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HILOG: A FOUNDATION FOR HIGHER-ORDER LOGIC 
PROGRAMMING 

WEIDONG CHEN,* MICHAEL KIFER, AND DAVID S. WARREN 

D We describe a novel logic, called HiLog, and show that it provides a more 
suitable basis for logic programming than does traditional predicate logic. 
HiLog has a higher-order syntax and allows arbitrary terms to appear in 
places where predicates, functions, and atomic formulas occur in predicate 
calculus. But its semantics is first-order and admits a sound and complete 
proof procedure. Applications of HiLog are discussed, including DCG 
grammars, higher-order and modular logic programming, and deductive 
databases. a 

1. PREFACE 

Manipulating predicates, functions, and even atomic formulas is commonplace in 
logic programming. For example, Prolog combines predicate calculus, higher-order, 
and meta-level programming in one working system, allowing programmers routine 
use of generic predicate definitions (e.g., transitive closure, sorting) where predi- 
cates can be passed as parameters and returned as values [7]. Another well-known 
useful feature is the “call” meta-predicate of Prolog. Applications of higher-order 
constructs in the database context have been pointed out in many works, including 
[24, 29, 411. 

Although predicate calculus provides the basis for Prolog, it does not have the 
wherewithal to support any of the above features, which, consequently, have an ad 
hoc status in logic programming. In this paper, we investigate the fundamental 
principles underlying higher-order logic programming and, in particular, shed new 
light on why and how these Prolog features appear to work in practice. We propose 
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a novel logic, called HiLog, which provides a clean declarative semantics to much 
of the higher-order logic programming. 

From the outset, even the terminology of “higher-orderness” seems ill-defined. 
A number of works have proposed various higher-order constructs in the logic 
framework [l, 5, 13, 7, 23, 24, 30, 31,42,45], but with such a diversity of syntax and 
semantics, it is not always clear what kind of higher-orderness is being claimed. In 
our opinion, there are at least two different facets to the issue: a higher-order 
syntax and a higher-order semantics. Logicians seem to have been long aware of 
this distinction and, for example, Enderton 116, p. 2821 describes a translation of 
the syntactically second-order predicate calculus into a first-order multisorted logic 
that admits a first-order semantics. 

Informally, by higher-order syntax, logicians mean a language in which variables 
are allowed to appear in places where normally predicate and/or function symbols 
do. In contrast, higher-order semantics is manifested by semantic structures in 
which variables may range over domains of relations and functions constructed out 
of the domains of individuals. In a first-order semantics, variables can only range 
over domains of individuals or over the names of predicates and functions. 

The third component in this picture is the equality theory that is built into the 
semantics of the logic. As explained below, an equality theory may bring the 
first-order and higher-order semantics closer to each other. In the extreme case, 
this theory may imply a l-l correspondence between the domain of individuals and 
the domains of higher-order constructs. In this case, higher-order and first-order 
semantics become virtually indistinguishable. 

We note that the classification based upon semantics has no implication whatso- 
ever regarding the “intrinsic higher-orderness,” that is, whether there exists a 
sound and complete proof theory for a higher-order semantics. It is quite possible 
to replace a higher-order semantics for some languages by an entailment-equivalent 
first-order semantics. On the other hand, it is well known that some semantics (e.g., 
the standard semantics of second-order predicate calculus) are inherently higher- 
order, and no equivalent first-order substitute exists for the corresponding lan- 
guages. 

Predicate calculus is the primary example of a logic where syntax and semantics 
are both first-order. There are logics that have a higher-order syntax, but a 
first-order semantics. F-logic [24, 251 is one example; HiLog, to be discussed in this 
paper, also falls into this category. Examples of logics with higher-order syntax and 
semantics include COL [ll and Church’s simple theory of types (under the standard 
and Henkin’s semantics) [13, 231. On the other hand, LDL [5,46] is a language with 
a first-order syntax and a higher-order semantics. 

Let us examine the equational theories underlying various logics more closely. 
Under a higher-order semantics, an equation between predicate (or function) 
symbols, e.g., p = q, is true if and only if these symbols are interpreted via the same 
relation (resp., function). Another way of saying this is that logics with a higher- 
order semantics have a built-in extensional equality theory of predicates and 
functions. In contrast, in HiLog and F-logic, predicates and other higher-order 
syntactic objects are not equal unless they (i.e., their names) are equated explicitly. 
Thus, it is possible for two predicate symbols, say p and q, to be interpreted by the 
same relation and yet the equality p = q be false. 

The above examples represent the two extreme cases, in a sense. There are 
higher-order languages with a first-order semantics that embody a nontrivial 
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equality theory. An example is a subset of AProlog 142, 451 that has no type 
variables and whose syntax is essentially the same as Church’s simple theory 
of types [13]. Equality in AProlog corresponds to A-equivalence and is not 
extensional: there may exist predicates that are not A-equivalent, but are still 
extensionally equal. 

To better see the role of equational theories on the classification of logical 
theories, note that there are two different aspects associated with an expression 
that denotes a predicate or a function. For instance, in A-Prolog, one aspect is the 
meaning of the expression as a A-term (or, more precisely, as an equivalence class 
of A-terms), which we call the intension; the other aspect is the relation or a 
function associated with the expression, which we call the extension. These two 
aspects become indistinguishable if extensionality axioms are built into the logic. 
For instance, in Henkin’s semantics of Church’s type theory [231, it makes no 
difference whether predicate variables are considered to range over the domain of 
interpretation for predicate names (predicate intensions) or over relations (predi- 
cate extensions), since each extension now becomes associated with exactly one 
intension, and vice versa. 

The distinction between intensions and extensions is important. It is known that 
extensions can be notoriously difficult to handle in an efficient manner. Separating 
intensions from extensions makes it possible to have an equational theory over 
predicate and function names that is separate from the extensional equality of 
relations and functions. A logic that avoids an overly strong equational theory of 
intensions can have a simple first-order semantics, a decidable unification problem, 
and at the same time, a higher-order syntax. 

In a type-free logic, the same term may appear in different contexts as predi- 
cates or functions of different arities and even as atomic formulas. Thus, the same 
intension can be associated with different extensions in different contexts. For 
instance, in Lambda Calculus [40], a A-term is considered a function or an object, 
depending on its syntactic position. In HiLog, the same symbol may denote a 
predicate, a function, or an atomic formula. Semantics of a type-free logic has to 
maintain the distinctions between various extensions associated with the same 
intension. Since the same variable may appear in different contexts and have 
different extensions, it makes better sense for variables to range over intensions 
rather than extensions because only intensions remain the same across different 
contexts. 

In this paper, we present a simple logical framework in which predicates, 
functions, and atomic formulas can be manipulated, as first-class entities. It is quite 
clear that’in order to support such manipulation naturally enough, the syntax has 
to be higher-order. As explained earlier, this leaves open two possibilities for the 
semantics. Under higher-order semantics, predicates and functions are identified 
by their extensions, that is, two predicates represent the same thing if and only if 
their extensions coincide in every appropriate semantic structure. Unfortunately, 
extensional equality of predicates and functions is not decidable, in general, which 
carries over to the unification problem. For genuine second-order theories (e.g., 
second-order predicate calculus and Church’s simple theory of types, both under 
the standard semantics), extensional equality is not even semi-decidable. 

In contrast, under first-order semantics, predicates and functions have inten- 
sions that can be manipulated directly. Furthermore, depending on the context, the 
same intension may assume different roles, acting as a relation, a function, or even 
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a proposition. The logical consequence relation under a first-order semantics is 
likely to be semi-decidable, unless a too strong equality theory destroys this 
property. This observation motivates our choice for HiLog.’ The basic idea is to 
construct a logic that distinguishes between intensional and extensional aspects of 
the semantics and embodies only a trivial equality theory of intensions. Intensions 
can be thought of as names of abstract or concrete entities, while extensions 
correspond to various roles these entities play in the real world. It has also been 
argued by Maida and Shapiro 136, 371 that knowledge representation is part of the 
conceptual structure of cognitive agents, and therefore should not (and even 
cannot) contain extensions. The reason is that cognitive agents do not have direct 
access to the world, but only to one of its representations. Our approach is in the 
same spirit and, consequently, extensions of predicates and functions are not 
available for direct manipulation. On the other hand, intensions of higher-order 
entities such as predicates, functions, and even atomic formulas can be freely 
manipulated. Their extensions come into play only when the respective expressions 
need to be evaluated. Thus, HiLog combines advantages of higher-order syntax 
with the simplicity of first-order semantics, benefiting from both. 

The rest of the paper is organized as follows. After a brief motivational 
discussion, we formally present the syntax and semantics of HiLog. Then we give 
several examples of applying HiLog to higher-order logic programming, DCG 
grammars, and modular logic programming. After that, we discuss the relationship 
of HiLog to predicate calculus; its relationship to some of the recently proposed 
database languages is discussed in Section 5. A resolution-based proof theory of 
HiLog is described in Section 6. 

2. SYNTAX AND SEMANTICS OF HILOG 

2.1. Motivation 

Prolog syntax is quite flexible; it allows symbols to assume different roles depend- 
ing upon their context (e.g., to have different arities, or to be viewed as a constant, 
a function, or a predicate). For instance, in the clause 

the symbol f occurs both as a unary and as a binary function, and p appears as a 
binary predicate as well as a binary function symbol. Furthermore, the same 
syntactic object, p(X, f(a)), is an atomic formula in the first literal of the clause-body 
and an individual term in the second. 

The support for multiple roles for nonlogical parameters (constants, functions, 
and predicates) is a handy feature of Prolog, but unfortunately, this support is 
provided in a rather ad hoc way. For instance, while in the above example different 
occurrences of the same symbol can be semantically disambiguated simply by 

‘This rule of thumb has exceptions, though. For instance, type theory under Henkin’s semantics has 
a proof theory despite the fact that Henkin’s semantics is higher-order. In contrast, for certain strains of 
first-order annotated logics [26, 271, complete proof procedures may not exist, in general. 
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renaming the occurrences off and p, this cannot be done in the following rule: 

Here, the individual variable X occurs as a first-order term and as an atomic 
formula, and renaming its different occurrences will, intuitively, yield a semanti- 
cally different statement. 

HiLog supports multiple roles for parameter symbols in a much more general 
and elegant manner. Parameters are arityless, and the distinction among predicate, 
function, and constant symbols is eliminated. In particular, a HiLog term can be 
constructed from any logical symbol followed by any finite number of arguments. 
Different occurrences of the same parameter are related to the same object 
characterized by the same intension. Associated with such an intension are several 
different extensions that capture the different roles the symbol may assume in 
different contexts. 

The same view is extended to arbitrary terms. HiLog allows complex terms (not 
just parameter symbols) to be viewed as functions, predicates, and atomic formulas. 
For example, a genetic transitive closure predicate can be defined as follows: 

closure(R)(X, Y) + R(X, Y). 
closure(R)(X, Y) +-- R(X, Z), closure(R)(Z,Y). 

Here, closure is (syntactically) a second-order function which, given any relation R, 
returns its transitive closure closure(R). Generic definitions can be used in various 
ways. For instance, 

parenttjohn, bill). 
parenttbill, bob). 
managedjohn, mary). 
managedmary, kathy). 
relation(parent). 
relation(manager). 
reports_to(Person)(Superior) + relation(Relname), 

closure(Relname)(Person, Superior). 

will return {bill, mary, bob, kathy} in response to the query ?- reports_to(john)(X), 
which is the set of john’s ancestors and bosses. 

Often, various applications of Prolog require term traversal: In HiLog, binary 
terms can be traversed as follows: 

traverseo((Y, Z)) +- traverse(Y), traverse(Z). 

Notice that X is a variable that ranges over functions of the language, and 
therefore this program is independent of the alphabet of that language. In contrast, 
in Prolog, one would have to either specify such a rule for every functor in the 
alphabet of the program, e.g., 

traverse(f(Y, Z)) + traverse(Y), traverse(Z). 
traversetg (Y, Z)) +- traverse(Y), traverse(Z). 
. . . . . . . . . 
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or use a built-in predicate arg/3, as in 

traverse(Tree) + 
arg(1, Tree, Left), arg(2, Tree, Right), 
traverse(Left), traverse(Right). 

In the latter, the structure of Tree is less visible and even is not enforced (unless 
we add another subgoal for checking the total number of arguments). 

In databases, schema browsing is common [41]. In HiLog, browsing can be 
performed through the same query language as the one used for data retrieval. For 
instance, 

relations(Y)(X) + X(Y, Z). 
relations(Z)(X) + X(Y, Z). 
?- relations(john)(X). 

will return the names of all binary predicates whose extensions (under Herbrand 
interpretations) contain one or more tuples with the token john. HiLog shares this 
browsing capability with another recently proposed language, called F-logic [24,25]. 

The ability to use sets is very important in logic programming. Prolog supports 
the use of sets by means of the setof construct, which has only an operational 
semantics. Although newer logic languages, such as LDL [5, 461 or COL [l], do 
provide semantics for sets, they have to severely restrict their use to avoid logical 
paradoxes and/or computational intractability. In HiLog, sets can be represented 
naturally by parameterized predicates mentioned earlier. For instance, the follow- 
ing HiLog rule defines groups of satisfied employees working for each manager. An 
employee is satisfied with the job if and only if he earns more than his boss: 

sat_empl(Boss)(Empl) + supervises(Boss, Empl), 
sal(Boss, B-Sal), salary(Empl, E-Sal), 
E_sal > B-Sal. 

