind to purified
matrix proteins but equally well or with higher affinity to host stroma
in vitro as well as in vivo, where ASML™" exosomes are abundantly re-
covered in the ECM of muscles, the submucosa of the gastrointestinal
tract, the perivascular region, and the basal lamina of several organs like
skin and tongue. With these matrices being composed of several matrix
proteins, a clear assignment of TEX binding to individual components
was not possible, but coll and LNs apparently are preferred targets.

A first hint toward biologic significance of TEX binding selective
tissue matrices was the finding that ASML cells, in all instances
and with high preference metastasizing through lymph nodes to the
lungs, occasionally grow along tissue matrices that abundantly bind
ASML-TEX, like muscle and skin, without invading or destructing
the adjacent tissue.

Thus, TEX bind through adhesion molecules to selective matrix
components, the reduced agfs and CD44 expression in ASML-
CD44v" exosomes obviously accounting for the impaired cross talk
with the ECM. There is evidence that host matrix modulation by
TEX favors tumor cell attraction and/or motility/invasiveness.

ECM Modulation by TEX

With ECM binding supporting metastasizing tumor cell invasion,
the question arose on matrix modulation by TEX. Exosome binding
severely affects the host matrix, the most dominant feature being matrix
degradation. Exosomes abundantly contain matrix-degrading enzymes
[14]. In ASML™" exosomes, particularly high level of uPAR, MMP2,
MMP3, MMP9, MMP14, and ADAM17 are recovered. Correspond-
ing to the recovery in ASML-CD44v* cells, uPAR, MMP9, MMP13,
and ADAM17 are reduced in ASML-CD44v"! exosomes. As dem-
onstrated for gelatin degradation and by WB for several coll, FN,
LN111, and LN332, exosomal proteases are function-competent
[28-30], which also account for the degradation of the ECM of stroma
lines and endothelial cells (EC).

Taken together, besides adhesion molecules, exosomal proteases are
essential for the cross talk between a tumor and the host matrix by
creating space, possibly by contributing to matrix protein maturation
as described for the ADAMTS family that contributes to procollagen
maturation [61,62] as well as by generating fragments of matrix pro-
teins that exert distinct functions like the motility promoting LN332
fragment [63] or the small HA fragments that promote an inflam-

matory milieu [64]. Indeed, modulation of the host ECM by TEX

has severe consequences for the host cells.

TEX-Modulated Host Matrix and Stroma Cell Adbesion,
Migration, and Invasion

The TEX-modulated host cell matrix promotes host cell adhesion
and, more pronounced, host cell motility and invasiveness.

LnStr, LuFb, and RAEC adhere more efficiently to their own
matrix than to plastic. Adhesion becomes further facilitated when the
host matrix is modulated by TEX, which accounts particularly for
LuFb and RAEC, ASML" exosomes exerting a stronger effect than
ASML-CD44v" exosomes. Spriting of the cells is more pronounced
on CM than on plastic. Spriting is not significantly altered by exosome
modulation of the CM. Instead, there is evidence for a more pro-
nounced formation of focal adhesion clusters, which can contribute
to cell motility [65], the latter being strikingly affected by TEX, as re-
vealed by transwell migration, time lapse video microscopy, and in vitro
wound healing. Of particular importance, TEX facilitate invasiveness
as shown 77 vitro for matrigel penetration and confirmed in vivo, where
particularly EC but also fibroblast invade with far higher efficiency an
ASML" exosome-modulated than an untreated matrigel plug. In line
with the lower efficacy of ASML-CD44v" exosomes in CM degrada-
tion, host cell motility and invasiveness were less or minimally affected
by ASML-CD44v* exosome—modulated CM or matrigel.