The set-term, sat_empl(Boss) is akin to the setof and the grouping constructs of 
Prolog and LDL, respectively, although HiLog sets are not constructed or used the 
same way. Having defined sets intensionally, via terms, we can go on and use these 
sets in other relationships, as in the following fragment that associates packages of 
benefits with groups of satisfied employees: 

package1 (health-ins). 
package1 (life-ins). 
package2(free_car). 
package2(long_vacations). 
benefitdpackagel , sat_empl(john)). 
benefits(package2, sat_empl(bob)). 

The following is a query regarding benefit packages that bob enjoys as an 
employee in the above enterprise: 

?- benefits(X,Y), Y(bob) . 

Note that the above information about sets can be also encoded in Prolog, but less 
naturally. A more detailed discussion of these issues appears in Sections 4, 5, and 8. 

As seen from the earlier examples, HiLog terms are also atomic formulas. In 
this capacity, their semantics is indirectly captured by the truth value assigned to 
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each ground term. For instance, instead of saying that a pair (a, b) is in the 
relation for a predicate p, we say that the term p(a, b) denotes a true proposition. 
Formal details are provided in the next two subsections. 

2.2. Language 

In addition to parentheses, connectives, and quantifiers, the alphabet of a language 
_Y of HiLog contains a countably infinite set Y of variables and a countable set 9 
of parameter symbols. We assume that 7 and 9 are disjoint. 

The set 9 of HiLog terms of L is a minimal set of strings over the alphabet 
satisfying the following conditions: 

. if t, t,, . . . , t, are in z then t(t,,.. ., t,) ~7, where IZ 2 1. 

Notice that according to this definition, a term can be applied to any finite number 
of terms, and parameter symbols are arityless. 

An atomic formula is a term. More complex formulas are built from atomic 
formulas in the usual way, by means of connectives V, A (also written as &I, 7, 
and quantifiers 3 and V. 

In addition, we use +- and c to denote the implication, where (4 + I/J)= (4 c 
@)=(c$v -, $1. L’k 1 ewise, C#J + $ and C#J 2 I) will stand for 7 4 V g. The bidirec- 
tional implication “ c, ” also has the standard definition. 

A literal is either an atomic formula, a positive literal, or the negation 7 A of 
an atomic formula A, a negutiue literal. A clause is of the form VX, . . .VX, 
CL, v *-a V L,), where L,, . . . , L, are literals and Xi,. . .,X, are all the variables 
occurring in L,, . . . , L,. It is usually written simply as L, V ... V L,. When it = 0, a 
clause is called the empty clause. A Horn clause is a clause that contains at most 
one positive literal. A definite clause is a Horn clause of the form A V 7’ B, V 
. . . V 7 B,, where A,B ,,..., B, are atomic formulas; definite clauses are usually 

written as A + B 1,. . . , B,, where A is the head and the conjunction B,, . . . , B,, is 
the body of the clause.2 A negutiue clause is a clause containing no positive literals. 
A goal is a conjunction of literals, and a query is the negation of a goal, which can 
be written as a negative clause. For practical applications, we consider definite logic 
programs that consist of a finite number of definite clauses. Section 4.1 briefly deals 
with logic programs with negation. 

2.3. Semantic Structures 

Since-at first glance-the semantics of HiLog may seem a bit unusual, we 
precede the formal description by an informal discussion that shows how the 
semantics of the first-order predicate calculus has evolved to support higher-order- 
ness of HiLog. First, we define the Herbrand semantics because it is especially 
close to the Herbrand semantics of predicate calculus. 

The Herbrund universe for a HiLog language, ._5?, is the set of all ground (i.e., 
variable-free) HiLog terms in 9; Since terms in HiLog are also atomic formulas, it 

2As usual in logic programming literature, we use ‘0” to denote conjunction of literals in the clause 
body. 
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follows that Herbrand universe is identical to Herbrand base (cf. [35]). This is not a 
coincidence: if we want to manipulate atomic formulas as terms, the former must 
be elements of the universe. Now, a Herbrand interpretation is simply a subset of 
the Herbrand base ( = universe), the definition of Herbrand interpretation com- 
monly used in logic programming [35]. The definition of formula satisfaction in 
such interpretations simply repeats the corresponding definition in [35]. 

Although Herbrand interpretations suffice for many of the needs of logic 
programming, there are at least two important reasons to be interested in a more 
general notion of semantic structure [16]: programs with equality and negation-as- 
failure. 

Recall that, in first-order predicate calculus, a semantic structure M for a 
language 9 is a pair (U, Z), where U is called the domain of M and Z is a function 
that interprets parameters of 9 (i.e., constants, function symbols, and predicate 
symbols). Z consists of two different mappings, 9and 9. The former, F, interprets 
each k-ary (k 2 0) function symbol of 9 by a function Uk c, U; the mapping 9 
maps each n-ary predicate symbol to an n-ary relation over U. We consider 
constants as 0-ary function symbols, so 9 takes care of constants as well. In what 
follows, whenever f is a function symbol, Z(f) will stand for 9(f); when p is a 
predicate name, Z(p) will stand for 9(p). Note that the set of function symbols 
and the set of predicate symbols are disjoint. 

In HiLog, one of our original goals was to eliminate the syntactic distinction 
among constants, function symbols, and predicates, so one cannot tell a constant 
from a predicate or a function symbol. 3 Therefore, Sr and 9 must map each 
parameter symbol to all of the following: an element of U, a function over U, and a 
relation on U. Another of our goals was to make symbols arityless. So, each symbol 
must be mapped into an infinite tupk of functions and relations, one for each arity. 

There is a subtlety, however. How should we interpret a formula like X(a), 
where X is a variable? In predicate calculus, such formulas are interpreted with 
respect to a variable assignment, which is a mapping u: Y- U. However, u(X) is 
an element of the semantic domain U, and in order to interpret X(a) with respect 
to u, we must associate relations with elements of U rather than parameters of 9. 
Thus, the interpreting mappings F and 9 must associate functions and relations 
with every element in U, including Z(s), for each s ~9, not with the symbols in 9. 

Following the usual development in predicate calculus, we can extend a variable 
assignment v recursively to the set Yof all terms as follows: 

l u(s) = Z(S) for every parameter symbol in 9; 

l u(t(tt,..., t,>) =9(uwxu(t~), . . . , u(Q). 

However, the truth of an atomic formula t(t,,. . . , t,) can be determined either 
with respect to the n-ary relation that 9 associates with u(t), that is, 
9(u(t)Xu(Ir), . . . , u(t,)), or with respect to the 0-ary relation (i.e., true or false) 
which it associates with u(t(t,, . . . , t,)), that is, Si’l(u(t(t,, . . . , t,))). Both alternatives 
seem reasonable, but the second one results in a more uniform treatment of HiLog 

‘This is not to say that we dismiss the utility of typing. To the contrary, we distinguish between 
well-formedness and typing, which we feel are orthogonal concepts. Our goal here is to relax the 
stringent well-formedness requirements of predicate calculus, while preserving the ability to talk about 
type correctness. An attempt to introduce types into HiLog is described in [9]. 
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terms. Furthermore, it turns out that under certain natural assumptions, these two 
choices lead to the same semantics. 

It is easy to see now that adopting the second alternative obviates the need for 
9. Indeed, all we need is to classify elements of the domain U into the intensions 
of true and false propositions. A simple way to do this is by introducing a subset 
U,,,, G U that designates propositions that are true in M. Coming back to Her- 
brand interpretations discussed at the beginning of this section, we see that-in 
the Herbrand case-l&,, is precisely that subset of the Herbrand base that 
determines the interpretation. 

After this informal introduction, we are ready for the formal development. A 
semantic structure for HiLog, M, is a quadruple (U, U,,,,, I,F), where 

l U is a nonempty set of intensions for the domain of M; 

. u,U? is a subset of U that specifies which of the elements in U are intensions 
of true propositions; 

l I: 9’-, U is a function that associates an intension with each logical symbol; 

l 97 U * rIt= ,[Uk - U] is a function, such that for every u E U and k 2 1, 
the kth projection of flu), also denoted by u$), is a function in [Uk * Ul. 
Here, ll denotes the Cartesian product of sets and [Uk - VI is the set of all 
functions that map Uk to U. 

Given a semantic structure M and a variable assignment u: 7+-+ U, we extend it 
recursively to the set 9of terms as follows: 

l u(s) = Z(S) for every s 67; 

l dt(t,, . . ., t,)> = Mt)>$“‘Mt,>, . . .,dtJ. 

Let C#I be an atomic formula. It is satisfied by M under u, denoted M bU 4, if and 
only if 44) E U,,,,. 

We thus see that a HiLog term may represent an individual, a function, a 
predicate, or an atomic formula in different contexts. The intension of a term is its 
associated element in the universe U. Extensional aspects of terms are captured as 
follows. The extensional aspect of a term, viewed as a proposition, is its truth value 
defined by its membership in U,,,,, while the extensional meaning of a term in its 
capacity as a function is captured by R For example, if a term t appears as a k-ary 
function, e.g., in t(t,,. . ., tk), its extensional meaning under a variable assignment u 
is the kth projection of the vector of functions associated with the intension of t, 
that is (u(t))$). On the other hand, the role of the above term as a proposition is 
indirectly captured through 9 and U,,,,, so that t(t ,,...,tk) is true if and only if 
u(t(t ,,.e.,t,))E v,,,,. 

Finally, the meaning of complex formulas is defined in the standard way: 

l MK,(+r\$,)ifandonlyifMb, 4andMb,, 4; 

l Mk,(4V$)ifandonlyifMK, +orMb=, t,!t; 

l Ml=,(T+)ifandonlyifMK, 4; 

l M bv (VX>+ if and only if for every variable assignment, CL, that may differ 
from u only on X, M KcL 4; 

l M bv (3X)+ if and only if for some variable assignment, CL, that may differ 
from u only on X, M ticl 4; 
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For closed formulas (i.e., formulas all of whose variables are quantified), M K,, 4 
does not depend on u, and we can write simply M K 4. 

Interpreted symbols, such as “ = ,” “ true,” and “false,” can be incorporated into 
HiLog by requiring that interpretations satisfy the following restrictions: 

l Z(true) E U,,,,; 

l Z(false) GE U,,,,; 

l Z(=)$k’(u 19.. .7 u,) E u,,,, if and only if u, = u2 = ... = uk (i.e., if all the ui’s 
denote the same element of U). 

Compared with other higher-order logics, such as Church’s theory of types [13] 
and AProlog [42, 451, HiLog treats only atomic formulas as first-class objects. 
Formulas that contain connectives, such as “and,” or,” or “not,” could be build 
into HiLog by making these connectives into constants and requiring every seman- 
tic structure to satisfy the following conditions: 

l Z(and$)(d,, d2) E U,,,, if and only if both d, and d, are in V,,,,, for every 
d,, d, E U; 

l Z(or)$?(d,, d,) E U true if and only if d, or d, are in U,,,,, for every d,, d, E U; 

l Z(not$)(d) E U f,Llf2 if and only if d is not in Qr,,, for every d E U. 

Alternatively, the above connectives can be defined using HiLog clauses, e.g., 
and(X, Y):-X, Y. Encoding formulas with quantified variables would require the 
introduction of A-abstraction into HiLog, which also can be done, but is beyond 
the scope of this paper. 

3. RELATIONSHIP TO PROLOG AND PREDICATE CALCULUS 

In this section, we show from various perspectives that HiLog is, in a well-defined 
sense, a faithful extension of predicate calculus. In the sequel, we will use “PC” as 
an abbreviation for “predicate calculus.” First, we compare HiLog to what we call 
contextual predicate calculus. This is an extension of ordinary, “pure” predicate 
calculus, and is inspired by the way Prolog permits the use of the same symbol in 
different contexts (e.g., as a predicate symbol or as a function symbol of different 
arities). Syntactically, formulas in contextual PC are also well-formed in HiLog, 
and therefore there is a question of whether the validity problems for such 
formulas under the semantics of HiLog and contextual PC coincide. We show that 
this is not always the case, but under certain conditions, the two validity problems 
do coincide. In the second subsection, we consider formulas in pure predicate 
calculus. Such formulas are also well-formed in contextual PC, and therefore also 
in HiLog. We then establish that the validity problem in pure PC coincides with 
the same problem in HiLog for an even larger class of formulas than in the case of 
contextual PC. The third subsectioe shows that every HiLog formula can be 
encoded as a formula in pure PC. 

3.1. Validity in Contextual Predicate Calculus and HiLog 

In Prolog, the same symbol may appear in different contexts as a predicate, a 
constant, or a function symbol; the same symbol can even occur with different 
arities in different parts of the program. The exact role played by an occurrence of 
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a symbol depends on the context in which this symbol occurs. Such Prolog 
programs are normally understood as formulas in predicate calculus in which 
different occurrences of the same symbol are replaced by different function or 
predicate symbols (whichever is appropriate) of suitable arities. This ad hoc use of 
parameter symbols in multiple roles motivates a simple extension of PC, which we 
call contextual predicate calculus. 

A language 2 of contextual PC contains a set of parameter symbols, 9, and a 
set of variables, Y”. A term is either a variable, a parameter symbol, or an 
expression of the form s(t,, . . . , n , r > where s ~9, n > 0, and t,, . . . , t, are terms. An 
atomic formula is any term other than a variable, and the rest of the definitions are 
as usual. 

Clearly, contextual PC is an extension of PC in the direction of HiLog, but is not 
as radical. It stops short of introducing a higher-order syntax (because s above is an 
element of 9, not a variable). Every formula in contextual PC is also a formula in 
HiLog. On the other hand, X and X(a)(b) are well-formed formulas in HiLog, but 
not in contextual PC. Similarly, every PC formula is also a formula in contextual 
PC, but not vice versa, e.g., s(s, s) is a formula in contextual PC, but not in PC. 

Semantics of contextual PC is also a middle ground between HiLog and pure 
PC. A semantic structure for a contextual PC language is a tuple M = (U, Z9, I9 >. 
For each symbol s ~9, the function I7 associates an infinite tuple ( fO, fi, f2,. . . >, 
where f0 is an element of U, and for i > 0, f, is a function U’ H U. Likewise, Z,(s) 
is a tuple (po,p1,p2,...), where p. is a 0-ary relation, p, is a unary relation, etc. 
We will denote the kth components of the above infinite tuples by Z$‘(s) and 
Z$‘(s), respectively. (Recall that a 0-ary relation is a set of 0-ary tuples, and that 
there is only one such tuple-the empty tuple ( >. Therefore, there are only two 
0-ary relations: the empty one and the relation {( >}. The former is used to 
interpret false propositions, while the latter interprets true propositions.) 

Given a variable assignment u: 7 c, U, we define u(s) = s, whenever s ~9, and 
UN 1,. . . , t,)) = Z$)(sXu(t,), . . . , ~4,)). If s(t,, . . . , t,) is an atomic formula, M bV 
s(t ,, . . . , t,) if and only if (u(t,), . . ., u(t,)) E Z$)(s). The rest of the definition of F 
is the same as for PC and HiLog. 

Although there are contextual PC formulas that are not well-formed in PC, any 
such formula, 4, can be transformed into a formula 4’ in PC by replacing 
occurrences of each parameter symbol as follows. All occurrences of s as a k-at-y 
function are replaced by a new k-ary function symbol s$; all occurrences of s in 
the position of a k-ary predicate are replaced by a new predicate symbol s$. For 
instance, under this transformation, s(s, t(t)) becomes s$<s& tk<t$>>. This transfor- 
mation is explicit in Prolog where parameter symbols can assume multiple roles. A 
justification for using this transformation stems from the following easy fact. 

Lemma 3.1. 

1) A formula in contextual PC is valid if and on& if its transformation into pure PC 
is valid. 

2) A formula in PC is valid if and only if it is also valid when considered under the 
semantics of contextual PC. 

PROOF. Let 9 be a language of contextual PC, and let 9’ be the corresponding 
language of pure PC in which the transformed formulas are expressed. That is, if 9 
is a set of parameters of 2, then the set of function symbols of 2 is {s$k 2 0, 



198 WEIDONG CHEN ET AL. 

s ~54, where the superscript indicates the arity; (s$(k 2 0, s ~91, is the set of 
predicate symbols of 2’. 

The proof of 1) is then carried out by constructing an isomorphism .& between 
the sets of semantic structures for 9’ and _.‘?I such that if M = (U, ZF, Zya) is a 
semantic structure for 9, 4 is a formula in 9, and 4’ is its translation to _Y’, 
then M k 4 if and only if &Ml F 4’. d(M) = (U, Z) is constructed in an obvious 
way: Z(s$) = Z$kk’(s), and I(&) = Z&k)(s). 

To prove 21, consider _Y”, a language of PC. Let 9” be a language of contextual 
PC with the same sets of parameters and variables. Let M’ = (U, Z) be a semantic 
structure of 9. The corresponding semantic structure M” = (U, Z9, Z, > is con- 
structed thus: if p is a k-ary predicate symbol in Y, then Z$k’(p> = Z(p); if f is a 
k-ary function symbol in _Y’, then Z$k)(f) = Z(f). The rest of Z9 and IF can be 
arbitrary. It is easy to see that a PC formula 4 in 9’ is true in M’ if and only if it 
is true in M”. Thus, if such a formula is valid when considered as a formula in _Y’, 
then it is valid as a formula in ._F’. 

By reversing the above construction, for every semantic structure M” of the 
language 9” of contextual PC, one can construct a PC structure M’ for 9’ such 
that a PC formula 4 in 9’ is true in M” if and only if it is true in M’. Thus, if 4 is 
valid as a PC formula in _Y’, it is valid as a formula in the contextual PC language 
_Y. 0 

The above lemma essentially says that contextual PC is only a minor extension 
of PC. However, because of the greater similarity between the synax of contextual 
PC and HiLog, it is instructive to investigate the relationship between the validity 
problems in these two logics. Suppose 9 and 7 is a set of parameters and 
variables, respectively. Let 9H be a language of HiLog, and let _9$ be the 
sublanguage of contextual PC. In view of Lemma 3.1, it is tempting to’think that 
every formula in _9$ is valid under the semantics of contextual PC if and only if it 
is valid under the semantics of HiLog. It turns out that the difference between 
these semantics is more fundamental than in the case of the two flavors of PC. 
Consider the following formula that is valid in HiLog: 

(s(a) = r(b,o)) = (s(a) ++ r(b, o)) (1) 
It is easy to see that this formula is not valid in contextual PC, for the latter can 
assign relations to the parameters s and r that are not related in any way to the 
meaning assigned to the terms da) and r(b, cl. This stands in sharp contrast with 
HiLog where truth value is assigned to intensions of atoms, and according to the 
premise of (11, the terms s(a) and r(b, c) do have the same intension; hence, as 
atomic formulas, they also must have the same truth value. 

Nevertheless, there is a correspondence between valid formulas of 9p in HiLog 
and contextual PC in the important cases described in Theorem 3.1 below. 

Definition 3.1. Given a language 9 of contextual PC, a semantic structure M = 
(17, ZF, Z9 > is free if and only if for every pair of parameter symbols f and g and 
for any pair of arities 12 2 0 and m 2 0, the following holds: 

l for all u,, . . ., u, and q,. . . , urn in U, Z~)(fXul,. . ., un> =Z~m’(gXu,, . . .,u,) 
if and only if f and g are identical symbols, n = m, and ui, ui are identical 
elements in U, for all i (1 5 i 5 n). 

Definition 3.2. A sentence 4 in contextual PC is freely-interpretable if it has the 
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following property: 

l if $J is satisfied by every free semantic structure, then it is satisfied by all 
semantic structures. 

Theorem 3.1. Let, as before, 9” be a language of HiLog, and let 9r be the 
corresponding sublanguage of contextual PC (i.e., they share the same set 9 of 
parameters and the set Y of variables). Let 4 be a formula in 9r. Then 

1) if kcPc c$, then tihitoe 4; 
2) if 4 is freely-interpretable, then bhilos 4 if and ont’y if t=‘J” 4. 

Here, FPc and bhi”s denote the logical implication relation with respect to the 
semantics of contextual PC and HiLog, respectively. 

PROOF. We prove both directions of 2). The proof of the “if’ direction of 21 is also 
a proof of 1). To prove 21, suppose that k hi’og 4 holds. We show that k ‘PC C#J 
holds as well. Given a pee semantic structure M, = (U, I,, I9 > for _YP, we 
construct a semantic structure M, = (U, U,,,,, Z,F) of PH as follows: 

l the domain, U, is the same as in M,; 

l Z(s) = Z$‘(s> for every symbol s of 9; 

l for every u E U and every k 2 1, if u = Z$?‘(s) for some s ~9, then u$’ = 
Zg’(s)* otherwise > 7 define u$k’(u I,...ruk)=d forsomelixed dEU; 

l u E u,,,, if and only if one of the following conditions holds: 
--u = Z$)(s) for some s ~9 such that Z$“(s) is a nonempty 0-ary relation4 

(equivalently, if M, k s); or 
--u = Z$)(SXU,, . . .) u,) for some s ~9 and ui E U (1~ i 5 k), such that 

(U 1,. . . ) Uk) E Z‘$‘(s). 

The semantic structure M, is well-defined since M, is free. It can be shown by 
induction that for any formula 4 of _5$ and any variable assignment u,M, kv 4 if 
and only if M, b,, 4. Therefore, if khilog 4, then C#J is satisfied in every free 
semantic structure for PP. Since C$ is freely-interpretable, it is satisfied in 
every semantic structure for PP, that is, FP’c#J holds. 

To prove the other direction of 21, let us assume that kcPc+ holds. We need to 
show that khijog C$ holds as well. Given a semantic structure M, = (U, U,,,,, Zv,F) 
for 9”) we construct a semantic structure M, = (U, Z,, Z,) for PP as follows: 

l the domain, U, is the same as in M,; 

l for every symbol s of PH, 
-Z$)(s) = Z,(s). 
-Z$kk’(s) = CZH(i))&!), for every k 2 1; 
-Z$‘(s) is a nonempty 0-ary relation (equivalently, MP k s) if and only if 

Z&1 E u,,,,; 
(u r,..., uk > E Z&!)(s), k 2 1, if and only if (Z,(S)>$~(U,, . . . , uk) E U,,,,. 

Again it can be shown by induction that for any formula C$ of _P,, and any variable 

4Recall that the nonempty 0-ary relation interprets true propositions, while the empty relation 
interprets false propositions. 
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assignment u, M, E,, 4 if and only if M, kV 4. Therefore, if there exists some M, 
such that M, #” 4, a semantic structure M, of _L$ can be constructed such that 
M, K 4, contrary to the assumption. Thus khi”g 4 holds. 0 

Although the condition in Theorem 3.1 is not syntactic, it encompasses impor- 
tant classes of formulas. The following lemma shows that all equality-free formulas 
of predicate calculus are freely-interpretable. The other interesting class that is 
particularly important for logic programming consists of sets of definite clauses 
with equality, but such that the equality is restricted to clause bodies. If G is a 
query and is a negative clause and P is a definite logic program (possibly with 
equality in clause bodies), then evaluating the query amounts to showing that the 
set S = G UP is unsatisfiable. Since Theorem 3.1 concerns validity (which is a 
contrapositive of unsatisfiability), the class of formulas to consider in this theorem 
is { 7 SIS is a conjunction of Horn clauses free of equality in the head}. 

Lemma 3.2. The following classes of contextual PC formulas are freely-interpretable: 

1) Sets of equality-free sentences. 
2) Formulas of the form 7 S, where S is a conjunction of Horn clauses free of 

“ = ” in clause-heads. 

PROOF. Consider a language 9 of contextual PC with a set of parameters 9. Let 
4 be a formula in 9 that has one of the forms 1) or 2) above. Assume that for 
some semantic structure M = (17, Z,, Z9> for 9, M # 4. We show that there exists 
a free semantic structure M’ = (U’, Z$, I&> such that M’ # 4. 

The domain U’ of M’ is a free algebra built out of the elements of U and the 
parameter symbols of 9. In other words, it is a minimal set satisfying the following 
conditions: 

l UUPLU’; 

l if dI,..., d, are in U’ and s ~9, then the abstract symbol s(d,, . . . , d,) is in 
U’ for every k 2 0. 

For every s ~9, define Z$“(s) = s, and for each k 2 1 define Z$k’(sXd,, . . . , d,) = 
s(d 1,. . . ,dk) for all d,, . . ., d, in U’. 

There is a natural mapping *: U’ e U defined thus: for every element u in U’, 
the corresponding element u* in U is such that: 

0 u*=u ifuEU 7 7 
. s* = Z$)(s), if s ~9, and 

l (s&r,..., z&J)* = z$)(sXu* 1,. . . , u,*>. 

Next, define Z,$k,‘k’(s) as follows: (u,, . . . , uk > E Zsk)‘k’(s) if and only if (UT,. . . , u:) E 
zAkT p>. 

By the definition, M’ is a free semantic structure, and the mapping *: U’ e U is 
a homorphism of M’ onto M [16]. By the Homomorphism Theorem [16L5 the 

‘In [16], the Homomorphism Theorem was stated for PC. Its validity for CPC is immediate from 
Lemma 3.1. 
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following properties hold: 

i) 

ii) 

iii) 

iv) 

If u: V+-+ U’ is a variable assignment with respect to M’, then there is a 
variable assignment v*: Y-, U with respect to M, defined as follows: for 
each variable X of 9, u*(X) = (u(X))*; 
For any term t of 9, v*(t) = (u(t))*, where u*(t) is evaluated with respect 
to M while u(t) is evaluated with respect to M’; 
The mapping u r* u* is an epimorphism of variable assignments, i.e., for 
every variable assignment p for M, there is an assignment u for M’ such 
that u* = p; 
For every equality-free formula 4, M’ K,, 4 if and only if M KU* 4. 