We showed recently that ASML™ CM facilitates recruitment of
tumor cells into the draining lymph node [37]. It is also known
that metastasizing tumors facilitate the recruitment of BMC into the
premetastatic niche [57,66-68], TEX being speculated to fulfill this
task [57]. Furthermore, TEX are suggested to promote angiogenesis
[6,69-72]. Our data strongly support these hypotheses and provide for
the first time evidence that host cell migration may not be exclusively a
consequence of a direct interaction between host cells and TEX. Instead,
the TEX-modulated host matrix will facilitate host cell migration, most
strikingly demonstrated for the iz vivo recruitment of EC and fibroblasts
into a TEX-modulated matrigel plug. These findings expand the activ-
ity range of TEX and can explain the hitherto difficult to understand
phenomenon of, e.g., hematopoietic progenitor recruitment toward the
premetastatic organs rather than toward the primary tumor.

The TEX-Modulated Host Matrix Promotes Stroma
Cell Activation

TEX severely affect host cells [20,54]. This can be initiated by exosome
binding [73,74] or the transfer of exosomal mRNA and miRNA [18,75—
78]. Thus, the work by Peinado et al. suggests the direct transfer of
c-Met [57]. Our own work demonstrated that the uptake of TEX is
accompanied by up-regulation of follstatin, MDR1, PLA2, and
SSP1, to name only a few proteins whose expression promotes stroma
cell survival. In addition, apoptosis regulating miR 24-1 is abundant in
ASML TEX and is transferred into stroma cells [21]. We now present
evidence that in a feedback the TEX-modulated host matrix also affects,
though to a minor degree, host cell proliferation and apoptosis. These
features fit well to the described feedback of the tumor matrix on
tumor cells, which for the ASML™" CM was shown to promote through
CD44v6 the activation of c-Met and the agf4 integrin [39]. Growth
promotion by the TEX-modulated host matrix may proceed through
distinct pathways, as we noted significant up-regulation of the EGFR
and, only by ASML™ exosomes, the PDGFR in LuFb. Stimulation of
the EGFR as well as of the FGFR could proceed through binding of
their ligands [79-81], liberated from the CM by ASML exosomes. In
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this respect, it should be mentioned that growth factor bioavailability
depends on the ECM stiffness [82,83]. Thus, matrix protein degrada-
tion by TEX could well account for a feedback from the stroma matrix
toward the stroma cell through easier access to matrix-integrated growth
factors and chemokines. Stimulation of stroma cells could be further
supported by binding of TEX-modulated matrix proteins, coll and
LN fragments being known to display growth factor activity [82,84].

Both EGFR and FGFR whose expression became upregulated
when cultured in the presence of the TEX-modulated stroma matrix
are known to activate the Ras/Raf/mitogen-activated protein kinase
(MAPK) and PI3K/Akt pathways [79,85-88]. Pronounced ERK1/2,
JNK, and c-jun phosphorylation after culturing stroma cells in the
presence of the TEX-modulated matrix could thus account for pro-
nounced proliferation. Our data also suggest that higher apoptosis resis-
tance relies on EGFR and PDGFR up-regulation, as PI3K, Akt, and Bad
phosphorylation was pronounced and Bcl2 expression was upregulated,
whereas caspase-8 expression was unaltered, but caspase-9 cleavage was
reduced and caspase-3 was less efficiently activated in cultures containing
TEX-modulated matrix, indicating stimulation of apoptosis protection
rather than down-regulation of receptor-mediated apoptosis.

Taken together, TEX binding and uptake stimulate and reprogram
stroma cells allowing for phenotypic changes, proliferation, and
apoptosis resistance, which, besides metastatic organs, will in the first
instance affect the primary tumor’s environment, where the TEX-
modulated host matrix in a feedback loop contributes to host cell
proliferation and apoptosis resistance. This may particularly account
for PaCa, the high level of CD44v6, and agf4 expression on PaCa
TEX, favoring an intense cross talk with the pancreatic tissue stroma
and allowing the directly or indirectly associated proteases like MMP14
and TACE and MMP3, MMP7, and MMP9 to generate a milieu that
favors recruitment of endothelial cell progenitors [89,90] as well as of
stimulation of resident fibroblasts toward myofibroblast [91,92].

Conclusion

Taken together, TEX bind matrix proteins and exosomal proteases
modulate the matrix, which facilitates motility, creates space for migrat-
ing tumor as well as host cells, and attracts tumor cells, stroma cells,
and inflammatory cells by degraded matrix proteins and likely the
liberation of chemokines and growth factors.