Obviously, 1) follows from iii> and iv). 

To show 21, let S be a conjunction of Horn clauses free of equality in clause 
heads. To show that 7 S is freely-interpretable, we prove that M #,, 1 S implies 
M’ kt u 7 S. The latter is the same as saying that M kV. S implies M’ i=” S, and 
since S is a conjunction of clauses, we only need to establish this fact for the case 
of a single clause, r, that is, to show that M k,,, r implies M’ k=” r. 

Let r be a clause of the form L, V ... v LL. Assume that M k==,, r. Then there 
exists some literal Li such that M k=,, L,. If Lj is not an equality literal, then 
M’ kv Li, by iii), and thus M’ kU r. If Li is an equality literal, then Li must be of 
the form ~(t, = t,), by the assumption. It follows from the definition of the 
mapping “*” that if u(t,) = u&l, then also u*(t,) = u*(t,) (but the opposite may 
not be true). Hence, M k,, Li implies M’ kV L,, and also M’ kv r. 0 

It is interesting to note that although formulas of the form 7 S in the above 
lemma are freely-interpretable, S itself may not be freely-interpretable. A simple 
example is the formula c + a = b that is true in every free interpretation, but is not 
a valid formula in general. 

3.2. Validity in Pure Predicate Calculus and HiLog 

Since formulas in pure PC are also formulas in contextual PC, the results of the 
previous subsection hold for PC formulas as well. However, since the language of 
PC is a subset of contextual PC, we can obtain a stronger result than the 
specialization of Theorem 3.1 to PC. 

Definition 3.3. Let P be a set of formulas in a PC or a contextual PC language 9. 
Let y denote the cardinality of the set of parameters of _Y. We say that P is 
cardinal with respect to _Y if the following property holds: 

l If P is true in every semantic structure M such that the cardinal@ of the 
domain of M is at least y, ‘then P is true in every semantic structure of _Yz?‘.~ 

Lemma 3.3. Every freely-interpretable formula in contextual PC is cardinal. In particu- 
lar, the formulas of the form described in Lemma 3.2 are cardinal. 

61mplicit here is the assumption that whenever P is viewed as a PC formula, then M is a PC 
structure, and when P is viewed as a CPC formula, then M is a CPC structure. 
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PROOF. For simplicity, we will prove the lemma for languages with finite sets of 
parameters. It suffices to show that every free semantic structure for a language 9 
of contextual PC has an infinite domain. Then, if 4 is freely-interpretable, suppose 
that it is true in every semantic structure of cardinality at least y. Then it holds in 
every infinite and, in particular, every free semantic structure. Hence, since 4 is 
freely-interpretable, it holds in every semantic structure. 

Let M = (U, Z,, 9) be a semantic structure for 9, and let s be a parameter in 
9. Such an s always exists since any language of CPC contains at least one 
parameter symbol (or else no well-formed formulas can be constructed in this 
language). Let u0 = Z(s), U, = Z$)(sXu,>, u2 = Z$‘(sXu,), and so on. Then, by the 
definition of free structures, uO, u,, u2, and so on, are all distinct elements of U. 
q 

It is easy to see that the class of cardinal formulas strictly contains the class of 
freely-interpretable formulas. Lemma 3.3 provides for the inclusion. To show that 
this inclusion is strict, note that every propositional Horn rule (in PC or CPC> with 
a nontrivial equality in the body [e.g., p + (a = b)] is cardinal, but not freely- 
interpretable. 

Theorem 3.2. Let 4 be a set of formulas in PC (and hence in HiLog). Then 

l if 4 is valid in PC, then it is valid in HiLog; 

l if 4 is cardinal, then it is valid in HiLog if and on& if it is valid in PC. 

Before presenting the proof, we show that the second part of this theorem may 
not hold if 4 is not cardinal, or it is a CPC but not a PC formula. Consider the 
following formula: 

(q(a) t) r(a)) + VXVY(X=Y). 

Clearly, this is a well-formed formula, both in predicate calculus and in HiLog. 
It is also a valid HiLog formula because whenever the right side of the formula is 
true in a semantic structure M = (17, U,,,,, Z,9>, the domain of this structure must 
be a singleton element. So, in M, q and r are mapped to the same element of U. 
Therefore, Z(q(a)) =Z(r(a)), and the left-hand side of the formula holds true. 
However, this formula is not valid in predicate calculus, since it is falsified by every 
semantic structure that has a one-element domain and interprets q by an empty 
relation while r by a nonempty one. One reason for this discrepancy between 
HiLog and predicate calculus is that the domains’of quantification are different: in 
HiLog, this domain contains r and q, while in predicate calculus, it does not. 
Therefore, predicate calculus has, in a sense, more interpretations than HiLog. 
Another reason is that the truth of atomic formulas is defined via intensions of 
these formulas in the domain of interpretation rather than via relations associated 
with predicate symbols. 

The second part of Theorem 3.2 hinges in an essential way on the assumption 
that 4 is a well-formed formula in predicate calculus. It is not true, for example, 
for formulas in contextual predicate calculus. Consider 

(s(a) c, r(D)) +- (s(a) = r(b)). (2) 

This formula is not well-formed in PC (s and r play multiple roles here), but it is 
well-formed in contextual PC. It is also a cardinal formula. It is easy to see that (2) 
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is valid in HiLog, but not in contextual PC (the latter is because semantic 
structures in contextual PC can assign different truth values to the atoms s(a) and 
r(b), even if the terms s(a) and r(b) have the same intension). Another observation 
is that (2) is cardinal, but not freely-interpretable (it holds in every free structure 
because the premise is always false; however, as noted above, this formula is not 
valid in contextual PC). 

Since the class of cardinal formulas in PC is strictly larger than the class of 
freely-interpretable formulas, Theorem 3.2 strengthens the result of Theorem 3.1 
for the class of PC formulas. In fact, since cardinal PC formulas that are valid in 
HiLog are also valid in PC (Theorem 3.21, it follows that they are also freely 
interpretable (as are all valid formulas). Thus, Theorems 3.1 and 3.2 together imply 
that all cardinal, yet nonfreely-interpretable PC formulas are not valid in HiLog 
and in PC. (This means that these theorems identify the same class of valid PC 
formulas that are also valid in HiLog. However, Theorem 3.2 identifies a strictly 
larger class of nonvalid PC formulas that are also nonvalid in HiLog.) 

PROOF. Let A$ be a language of PC with a set of parameters 9 and a set of 
variables V. Let -EL;I be a language of HiLog with the same sets of parameters and 
variables.’ 

We define a pair of mappings: 

l HtoP: PH-Structures HP,,-Structures 

l PtoH: &-Structures +_.5$,-Structures 

such that for any predicate calculus formula over _J$,, the following holds, where 
k PC and k hilog denote logical entailment in predicate calculus and HiLog, 
respectively. 

Property 1. If M, is a semantic structure for _& and HtoP CM,) kPc 4, then 
M, bhilog 4. 

Propeq 2. If M, is a semantic structure for _5& such that the cardinality of the 
domain of M is at least that of 9 and PtoH (M,) khilog 4, then M, t=Pc 4. 

The theorem immediately follows from the existence of the mappings with these 
two properties. 

To construct HtoP, let M, = (U, U,,,,, H, Z S) be a semantic structure for 9’“. 
Define the corresponding structure for L& as follows: HtoP CM,) = (U, ZP) has 
the same domain, U, as M,, and Zp is defined below: 

l Z,(c) = ZJc), if c is a constant of _Y$q 

l Z&7 = (ZH(f))$k’, if f is a k-ary function symbol of -rtp; and 

l Z,(p)=Ku,,..., u,)Kz,(p))$m)(u,,...,U,)E u,,,,l. 

Now, Property 1 follows straightforwardly, by induction on the structure of 4. Note 
that here we did not impose any restrictions on semantic structures. 

To prove Property 2, we define PtoH as follows. Let M, = (U, ZP) be a semantic 
structure for _Y$, where the cardinal&y of U is at least as high as that of 9. 

‘It is important for the following construction that HiLog interpreted parameters, such as “ = ,” 
“true,” and “false,” are never used as function symbols in the PC language _S+. 
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Because of the cardinality assumption, there is a mapping ZH from 9 to U such 
that 

l Z,(c) = Z,(c) for every symbol c in 9 that corresponds to a constant symbol 
c of _5$; and 

l ZH(f) #Z”(g) for every pair of distinct symbols f and g in 27 that corre- 
spond to function symbols (of arity > 0) or predicate symbols of .Epp. 

We can now define PtoH(M,) = M, = (U, V,,,,, Z,,F), where 

l the universe, U, of M, is the same as that of M,; 

l the mapping ZH from the parameters ~7 of ~9~ to U is the one defined in 
the previous paragraph; and 

l 9 is defined thus: 
-If f&Y corresponds to a k-ary function symbol of _.Y&, where k 2 1, 

then (Z,(~))$)(U~, . . . , u,) = Zp(fX~l,. . . , u,); for other arities r (r # k), 
(I&))$) is defined arbitrarily. 

-If p ES is an m-ary predicate symbol, where m 2 0, then (Z,(p))$“’ 
(24 ,,. . ., u,) is in U,,,, if and only if (u,,. . .,u,) E Z,(p); there are no 
other requirements to the definition of (Z,(p))$“). Neither are there any 
requirements to (Z,(p))$“’ for other arities s, where s # m. 

-On other elements of U, F is defined in an arbitrary way. 

Since ZH maps distinct function and predicate symbols of 9 into different 
elements of U, the mappings (Z&))$) and (Z,(p))$“’ are well-defined. 

Let u be a variable assignment. Since -E” and L?$ share the same set of 
variables and PtoH(M,) shares the domain U with M,, u is a variable assignment 
for both PtoH(M,) and M,. Let V, and u, denote the extensions of u to the set 
of all terms in 9H and _!&, respectively. The following properties can be proved by 
induction: 

l for any term t of _2$ in PC (which is also a term in L?&), u,(t) = u,(t); 

l for any formula 4 of _5$ in PC (which is also a formula in L?,,), PtoH(M,) 
+iilOg 4 if and only if M, ki” 4. 

Therefore, if 4 is valid in HiLog, 4 is valid in all semantic structures M, such that 
the cardinality of the domain of M, is at least that of 54 If 4 is also cardinal, this 
implies that 4 is true in all semantic structures of -E?p. 0 

3.3. Encoding HiLog in Predicate Calculus 

Since HiLog syntax is richer than that of predicate calculus, it may seem that 
HiLog is a more expressive logic. It turns out, however, that every HiLog formula 
can be encoded in predicate calculus, and therefore these two logics are equally 
expressive. It should be borne in mind, though, that our objective is not to devise a 
more expressive logic, but a logic whose syntax is more suitable for logic program- 
ming. In this respect, one can compare programming in HiLog versus Prolog to 
programming in Prolog versus Horn logic. It is well-known that Horn logic has the 
computational power of a Turing machine and, therefore, is sufficient for all 
computational needs. However, the programmer’s convenience and the need to 
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simplify problem specification call for a richer syntax (negation, etc.), and this is 
why Prolog has the additional constructs it is notorious for. More discussion of this 
issue appears in Section 8. 

The following encoding of HiLog in predicate calculus was suggested by WU 
[59]. Given a HiLog language L& with a set of variables 7 and parameters 9, we 
define _Y’ncode to be a language of predicate calculus with the set of variables Y’“, 
constant symbols Y, a unique predicate symbol “call,” and for each n 2 1, an 
(n + l)-ary function symbol apply,, r. Given a HiLog formula 4, its encoding in 
predicate calculus, c&*, is determined by the following recursive transformation 
rules. In these rules, encode, is a transformation that encodes HiLog terms that 
appear in contexts where they are interpreted as atomic formulas, and encode, 
encodes these terms in all other contexts. 

l encode,(X) =X, for each variable XE 7; 

l encode,(s) = s, for each logic symbol s ~9, 

l encode,(t(t,, . . . , t,)) = apply,, + ,(encode,(t), encode,(t . . , encode,(t,N; 

l encode,(A) = call(encode,(A)), where A is a HiLog atomic formula; 

l encode&A v B) = encode,(A) v encode,(B); 

l encode,(A A B) = encode,(A) A encode,(B); 

l encode,( 7 A) = 7 encode,(A); 

l encode,((QX)A) = (QX)encode,(A), where Q is either 3 or V. 

Given a HiLog semantic structure M = (U, U,,,,, ZH,F), the corresponding 
predicate calculus structure, encode(M) = (U, Z,>, is defined as follows: 

l Z,(c) = Z”(c), for each c ~9, 

l Z,(apply,+ ,Xu, q,. . . , u,> = hd$“)h,, . . . , u,); 
l Z,(call) = U,,,,; 

l the equality predicate “ = ” has the standard interpretation in encode(M) 

(i.e., ZP(=)d~f{(~,~)Iu E U]). 

The following result and its proof are due to Wu [59]. The reason for the special 
treatment of “ = ” in the above definitions will become apparent in Section 6.4. 

Theorem 3.3 (Encoding Theorem). Let C$ be a HiLog formula and M a semantic 
structure. Let v be a variable assignment for the free variables in 4. Then 

M k,, C$ ifand onb if encode(M) kU encode,( 4). 

PROOF. By structural induction, v(t) = v(encode,(tN, for every HiLog term t. 
Consider now a HiLog atomic formula A, other than an equation. By the definition, 
encode,(A) = call(encode,(A)). Therefore, M kv A 

if and only if v(A) E U,,,,; 
if and only if v(encode,(A)) E Z,(call); 
if and only if encode(M) kv caINencode,(A 
if and only if encode(M) kU encode,(A). 
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The above derivation holds for the equality predicate as well because of the 
special interpretation assigned to “ = ” in Section 2.3. 

We have thus proved the claim for atomic formulas. The rest of the proof is an 
easy induction on the structure of HiLog formulas. [7 

Let LY denote the following sentence: (VX, Y)call(apply,(= , X, Y)) c) X = Y. Then 
we have the following corollary that relates the validity of a formula in HiLog and 
of its encoding in PC. 

Corollary 3.1. Let 4 be a HiLog formula. Then 4 is valid if and only if (Y I 
encode& 4) is valid in predicate calculus. 

PROOF. Let _9$H be a HiLog language. It is easy to see that the function encode is 
a l-l and onto mapping from HiLog semantic structures of -EI;I to PC semantic 
structures of 9~ncode that satisfy the aforementioned formula 4 (the language 

-Gncode was defined earlier, before the definition of the encoding of HiLog in PC). 
Indeed, we could use equations for encode “in reverse” to define a function 
decode such that decode(encode(M)) = M. The claim now follows from Theorem 
3.3. El 

We conclude this section with a few remarks that shed some light on the 
relationship between HiLog and the second-order predicate calculus under the 
standard semantics [16]. Clearly, one should expect certain similarities because, for 
example, quantification over predicates and function symbols is allowed in both 
logics. On the other hand, the first-order nature of HiLog semantics suggests that 
there must be very significant differences. 

For a similarity, it is easy to see that the language of HiLog is rich enough to 
express so-called extensionality axioms. For instance, for arity 2, we can write 

VPVQ(eq2(P,Q) ++ VXVY(P(X,Y) - Q(X,Y))) (3) 

According to (31, eq2(P, Q) is true if and only if P and Q are the same when viewed 
as binary predicates. This formula is identical to the extensionality axiom for binary 
predicates in second-order logic with the standard high-order semantics. Thus, 
HiLog syntax appears to be rich enough to capture both the intensional and 
extensional aspects of functions and predicates. 

However, a critical difference between the semantics of HiLog and the standard 
semantics for second-order logic is the domain of variables. In HiLog, variables 
range over a nonempty set of intensions. So, in (31, P and Q range only over the 
intensions of binary relations, but there also may be relations without the corre- 
sponding intensions (the latter do not affect the meaning of (3) in HiLog). In 
contrast, in the standard second-order semantics, the domain of predicate variables 
P and Q is the set of all binary relations over the individual domain. Therefore, 
the extensionality axiom of standard second-order logic talks about all possible 
relations. Although this distinction does not appear to have impact on the meaning 
of (3) in HiLog versus second-order PC, it does make a difference for the so-called 
relation comprehension formulas [ 161: 

3PVX , . . .VX,(P(X, . . . ,X,) ++ qq (4) 

where 4 is some formula in which P does not occur free, and the only free 
variables are X,, . . . , X,. It is well-known that these formulas are valid in the 
standard second-order predicate calculus. It turns out however, that they are not 
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valid in HiLog. For instance, the formula: 

3PVXvY(P(X,Y) ++ 7p(X,Y)) (5) 

is not valid in HiLog. One HiLog semantic structure which falsifies it is 
((d},{d}, Z,9>, where Z(p) = d, and @‘Cd,. . . , d) = d for all k(k 2 1). Intuitively, 
this happens because domains of HiLog interpretations do not necessarily have 
intensions for complements of relations associated with predicate names. Whether 
this effect is desirable or not depends on the intended meaning of quantification. 
In HiLog, the quantification is over intensions, and since there is no name for 1 p 
in S; (5) is not valid. 

4. APPLICATIONS OF HILOG 

As explained earlier, although the semantics of HiLog is first-order, a term can be 
viewed as an individual, a function, or a predicate, depending on the context in 
which it appears. When functions or predicates are treated as objects, they are 
manipulated as terms through their intensions: when applied to arguments, they 
are evaluated as functions or relations through their extensions. By distinguishing 
between intensional and extensional aspects of functions and predicates, HiLog 
preserves the advantages of higher-order logic and avoids the computational 
difficulties with extensions introduced by higher-order semantics. In this section, 
we review a subset of HiLog that is suitable for logic programming, and then show 
its uses in higher-order logic programming, definite clause grammars in natural 
language processing, and other areas. 

4. I. Logic Programming in HiLog 

For practical applications, we consider logic programming instead of general 
theorem proving with HiLog. By a logic program, we mean a finite set of formulas 
of the form 

vx, . ..VX.(A +-, A .** AL,) 

where m 2 0, A is an atomic formula, L,, . . . , L, are literals, and Xi,. . . , X,, are 
all the variables occurring in A, L,, . . . , L, [35]. Each universal formula in a 
program can be written as a general clause. However, in logic programming, such 
clauses are often written as: 

A+L ,,..., L,. 

If L 1,. . . , L,,, are atomic formulas, such clauses are, called definite. Horn clauses, 
and a logic program consisting of only definite clauses is called a definite logic 
program. 

For definite logic programs, standard logic programming techniques [54, 4, 351 
can be used to define the declarative and procedural semantics. The only differ- 
ence is the form of atomic formulas and unification (unification is discussed in 
Section 6.3). For instance, for definite HiLog programs, the model intersection 
property holds and, therefore, each such program has a unique minimal (with 
respect to set inclusion) Herbrand model. The Tp operator is also defined as usual: 
if H is a Herbrand interpretation and P is a definite program, T,(H) is the set of all 
literals that are heads of ground clauses of P whose body is satisfied in H. The 
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standard results about fixpoint also hold. These facts are easy to verify directly or 
with the use of Theorem 3.3. 

For logic programs with negation, semantics is defined by choosing one or 
several of the minimal Herbrand models. For instance, the definitions of well- 
founded semantics [50,52, 55,561 and stable model semantics [20] are independent 
of the notions of atomic formulas and Herbrand bases, and thus the same 
definitions can be applied to HiLog. Some results on negation in HiLog can be 
found in 1531. 

4.2. Higher-Order and Modular Logic Programming 

Higher-order constructs have been found very useful in programming practice. An 
example is the maplist of Lisp. It can be defined in HiLog either as a higher-order 
predicate 

maplidf, [I, [I). 
maplist(F, [XJRI, [VIZ]) + F(X, Y), maplist(F, R, 2). 

or as a generic predicate 

maplist(f)([l, [I). 
maplist(F)([XIRl, IYIZI) + F(X, Y), maplist(F)(R,Z). 

The latter is possible since HiLog allows complex terms such as maplist to 
appear as predicates. 

The example in Section 2.1 shows the usefulness of generic view definitions, 
such as closure, in databases. Generic transitive closure can also be defined in 
Prolog: 

closure(R, X, Y) + C =..[R, X, VI, call(C). 
closure(R, X, Y) +- C =..[R, X, Zl, call(C), closure(R, Z, Y). 

However, this is obviously inelegant compared to HiLog (see Section 2.0, since this 
involves both constructing a term out of a list and reflecting this term into an 
atomic formula using “call.” The point of this example is that the lack of 
theoretical foundations for higher-order constructs in Prolog resulted in an obscure 
syntax, which partially explains why Prolog programs involving those constructs are 
notoriously hard to understand. 

It turns out that since variables may be instantiated to HiLog terms which in 
turn have a propositional meaning, there is no need for the infamous “call” 
predicate that is built into Prolog. The latter is naturally defined in HiLog as 

call(X) + X. 

which has the intended semantics. 
Higher-order constructs have been also used in database languages, such as 

COL [l] and LDL [5, 461, for modeling complex objects containing sets. The 
original semantics of these languages, as described in [l, 5, 461, is higher-order, 
which leads to certain semantic and computational difficulties. In Section 5, we 
propose an alternative semantics for COL and LDL using HiLog, and argue that 
the latter is computationally more tractable and practically more convenient. 

Modular logic programming is another application where higher-order logic can 
be employed. In [7, 81, a theory of modules is developed based upon standard 



second-order logic. The semantics of a module is a second-order relation over 
first-order predicates interpreted as first-order relations. The relational view of 
modules is a natural extension of logic programming. However, standard second- 
order logic is not recursively axiomatizable, and the practical usage of modules 
does not need the full power of second-order predicate calculus. 

HiLog can be used to provide a simple alternative semantics for modular logic 
programming which, unlike [7,8], has a sound and complete proof theory. Consider 
the following program fragment (which is well-formed both in predicate calculus 
and in HiLog): 

trans(X, Y) + edge(X, Y). 
trans(X, Y) + edge(X, 21, trans(Z, Y). 

To turn it into a module definition, we need to determine its interface with other 
modules. This program fragment contains a definition for trans in terms of edge. 
Suppose that predicate trans is exported and predicate edge is a parameter which 
can be instantiated to any binary predicate of the user’s choice. To obtain a module 
definition, we replace each nonglobal predicate symbol by a predicate variable of 
the same arity, where different predicate names are replaced by distinct variables. 
This is done to ensure the local scope of those symbols, since only variables have 
local scopes in logic. In the concrete syntax of [7], the module definition for 
transitive closure may look like this: 

mod_trans(ln, Out) { 
Out(X, Y) + In(X, Y). 
Out(X, Y) +- In(X, Z), Out(Z, Y). 

1. 

The head of a module definition defines module interface. It consists of 
exported predicate parameters (like Out) and input predicate parameters (like In); 
the body of a module definition is the “implementation” of the module. Individual 
variables are still universally quantified with respect to each clause in the body 
(unless they are also module interface parameters, which is discussed in [7, 81). 
Noninterface predicate variables in the body, if any, represent priuate predicates 
that are not to be seen outside the module. The quantification of predicate 
variables is such that all input predicate parameters are universally quantified and 
all other predicates (private and exported ones) are existentially quantified inside 
the scope of the universal quantification of the input predicate variables. It is 
precisely due to this existential quantification of predicate variables that the local 
data in the module are shielded from outside. 

The above module definition not only defines first-order predicates in the body 
of the module, but also the second-order predicate corresponding to the module 
name, namely, mod_trans. The above module definition can be given meaning via 
the following formula: 

Vln30ut(mod_trans(ln, Out) A 
VXVY(Out(X, Y) + In(X, Y)) A 
VXVYVZ(Out(X, Y) + In(X, Z) A Out(Z, Y)) 

1 

Under the second-order semantics of [7,8], mod-trans is treated as a second-order 
predicate symbol. Instead of interpreting the above formula under the standard 
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second-order logic, we can interpret it as a formula in HiLog, getting a more 
tractable semantics for modules. Under the HiLog interpretation, mod_trans is 
simply a first-order parameter symbol, just like link. In an implementation, existen- 
tial variables can be eliminated by Skolemization, which preserves unsatisfiability in 
refutational theorem proving (e.g., SLD-resolution). 

After a module is defined, it can be used just as any other predicate, except that 
it may also take predicates as arguments. Consider the query 

link(a, b). link(b, d). link(d, e). link(a, c). 
?-mod_trans(link, Closure), Closure(a, X). 

where Closure is a predicate variable and X is an individual variable. 
Under the second-order semantics, Closure will be bound to a relation corre- 

sponding to the transitive closure of the link predicate. Therefore, X can be bound 
to any node reachable from a, and the answer to this query will be the set of all 
such nodes. 

Under the HiLog semantics, Closure will be bound to an intension,~, in the 
domain of quantification, rather than a relation. Nevertheless,.the binary relation 
associated to c by HiLog semantics (that is, (c$)>-I(&,)) will be the same as 
under the second-order semantics-the transitive closure of link. Therefore, once 
again, X can be bound to any node reachable from a, and the set of answers to the 
above query will be the same as before. 

The HiLog semantics for modules yields the same result as [7] in most cases, but 
disagrees with [7] in marginal situations when the inherent difference between the 
intensional treatment of predicates in HiLog and the extensional treatment in [7,8] 
becomes essential. For instance, when two different predicates p and q that are 
extensionally equivalent are to be unified, they are unifiable in the standard 
second-order semantics, but not in HiLog. 

Another difference is that HiLog modules have features not found in [7]. For 
instance, modules in [7], being second-order predicates, cannot be imported into 
other modules, since second-order predicates cannot be arguments to other 
second-order predicates. Therefore, manipulating modules requires more than just 
a second-order PC. In contrast, there are no such difficulties in HiLog, and module 
names, being merely first-order terms in HiLog, can be passed to other modules as 
parameters. 