It is well appreciated that TEX binding to and uptake by target cells
severely affects the target cell fate. We here demonstrate that modula-
tion of the matrix by TEX should not be neglected as it adds to
host cell modulation, particularly motility, recruitment, and invasive-
ness. These features unlikely are restricted to TEX; instead, exosome-
mediated matrix modulation could well be important in organogenesis
including vasculogenesis, wound healing, and coagulation.
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Table W1. List of Antibodies.

Antibody Supplier Antibody Supplier
agBs Clone B5.5 [1] Hyaluronan Rockland, Gilbertsville, PA
Akt BD, Heidelberg, Germany HGF Santa Cruz, Heidelberg, Germany
ADAM10 Santa Cruz, Heidelberg, Germany HGDEF Santa Cruz, Heidelberg, Germany
ADAM17 Santa Cruz, Heidelberg, Germany HAdase Santa Cruz, Heidelberg, Germany
ADAMTSI1 Santa Cruz, Heidelberg, Germany LNyl Rockland, Gilbertsville, PA
ADAMTSS Santa Cruz, Heidelberg, Germany LNy2 BD, Heidelberg, Germany
ADAMTSS Santa Cruz, Heidelberg, Germany MMP2 Dianova, Hamburg, Germany
BAD Santa Cruz, Heidelberg, Germany MMP3 Santa Cruz, Heidelberg, Germany
Bcl2 BD, Heidelberg, Germany MMP9 Dianova, Hamburg, Germany
BelXl1 BD, Heidelberg, Germany MMP13 Dianova, Hamburg, Germany
bFGF Oncogene, Boston, MA MMP14 Santa Cruz, Heidelberg, Germany
act.Caspase3 BD, Heidelberg, Germany Osteopontin Santa Cruz, Heidelberg, Germany
Caspase8 BD, Heidelberg, Germany p38 BD, Heidelberg, Germany
cl.Caspase9 BD, Heidelberg, Germany p-Akt BD, Heidelberg, Germany
CD11b Clone Ox42 (EAACC) p-BAD Santa Cruz, Heidelberg, Germany
CDll1c Clone Ox41 (EAACC) p-c-jun BD, Heidelberg, Germany
CD13 [2] PDGF BD, Heidelberg, Germany
CD18 BD, Heidelberg, Germany PDGER BD, Heidelberg, Germany
CD29 BD, Heidelberg, Germany p-ERK1,2 BD, Heidelberg, Germany
CD31 BD, Heidelberg, Germany PI3K Santa Cruz, Heidelberg, Germany
CD44s Clone Ox50 (EAACC) p-JNK BD, Heidelberg, Germany
CD44v6 Clone A2.6 [1] p-p38 BD, Heidelberg, Germany
CD49b BD, Heidelberg, Germany p-ras BD, Heidelberg, Germany
CD49c¢ BD, Heidelberg, Germany ras BD, Heidelberg, Germany
CD54 Biozol, Eching, Germany SDF1 Abcam, Cambridge, United Kingdom
CD104 BD, Heidelberg, Germany Tenascin LabVision, Fremont, CA
Coll 1 Rockland, Gilbertsville, PA TF Santa Cruz, Heidelberg, Germany
Coll I1 LabVision, Fremont, CA Transforming growth factor p Santa Cruz, Heidelberg, Germany
Coll IV Rockland, Gilbertsville, PA uPA Calbiochem, Darmstadt, Germany
CXCR4 Santa Cruz, Heidelberg, Germany uPAR Calbiochem, Darmstadt, Germany
EGFR Santa Cruz, Heidelberg, Germany VEGF Biotrend, Koln, Germany
ERK1/2 BD, Heidelberg, Germany VEGER1 Biotrend, Kéln, Germany
FGFR Santa Cruz, Heidelberg, Germany Vimentin BD, Heidelberg, Germany
FN BD, Heidelberg, Germany Vitronectin Biotrend, Koln, Germany

vWF Abcam, Cambridge, United Kingdom

mlgG, mlgG, rabbit IgG, goat IgG, streptavidin*

Dianova, Hamburg, Germany

[1] Matzku S, Wenzel A, Liu S, and Zsller M (1989). Antigenic differences between metastatic and nonmetastatic BSp73 rat tumor variants characterized by monoclonal antibodies. Cancer Res 49,

1294-1299.