4.3. Definite Clause Grammars in HiLog 

Definite clause grammars (DCGs), developed for processing natural language [47], 
extend the context-free grammars by adding arguments for checking the agreement 
among linguistic structures, and by allowing arbitrary computation in the body of a 
rule. They can be translated into Prolog by adding an additional pair of arguments 
for representing the string of words being parsed. As an example, consider the 
following DCG rules: 

s(sent(Subj, Verb)) -+ np(Subj, Num), vp(Verb, Num). 
np(Word, Num) + [Word], {isproper_name(Word, Num)). 
vp(Word, Num) + [Word], (isverb(Word, Num)). 
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The standard transformation yields the following Prolog program: 

s(sent(Subj, Verb), LO, L) t np(Subj, Num, LO, Ll), vp(Verb, Num, Ll, L). 
np(Word, Num, LO, L) t connect(Word, LO, L), isproper_name(Word, Num). 
vp(Word, Num, LO, L) t connect(Word, LO, L), isverb(Word, Num). 
connect(Word, [Wordill], L). 

Suppose we have the following facts: 

ispropername(john, singular). 
isverbtwalks, singular). 

Then, parsing a natural language sentence such as 

:: = john walks. 

will be reduced to evaluating a logical query 

?-s(X, [john, walks], [I). 

Although Prolog is adequate for many languages defined by DCG grammars, 
there are cases in which generic grammatical rules become necessary. Optionality 
of a nonterminal symbol and the occurrence of an arbitrary symbol zero or more 
times are some of the examples [2]. Such rules can be specified as follows (adapted 
from [21): 

option(X) + X. 
option(X) + [I. 

seq(X) -+ X, seq(X). 
seqo0 + [I. 
nonempty_seq(X) + X, seq(X). 

Unfortunately, the above translation into Prolog no longer works, since Prolog 
does not allow variable predicates. Indeed, blindly following this recipe, we would 

get 

nonempty_seq(X)(LO, L) + X(L0, Ll), seq(X)(Ll, L). 

which is a HiLog, but not a Prolog rule. To overcome this problem, we could try to 
turn X(L0, L) into something like NewX=..[X, LO, Ll, call(NewX). However, even 
this patch does not work all the time. Because of the syntactic limitations of Prolog, 
special mechanisms for translating such grammars into Prolog are needed, and 
papers have been written on that subject (e.g., [2]). In contrast, as we have just 
seen, translation of generic grammars into HiLog is immediate, and does not 
require any special machinery: we simply go on (as suggested by the standard 
algorithm) and replace each nonterminal, N, by a HiLog atom N(L1, L2). Regard- 
less of whether N is a predicate symbol, a function symbol, a variable, or a term, 
HiLog accommodates them all, due to the richness of its syntax. 

As a matter of fact, even the original DCG-to-Prolog translation could be made 
more natural in HiLog. DCG nonterminals with parameters are readily trans- 
formed into parameterized predicates in HiLog. For example, the first DCG rule 
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above: 

sht(Subj, Verb, LO, L)) -, np(Subj, Num, LO, Ll), vp(Verb, Num, Ll , L). 

would become 

s(sent(Subj,Verb))(LO, L) +- np(Subj, NumHLO, Ll), vp(Verb, Num)(Ll, L). 

4.4. Quey Evaluator 

Consider relational expressions composed from, say, binary relations connected by 
the relational operators minus, union, and the like. Suppose that the parser has 
already produced a parse tree (parsing is easy using Horn clauses) of the expres- 
sion in the form of a term, say, minus(union(p, q), intedq, r)), or similar. As the 
next step, we would like to write an evaluator for such expressions, which in HiLog 
looks as follows: 

minus(P, Q)(X, Y) +- P(X, Y), 7 Q(X, Y). 
union(P, CWX, Y) + P(X, Y). 
union(P, Q)(X, Y) + Q(X, Y). 
. . . . . . . . . 

For comparison, we present an analog of the above program in Prolog. The 
simplest approach to this problem seems to be to define a translation predicate, tr, 
that converts parse trees into Prolog goals, and then use call. The rules for tr are as 
follows: 

tr(minus(P, Q),X,Y, (Gl, not (G2))) + tr(P, X,Y, Gl), tr(Q,X, Y, G2). 
tr(union(P, Q), X, Y, (Gl; G2)) + tr(P, X, Y, Gl), tr(Q, X, Y, G2). 
. . . . . . . . . 

tr(P, X, Y, Atom) + Atom =..[P, X, VI. 

The first observation about this Prolog program is that it is clumsy compared to its 
HiLog counterpart (notice that the arguments X,Y in tr are essential for the 
program to run correctly). Second, the last rule is intended to capture the situation 
where P is instantiated to a predicate symbol. However, this restriction is only 
implicit in the built-in predicate “ =..” which will give an error if P is not a 
predicate symbol. One way to get around this is to list all the facts such as 
tr(p, X, Y, PM, VI) (f or each predicate symbol) in advance. However, this is particu- 
larly inconvenient in the database environment when the user may create or delete 
new relations, since the above program would have to be updated each time. 

The ease of writing the above program in HiLog stems from the ability to 
represent intermediate results of query evaluation in a natural way. For instance, 
minus(p, q) can be viewed as the name of an intermediate relation for the result of 
subtracting Q from P. However, it should be clear that in order to take full 
advantage of HiLog, arities of all relations must be known at compile time, since 
we must know how many variables should appear in various places in rules. 
Therefore, rules for the relational operators that do not change the arities of 
relations (like the ones above) look particularly attractive in HiLog. On the other 
hand, operators such as join or Cartesian product require a heavier machinery, 
such as jimctor and arg. Still, this program would be much more elegant in HiLog 
than in Prolog. 
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4.5. Type Checking 

Recently, Thorn Fruehwirth pointed out to us that the monomorphic type checking 
system of [17] can be naturally extended to a polymorphic type checking system for 
HiLog 1181, while expressing general polymorphism in predicate calculus is usually 
quite cumbersome. The use of HiLog as a language for type specification is further 
explored in [9]. 

5. HILOG AS A DATABASE PROGRAMMING LANGUAGE 

In this section, we show that HiLog provides an alternative (first-order) semantics 
to some of the well-known database languages with higher-order semantics, thereby 
eliminating some of their problems. Specifically, we will focus on COL [ll and LDL 
[5, 461. After that, we will discuss various applications of HiLog to object-oriented 
databases. 

COL [l] is a logic-based language for complex objects. One notable feature of 
COL is that, in addition to finite set construction, it also provides so-called “data 
functions.” These functions may take sets and individuals as arguments, and return 
sets as results. Data functions can be defined by either facts or rules. For example, 
some of the operations over sets can be defined as data functions as follows [ll: 

X E intersection(S1, S2) + X E Sl, X E S2. 
X E union(S1, S2) + X E Sl. 
X E union(S1, S2) + X E S2. 
X E difference(S1, S2) + X E Sl , not (X E S2). 

Notice that variables Sl, S2 range over a domain of sets, and thus, according to 
our classification, the semantics of COL is higher-order. This higher-orderness 
presents certain semantic problems for logic programs in COL. Consider the 
following example adapted from [l]: 

persontpeter, {bridge)). 
person(thom, (chess, tennis)). 
person(thom, hobbytpeter)). 
Y E hobby(X) + person(X, Z), Y E Z. 

This program is unstratified in COL, since hobby and person mutually depend on 
each other and, therefore, the following perfectly legal queries that request all of 
Thorn’s hobbies and inquire whether Thorn plays bridge, will be rejected: 

?-X E hobby(thom). 
?- person(thom, {chess, tennis)). 

To cope with this problem, [l] proposes to use an analog of the notion of local 
stratification adapted from logic programming [49]. 

For simplicity, we restrict our attention to COL programs without tuple con- 
structs, and such that their finite set-constructs have no variables. Thus, the forms 
such as {a, b} are allowed, but {a, b, X} are not. Later we will show how to extend 
our results to the general case. Now, the restricted COL programs can be 
transformed into HiLog programs as follows: 

1) Replace every finite set construction {a,,. . . , an}, that appears in the COL 
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program by a new HiLog logical symbol, sym, and add the following facts to 
the program: sym(a, 1,. . . , sym(a,). Identical finite set constructions must 
be consistently -replaced 
{chess, tennis}) will be 
following pair of facts: 

hobby_thom(chess). 
hobby_thom(tennis). 

by- the same symbol. For instance, person(thom, 
replaced by person(thom, hobby-thorn), and the 

2) Replace COL-formulas of the form X E f( . . . ) by HiLog formulas f( . . . J(X). 

Then the above program is transformed into the following well-formed HiLog 
program: 

persontpeter, hobby-peter). 
person(thom, hobby-thorn). 
person(thom, hobby(peter)). 
hobby_peter(bridge). 
hobby_thom(chess). 
hobby_thom(tennis). 
hobby(X)(Y) + person(X, Z), Z(Y). 

and the corresponding queries become 

?- hobby(thom)(X). 
?- person(thom, hobby-thorn). 

These queries yield the same results as their counterparts in COL (provided that 
the above unstratified COL program is given the intended semantics). For another 
example, consider the COL query 

?- person( thorn, { chess} ) . 

to the above database (with the last rule deleted, to ensure stratification). This 
query fails because (chess) and {chess, tennis} are two different sets. The corre- 
sponding HiLog query is 

?- person(thom, another-hobby-thorn), another_hobby_thom(chess) . 

[and the database must contain another_hobby_thom(chess)l. This query also 
fails since, similarly to COL, another-hobby-thorn represents a different set of 
hobbies than hobby-thorn. However, the query 

?-person(thom, hobby-thorn), hobby_thom(chess) . 

succeeds, since it is asking whether Thorn plays chess, while the previous query 
inquired whether {chess} is one of Thorn’s hobby sets. Notice that the semantics of 
COL treats Thorn as if he had different sets of hobbies in different “frames of 
mind,” and we have been able to capture this aspect of COL pretty adequately. In 
contrast, in COL, there is no easy way (without introducing additional rules) to ask 
whether Thorn plays chess, which demonstrates greater flexibility of HiLog 
compared to COL. 

There is, however, a significant difference between the semantics of COL and 
that of HiLog. For instance, suppose that instead of the previous clause for hobby, 
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the hobby-function is defined as follows: 

chess E hobby(peter). 
bridge E hobbytpeter). 

Then the query 

?- person( thorn, { bridge, chess} ) . 

returns the answer “true” in COL, while the corresponding query 

?- person(thom, yet-another-hobby-thorn) . 

in HiLog returns “false.” 

This difference stems from the fact that in COL, the domain of set variables 
consists of sets (extensions), while the domain of variables in HiLog is a set of 
objects (intensions). Thus, in COL, person(thom, hobby(peter)) is evaluated to 
person(thom, (bridge,chess}), which allows the above COL query to succeed. 
Our contention is, however, that the separation of intensional and extensional 
aspects in HiLog makes it more flexible: the extensional semantics of COL can be 
captured in HiLog rather easily, by defining extensional equality of intensions. For 
instance, the following formula 

VPVQ(eq1 (P,Q) ++ VX(P(X) ++ Q(X))) 

says that P and Q always represent the same unary relations extensionally; P and Q 
may be intensionally different, though, and nothing is said about, say, binary 
relations represented by P and Q. However, the above axiom does not quite 
capture our intentions. What we really need is the extensional equality of predi- 
cates with respect to the intended semantics of logic programs. For the purpose of 
this section, we adopt the perfect model semantics of locally stratified programs, 
which can be defined for HiLog along the lines of [49].’ The intended extensional 
equality can now be captured via the following rules with negation: 

eql (P, Q) 6 subset(P, Q), subset(Q, P). 
subset(P, Q) + not not_subset(P, Q). 
not_subset(P, Q) t P(X), not (Q(X). 

Now, if desirable, HiLog can simulate the extensional semantics of COL for the 
above query as follows: 

?-person(thom,X) , eql (X,yet_another_hobby_thom) . 

Recall that according to the first transformation rule, the database would contain 
the facts 

yet_another_hobby_thom(bridge). 
yet_another_hobby_thom(chess). 

Since person(thom, hobby(peter)) is one of the original facts in the database, the 
above HiLog query succeeds with X = hobbytpeter). 

‘[53] defines a well-founded semantics of HiLog, which is analogous to [56]. 
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So, to simulate the semantics of COL more closely (but still not exactly), we 
must add one more transformation rule, which must be applied after the first two: 

3) Replace every literal p(. . . , t,. . .I in the body of a rule (including the 
queries), whether t is either a term involving a data function or a constant 
that replaces a finite set construction (introduced by the first transformation 
rule), by the following conjunction: p(. . . , X, . . .I, eql(X, t). For instance, in 
the above, the query 

?- person(thom, yet-another-hobby-thorn). 

was replaced by 

?- person (thorn, X) , eql (X, yet-another-hobby-thorn) . 

We complete our discussion of COL by showing how to extend the translation 
described above to the general case. Capturing the tuple construct is easy. We just 
reserve a parameter symbol, say tuple, for the specific purpose of representing 
COL tuples; e.g., [a, bl and [c, d, e] become tuple(a, b) and tuple(c, d, e), respec- 
tively. For the set construct, we reserve a special symbol, setc. Now, every finite set 
construct, e.g., {a, b, X, d 1, should be replaced by a HiLog term, setc(a, b, X, d), and 
the appropriate facts 
be 

setc(a, b, X, d)(a). 
setc(a, b, X, d)(b). 
setc(a, b, X, d)(X). 
setc(a, b, X, d)(d). 

must be added to the database. In our example, these would 

The transformation rule 2) requires no change; in rule 31, we only need to replace 
the phrase “constant replacing a finite set construct” by the phrase “set term 
replacing a finite set construct.” 