[2] Chang YW, Chen SC, Cheng EC, Ko YP, Lin YC, Kao YR, Tsay YG, Yang PC, Wu CW, and Roffler SR (2005). CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and
enhance the motility of human lung cancer cells. /nz J Cancer 116, 243-252.

EAACC, European Association of Animal Cell Cultures (Porton Down, United Kingdom).
*Secondary antibodies and streptavidin were FITC, PE, biotin, or HRP labeled.

Table W2. List of Matrix Proteins.

Matrix Protein Supplier Concentration
Coll T Sigma, Munich, Germany 10 pg/ml
Coll 11 Sigma, Munich, Germany 10 pg/ml
Coll IV Sigma, Munich, Germany 10 pg/ml
EN Sigma, Munich, Germany 2 pg/ml
HA Sigma, Munich, Germany 100 pg/ml
LN111 Sigma, Munich, Germany 1 pg/ml
LN332 804G [1] supernatant® 10 pg/ml
Vitronectin Sigma, Munich, Germany 1 pg/ml
Matrigel Becton Dickinson, Heidelberg, Germany 1:1 dilution

[1] Homma Y, Ozono S, Numata I, Seidenfeld J, and Oyasu R (1985). a-Difluoromethylornithine
inhibits cell growth stimulated by a tumor-promoting rat urinary fraction. Carcinogenesis 6, 159-161.

*804G cell culture supernatant was used as source of LN332. 804G cells were cultured (48 hours)
in serum-free medium. Cleared supernatants (2 x 10 minutes, 500g; 1 x 20 minutes, 2000g 1 x
30 minutes, 10,000g 90 minutes, 100,000g) were centrifuged for vesicle depletion and concen-

trated. These serum-free, vesicle-depleted supernatants, highly enriched for LN332, are for brevity

referred to as LN332.
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Figure W1. Recovery of matrix proteins in tumor and stroma cell CM. (A, B) ASML"!, ASML-CD44v<¢, LnStr, and LuFb were stained with
the indicated antibodies. The percent of stained cells and the intensity of staining were evaluated by flow cytometry. Mean values of
triplicates are presented. (C) WB analysis of the indicated matrix proteins in CM~%° of ASML", ASML-CD44v*?, LnStr, and LuFb.
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Figure W2. ECM proteins in different rat tissues: Rats received an i.v. injection of 200 ug of dye-labeled ASML"' exosomes and were
sacrificed after 48 hours (see Figure 1£). Sections of shock-frozen tissues were stained with the indicated antibodies and counterstained
with H&E (scale bar, 100 um). Recovery of dye-labeled exosomes is shown for comparison.

LnStr LuFb RAEC

CM
ASML none

ASML-CD44v b+

target cell

Figure W3. TEX-modulated CM and cell spreading: LnStr, LuFb, and RAEC were seeded on cover slides coated with BSA, ASML"!, ASML-
CD44v , or target cell CM~®°. Where indicated, the CM ™% was pretreated with ASML"! exosomes. Four hours after seeding, cells were
stained with phalloidin-FITC. Staining was evaluated by confocal microscopy (scale bar, 10 um). Representative examples are shown.
ASML™ and target cell CM promote cell spreading. ASML"!' exosome-treated CM supports the formation of focal adhesion clusters.
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Figure W4. Cytokine and chemokine expression in stroma cells: Flow cytometry analysis of cytokine/chemokine expression in LnStr and

LuFb cells. Mean values (three assays) of the percentage of stained cells and the mean intensity of staining are shown. LnStr and LuFb
are rich in bFGF, HGF, SDF1, TF, and VEGF.