LDL [5, 461 is another influential logic database language with a higher-order 
semantics. In addition to finite set construction, it provides the so-called grouping 
construct, which is even more general than data functions of COL. Again, LDL 
programs can be translated into HiLog with an alternative, first-order semantics. 
Similarly to COL, certain programs that are not well-formed in LDL can be given 
satisfactory semantics by such a translation, 

Finite set constructs of LDL are translated into HiLog the same way as in the 
case of COL. For the grouping construct (which in LDL can occur only in rule 
heads), we can do the following: 

Replace every LDL rule of the form p(x’, <v’>> + body, where x’, Y’ are vectors 
of variables, by the pair of .HiLog rules: 

p(x’, sym(X’>> + body. 

sym(&% + body. 
where sym is a new HiLog symbol. 

Consider the following LDL program: 

p(X). 
p(oO> +- p(X). 
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Intuitively, this says that p is true of all elements of the domain, and also of some 
other element of the domain that, in some sense, is the set of all domain elements. 
However, in LDL, sets are members of the domain on a par with individuals. As a 
result, the above program becomes tantamount to the famous set theoretic para- 
dox, since p has to contain the set of all sets as an element. The corresponding 
HiLog program is 

p(x). 
p(a) + ~00. 
a00 + ~00. 

It defines a predicate which is true of every element in the domain. It also defines 
a as a symbol that represents the entire domain, whenever this symbol appears as a 
constant within an atomic formula. This corresponds to the aforementioned 
intuitive meaning of the above LDL program, which favors the HiLog semantics 
over LDL. This also shows that, in general, the translation of LDL into HiLog does 
not capture all the power of the grouping construct.’ However, in most “normal” 
cases of grouping in LDL, the corresponding HiLog program gives the same result. 
For instance, consider the set-intersection example from [5]: 

intersect(S, T, (X)) + member(X, S) , member(X, T) . 

The corresponding HiLog program is 

intersect@, T, inter@, T)) + member(X, S), member(X, T). 
inter@, T)(X) + member(X, S), member(X, T). 

which gives the same result. Note, however, that in HiLog, set intersection has a 
more concise and elegant representation: 

inter(S,T) (X) c S(X) ,T(X). 

We thus see that HiLog provides an alternative (we believe, computationally 
more attractive) semantics to LDL. Unlike COL, where it seems that HiLog can 
closely mimic the semantics, there is a more dramatic difference between HiLog 
and LDL because the latter is so expressive that even logical paradoxes can be 
represented without much difficulty. Such paradoxes are not representable in 
HiLog since the latter has a first-order semantics, and the translation of paradoxi- 
cal LDL rules yields rather benign HiLog programs. 

To conclude this comparison, we mention that the alternative semantics for sets 
in LDL and COL described above is in the same spirit as the semantics described 
in C-logic [12] and O-logic [28], although the latter are first-order (object-oriented) 
languages. It appears, thus, that higher-orderness of the syntax of HiLog is 
inessential in order to simulate sets. However, it is essential for other applications 
described earlier. It seems like an interesting observation, therefore, that changing 
the philosophy behind logical languages can-in some cases-eliminate the need 
for higher-orderness either in semantics, or in syntax, or in both. 

Another promising application of HiLog in the database field is its use as an 
implementation vehicle for object-oriented languages recently proposed in [12, 28, 
24, 251. C-logic [12] is the simplest of the three; it supports complex objects, object 

‘In our opinion, the above discussion suggests that capturing the semantics of grouping construct 
exactly is not necessary and even may be harmful. 
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ids, sets, and classes. For instance, the “hobby” example discussed earlier can be 
represented in C-logic as follows: 

person: peter[hobby -+ {bridge}]. 
person: thomrhobby -+ {chess, tennis)]. 
thom[hobby + (X}] + petetfhobby --f (X)1. 

yielding the same results as those produced by the corresponding HiLog represen- 
tation. 

C-logic admits a natural translation into predicate calculus by viewing each class 
symbol (e.g., person) as a unary predicate, and each set-valued attribute (e.g., 
hobby) as a binary predicate [121. O-logic [281 extends C-logic by allowing single- 
valued attributes and by introducing a lattice structure over object ids, which helps 
to localize the effect of data inconsistency. Translation of O-logic into predicate 
calculus is just a shade more complex; it additionally requires the axiomatization of 
functional attributes and data inconsistency. F-logic [24, 251 takes object-oriented 
logics to a new dimension by introducing higher-orderness with a first-order 
semantics, in the same spirit as HiLog. Although it can be encoded in predicate 
calculus, this encoding is neither natural nor suggestive of an efficient implementa- 
tion. However, an extension of the algorithm from [12] would translate F-logic into 
HiLog quite naturally. 

This opens up a possibility of using HiLog for fast prototyping of object-oriented 
logic languages. Compared to the direct implementation of object-oriented data- 
bases, the advantage of HiLog as an implementation platform is that it can be 
relatively easily implemented using one of the already available technologies 
developed for Prolog [58, 431 or LDL. 

6. PROOF THEORY OF HILOG 

Because of the encoding in Section 3, one can use a proof theory for predicate 
calculus in order to prove theorems for HiLog. However, a proof theory stated in 
terms of this encoding is neither intuitive nor suggestive of a possible efficient 
implementation. Furthermore, extensions of HiLog will be developed in order to 
support more features such as lambda abstractions and dynamic updates, and these 
extensions may not have a direct translation into predicate calculus. A direct proof 
theory of HiLog is therefore important in its own right, and it may provide 
additional insights for further investigations of HiLog extensions. 

In this section, we present a resolution-based proof theory given directly in 
terms of HiLog. The following issues are examined: Skolem and Herbrand 
theorems, unification, and resolution. The discussion follows the development of 
resolution-based proof theory for predicate calculus [6]. 

6.1. Skolemiza tion 

Given a sentence 4 in HiLog, it can be transformed into an equivalent formula 4’ 
in prenex normal form Q, X, . . . Q, X, $, where Qi (1 I i 5 n> is either V or 3, $ is 
a quantifier-free formula in conjunctive normal form, and Xi (1 I i I n) are all 
variables occurring in $. The rules for this transformation are identical to those 
for the ordinary predicate calculus, since the usual De Morgan’s laws apply due to 
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the fact that the definition of the logical entailment relation b,, in Section 2.3 is 
identical to that in predicate calculus (except for the notion of atomic formulas). 

Because of the similarities between HiLog and predicate calculus, one might 
think that by eliminating all existential quantifiers in 4’ using the usual Skolemiza- 
tion process in predicate calculus, we will obtain a Skolem standard form 9* of 4, 
which is unsatisfiable if and only if 4 is too. However, the unsatisfiability of +* 
does not entail the unsatisfiability of 4.” To see this, consider 

$I = VX3Yp(X,Y) A VF3Z7p(Z, F(Z)). 

Converting 4 into prenex normal form and then Skolemizing X and Y in the 
ordinary manner (using the new function symbols g and h) yields 

9* = VXVF(p(X, g(X)) A ~Po-wJw)H)~ 

It is easy to see that 4 is satisfiable in HiLog (but not in the second-order 
predicate calculus!), which can be verified directly by constructing a semantic 
structure M = (U, U,,,,, Z,Y) in which for every u E U, the function u!$’ is differ- 
ent from all the functions A: U++ U defined by the expression VX3Yp(X,Y). In 
contrast, + is unsatisfiable, since 

P(W AJ(%N) * ~P(W AlmN) 

is an instance of +*. 
Intuitively, the reason why the usual Skolemization process misbehaves is that in 

HiLog, it is not enough to choose a new symbol to represent a new Skolem 
function: such a symbol also needs to be assigned a new intension. Indeed, we have 
to assign an appropriate Skolem function as an extension of the symbol introduced 
by Skolemization. In predicate calculus, extensions are assigned directly to function 
symbols and, therefore, by choosing a new function symbol, we can construct a 
semantic structure for any desired Skolem function. In contrast, HiLog assigns 
extensions to intensions of function symbols, and simply choosing a new symbol is 
no longer enough: we should be able to assign a new intension to such a symbol, 
which-as the above example shows-is not always possible. In fact, as we shall 
see, choosing a new symbol is not that crucial for Skolemization in HiLog. 

One way to overcome this problem is to modify Skolemization so as to avoid the 
need to assign new intensions to Skolem functions. Instead of introducing a new 
Skolem symbol, we will use an unused a&y of one of the old symbols, patching the 
extra argument positions. For the formula 4 above, we could use, say, symbol p 
with the arity 3 for Y and with the arity 4 for Z, obtaining the following Skolemized 
form: 

VXP(XPOCP,P)) AVF~P(P(F,P,P,P),F(P(F,P,P))). 

Notice how the symbol p was used to fill in the argument positions of the terms 
p(X, P, P) and p(F, p, p, p). 

Let 57 be a language of HiLog that contains at least one parameter symbol. 
Given a formula +. of 9 in prenex normal form Q, X, . . . Q, X,, I/J, where Q,<l I 
i <n) is either V or 3. J/ is a quantifier-free formula in conjunctive normal form, 
and X&l I i I n) are all variables occurring in +!J. Suppose that Qi is the leftmost 

lo We are grateful to one of the referees for suggesting this example and pointing out a mistake in an 
earlier draft of this paper. 
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existential quantifier in 4. Let k be the maximum arity that has been used in 4, 
which exists since 4 is finite. We obtain a new formula C& by eliminating the 
leftmost existential quantifier Q in 4 and replacing every occurrence of Xi in I) 
with p(X, 7*..,xi_1,p,... , p> which has m&k + 1, i - 1) arguments. Assume that 
there are m existential quantifiers in &,. We repeat this process for every 
+ji<j < m), and finally derive a formula 4, without any existential quantifiers. The 
formula &,, is called the Skolem standard form of c#+ 

Lemma 6.1. A sentence C$ is unsatisfiable if and only ifits Skolem standard form c$* is 
unsatisfiable. 

PROOF. Without loss of generality, we assume that 4 is already in prenex normal 
form. Let +a be C$ and let m be the number of existential quantifiers in 4. Then 
c$* is &, where each 4j (1 5 j I m) is obtained from 4j_ 1 by the above Skolem- 
ization process. We show that &j is unsatisfiable if and only if +j_ 1 is unsatisfiable. 

Let 4j_ 1 be in a prenex normal form VX, . . . VXi_ 13XiQi+ 1 Xi+, . . . Q,X, 
44X,,..., X,], where Xi is the leftmost existential variable, @IX,, . . . , X,1 is a 
formula in conjunctive form, and X,, . . . , X, are all the variables occurring in it. 
Suppose that k is the maximum arity that has been used in +j_ Ir and f is the 
parameter symbol used in the Skolemization of Xi. Then +j is of the form 

VXr .*.VXi_,Qi+,Xi+r .**Q,Xn 

where f(X1,...,Xi_l,f,... , f) has max(k + 1, i - 1) arguments. 
Suppose that 4j_ 1 is true in a semantic structure M = (U, U,,,,, Z,F>, but 4j is 

unsatisfiable. Then for every .x1,. . . , xi _ 1 E U, there exists xi E U such that 

Mb” Qi+,xi+,...Q,x,~Ixx,,...,x,], (6) 

for every variable assignment u that maps X,, . . . , Xi to x,, . . . , xi, respectively. We 
construct a new semantic structure M’ = (U, I!&,,, Z,Y>, where Y is exactly the 
same as Y except that for every x1,. . . , xi-r E U, Z(f$+‘(x,, . . . , 
Xi-l,z(f)>**.7 Z(f)) =xi, where xi is chosen as explained in (6) above. Since the 
arity k + 1 is not used in 4j_ ,, the function Z(f),$+ ’ is not used to determine 
whether (6) holds. This, together with the fact that the domains of M and M’ 
coincide, yields M’ kU +j. Since u was chosen arbitrarily for X,, . . . , Xi_, and Xi 
does not occur in 4j, it follows that M’ k 4j, contrary to the assumption that +j is 
unsatisfiable. Therefore, 4ji 1 must be unsatisfiable. 

For the reverse direction, assume (in the above notation) that f( is true in a 
semantic structure M, but 4j_, is unsatisfiable. Following the defimtron, it can be 
verified that +j_, is true in M-a contradiction. Thus, +j must be unsatisfiable. 
0 

Note that Skolemization in HiLog, as presented above, works for finite sets of 
formulas only. A solution that also works for infinite sets is proposed in 191. The 
idea is to introduce sorted symbols into HiLog and then use classical Skolemiza- 
tion, which does not rely on the existence of unused arities. This, however, requires 
an extension to HiLog and will not be discussed here (see [9]). 
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6.2. Her-brand’s Theorem 

Once Skolemized, we can restrict our attention to universal formulas, i.e., to 
formulas in prenex normal form whose prefix contains universal quantification 
only. Furthermore, transforming such formulas into conjunctive normal form yields 
HiLog formulas in the clausal form. As usual, we can then drop quantification 
altogether with the understanding that clauses are implicitly universally quantified. 
Variable-free formulas are called ground. The rest of the formulas are nonground. 

Herbrand interpretations for HiLog were defined in Section 2.3. Recall that 
given a HiLog language _Y, its Herbrand universe, HU(_Y), coincides with its 
Herbrand base, and is defined as the set of all ground (i.e., variable-free) HiLog 
terms. However, when the equality predicate is taken into account, the definition of 
Herbrand interpretations needs adjustment. 

Definition 6.1. Let 9 be a HiLog language and let H be a subset of its Herbrand 
base. Then H is called a Herbrand interpretation if it is closed under the 
congruence:” 

. (a!=a)~H; 

l if(a=p)EH,then(p=a>EH; 

l if(cw=P),(P=Y)EH,then(cu=y)EH; 

. if L, ((Y = p) E H and L’ is the result of replacing an occurrence of cy in L 
by /?, then L’ E H. 

Given a Herbrand interpretation H, we can define satisfaction of formulas in H 
similarly to the classic case: 

l If a is a ground HiLog atomic formula, then H != a if and only if a E H. 

l If 4 and 4 are ground HiLog formulas, then 
- Hb(+v$)ifandonlyifH!=+orHK$; 
- Ht=(+/\JI)ifandonlyifHb+andHb$; 
- H K 7 4 if and only if it is not the case that H t= 4. 

l If 4 is a universal formula, then H K 4 if and only if H I= 4’ for every 
ground instance 4’ of C#L 

To avoid possible misunderstanding, recall that in the presence of equality, we 
only consider those semantic structures that assign the intended meaning to the 
equality predicate (see Section 2.3). To emphasize this fact, we will call such 
semantic structures E-structures. We can then talk about E-unsatis$able and 
E-valid formulas, i.e., formulas that are false (resp., true) in all E-structures. 

Lemma 6.2. Let -13 be a HiLog languhge. For every E-structure M, there is a Herbrand 
interpretation H, such that for every universal formula 4, M b 4 if and only if 
H, ti 4. Likewise, for every Herbrand interpretation H, there is an E-structure M, 
such that H K r$ if and only if M, K 4, for every universal formula 4. 

PROOF. If M is an E-structure, then the corresponding Herbrand interpretation 
H, is simply the set of all ground atomic formulas of 9’ satisfied by M. 

“The two formulas in the middle follow from the other two. 
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Conversely, let H be a Herbrand interpretation. The corresponding E-structure 
Mu = <u, u,,,,, Z,S> is defined thus: 

1) Ud~fZW(_Y)/ = , the factor-space of the Herbrand universe, HU(_Y), with 
respect to the equivalence relation induced by the equality atoms in H. If 
s E ZWW), its corresponding element in U will be denoted by [s]. 

2) u,,,,Zf H(_Y)/ = , the factor-space of H with respect to the aforementioned 
equivalence relation. 

3) I: Y-, U is obtained from the identity embedding Z& 9’~ Z-ZZ.K.55’) by 
composing Id with the natural epimorphism HULY) ++ U, i.e., for each 
s EP, Z(s) = 1.71. 

4) 9 is defined thus: for every [sl E U and k 2 0, [sl$Y[t,l,. . . ,[tkl) = 

[SO 1,...,t/Jl. 
It is left to the reader to verify that M and H, (resp., H and MH) stand in the 
desired relationship to each other. The proof is carried out by structural induction 
on HiLog formulas, similar to the classic case. 0 

As a consequence of the above lemma, a universal formula is E-unsatisfiable if 
and only if it has no Herbrand model: 

Corolla y 6.1. A set S of HiLog clauses is E-unsatisfiable if and only if S is fakre under 
all Herbrand interpretations of S. 

Theorem 6.1 (c& Herbrand’s Theorem). A set S of HiLog clauses is E-unsatisjiable if 
and only if there is a finite E-unsatisfiable set S’ of ground instances of clauses of S. 

PROOF. It is easy to verify that for any set of HiLog clauses S, the encoding of 
Section 2.3 establishes a l-l correspondence between Herbrand interpretations of 
S and those of encode,(S). The only subtlety here is that, in HiLog, the Herbrand 
universe and the Herbrand base coincide, while in predicate calculus, they are 
distinct. For this reason, the Herbrand universe of encode,(S) is obtained by 
applying encode, to the Herbrand universe of S, while the Herbrand base of 
encode,(S) is obtained from that of S via encode,. 

Herbrand’s theorem for HiLog now directly follows from Theorem 3.3 and the 
analogous result in predicate calculus [6]. q 

6.3. Unifca tion 

Although HiLog allows arbitrary terms to appear in places where only predicates 
and functions are usually allowed in predicate calculus, unification in HiLog is a 
very simple extension of unification in predicate calculus and is decidable. This is 
mainly because HiLog separates intensions from extensions and does not have any 
nontrivial built-in equality theory over intensions. 

Except for the different notion of terms in HiLog, the definitions of substitu- 
tions, applications of substitutions to terms, and substitution composition in HiLog 
are the same as those in predicate calculus [6]. 

Definition 6.2. A substitution is a finite set of the form {tl/XI,. . . , t,,/X,J, where 
X 1,. . . , X,, are distinct variables, and every term ti is different from Xi, where 
Ili<n. 
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Definition 6.3. A unifier for a set of HiLog terms {e,,. . . , ek] is a substitution 8 
such that e,B= ... =e,O. Aset {e ,,..., ek} is unifiable if it has a unifier. 

Definition 6.4. A unifier u for a set {e,, . . . , ek) of expressions is most general if and 
only if for each unifier 8 for this set, there is a substitution h such that 8 = uA. 

Following [39], we can derive an efficient unification algorithm by solving 
equations. An equation is of the form t, = t,, where t,, t, are terms. An equation 
set (possibly empty) is solved if it has the form (X, = t,, . . . , X, = t,) and the Xi’s 
are distinct variables which do not occur in any tj (1 <j I n). Notice that a finite 
equation set in solved form can be naturally viewed as a substitution. 

A solution of the equation set {tl = sl,. . . , t, = s,J is a substitution 8 such that 
tit3 = si 8 (1 I i 2 n). An equation set is solvable if it has a solution. A solution u 
for an equation set E is most general if and only if for each solution 8 of E, there 
is a substitution A such that 8 = uA. 

Given a finite equation set, the unification algorithm nondeterministically 
chooses an equation from the equation set to which it applies one of the following 
transformations according to the form of the selected equation: 

1) For t(t,, . . ., t,) = s(s,, . . ., sm), where n # m, halt with failure. 
2) For t(t,, . . . , t,) = s(sI,. . . , sn), replace the equation by t = s, t, = sl,. . . , t, = s,. 
3) For f = g, delete the equation if f and g are identical parameter symbols in 

~7’; otherwise, halt with failure. 
4) For X =X, where X is a variable, delete the equation. 
5) For t =X, where t is not a variable and X is a variable, replace the equation 

by X=t. 
6) For X = t, where X is a variable and t is a term different from X, if X 

appears in t, then halt with failure; otherwise, replace X by t wherever it 
occurs in the equations. 

The algorithm terminates when no further transformation can be applied or when 
failure is reported. 

Theorem 6.2 (Unification Theorem). The unification algorithm applied to a finite set of 
equations E returns a finite set E* of equations in solved form if and only if E is 
solvable. It returns failure otherwise. The returned equation set E* viewed as a 
substitution is a most general solution of E if E is solvable. 

PROOF. It is easy to see that for any pair of HiLog terms, s and r, they are 
unifiable if and only if so are encode,(s) and encode,(r), if and only if encode,(s) 
and encode,(r) are unifiable. It is also easy to see that the encoding of HiLog in 
PC transforms the above unification algorithm for HiLog into the corresponding 
algorithm for PC, described in [39]. The theorem now follows from these two facts. 
A direct proof can be also obtained as a simple adaptation of the proof in [39]. q 

According to the above theorem, HiLog unification is decidable. The reader may 
wonder about the result reported in [21], where it is shown that unification 
becomes undecidable once variables are allowed in places where normally only 
function symbols are permitted to appear. There is no contradiction, however, with 
our result, for the following reasons. Informally, for a sufficiently rich logic with a 
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higher-order syntax to have a decidable unification problem, two conditions are 
sufficient. First, the semantics of the logic should be first-order. That is, predicate 
and function variables should not range over relations or functions. Instead, they 
must range over intensions or names of predicates and functions. Second, the logic 
should not have an undecidable built-in equality theory over names of predicates 
and functions. HiLog satisfies both conditions by separating intensions from 
extensions (thereby avoiding extensional unification) and by embodying only a 
trivial equality theory of intensions. In contrast, Goldfarb [21] essentially works 
with second-order h-terms that embody an undecidable equality theory, and this is 
what makes unification undecidable in this case. 

6.4. Refutation 

Definition 6.5. If two or more literals of the same polarity (i.e., both positive or 
both negative) in a clause C have a most general unifier (+, then Ca is called a 
factor of C. 

Definition 6.6. Let C, = L[t ] V C;, and C, = (r = s) V C; be two clauses with no 
variables in common, where Z[t] is a literal with an occurrence of the term t 
(including the case when L[t] = t). If t and r have a most general unifier u, 
then 

s a binary paramodulant of C, and C,. In this paramodulant, La[su] denotes 
the result of replacing one single occurrence of tu in Lu by su. 

It is important to realize that since L[t] in the above definition may be the same 
as t, in HiLog one needs to paramodulate not only on the terms occurring strictly 
inside atomic formulas, as is the case in predicate calculus, but also on atomic 
formulas themselves. This is an interesting distinction with respect to PC which 
stems from the fact that HiLog is a higher-order language in which atomic 
formulas are not distinguished from terms. An example when atomic formulas 
must be paramodulated upon is presented below. 

Definition 6.7. Let C, = L, V C; and C, = -JL, v C; be a pair of clauses with no 
variables in common. If L, and L, have a most general unifier u, then the 
clause 

c;u v c;a 

is called a binary resolvent of C, and C,. 

A deduction of a clause C from a set of clauses S is a finite sequence of clauses 
D 1,. . . , D, such that D, = C, and for 1 I k 5 n each D, is either a member of S, a 
factor of Di (i <k), a paramodulant of some Di and Dj (i,j <k), or a binary 
resolvent of Di and Dj (i, j < k). A deduction ending wrth the empty clause is 
called a refutation. If C is deducible from S, we write S + C. 

One way to prove the completeness theorem is to adapt the corresponding proof 
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for PC [6]. A shorter proof, however, results from the use of Theorem 3.3: 

Theorem 6.3 (Soundness and Completeness of Resolution). A set S of clauses is 
E-unsatisfiable if and only if there exists a refutation of S U {X = X). 

PROOF. Under the encoding of Section 3, given a set of HiLog clauses S, any 
application of the factorization, paramodulation, or the resolution rules to clauses 
in S corresponds to an application of the respective rule to encode@), and vice 
versa. ” Thus it follows from the analogous result in predicate calculus [6] that the 
combination bf resolution, factorization, and paramodulation is a complete set of 
inference rules for refuting E-unsatisfiable sets of HiLog clauses. Note that, unlike 
[6], we do not include functional reflexivity axioms f(xl,. . . , x,> = f(xl,. . .,x,1 in 
the formulation of Theorem 6.3. This is possible due to a result in [48] that shows 
that these axioms are not needed for completeness of paramodulation.13 

We also note that if S contains no equality atoms, then “E-unsatisfiability” can 
be replaced by “unsatisfiability” and the axiom X =X would not be needed. 0 

Consider an example. Recall from Section 3 that the formula 

(s(a) =r(b,c)) 1 (s(a) - r(b,c)) 

is valid in HiLog. Therefore, its negation 
of the above formula can be transformed 

1) s(a) = db, c). 
2) s(a) v r(b,c). 
3) 7s(a) v Tr(b,c). 

should be E-unsatisfiable. The negation 
into the following three clauses: 

By paramodulation, we can derive from 2) and 1) 

4) r(b, c). 

and from 3) and 1) 

5) T r(b, cd. 

Then, by resolution, we can derive the empty clause from 4) and 51, which 

completes the refutation. 

7. HILOG IMPLEMENTATION ISSUES 

A straightforward implementation of a Horn clause logic programming language 
based on HiLog is possible using the encoding of HiLog into PC, described in 
Section 3. Since this encoding preserves Horn clauses, we could simply use a 
standard Prolog compiler to execute the result of such encoding. While this is 
theoretically sound and may even be practical for prototype programs, for large 
programs there are some efficiency issues that deserve further consideration. These 
have to do with fast access to the appropriate clauses at predicate invocation, and 
efficient representation of data structures. Also, built-in nonlogical predicates, 

“It is noted that the special treatment of “ = ” in the definition of encode in Section 3.3 was 
essential to ensure the above correspondence in case of the paramodulation rule. 

13This result was pointed out to us by Leo Bachmair. 
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dynamic changes to the database, and control constructs, such as the “cut,” lead to 
new issues in the HiLog framework. 

Consider a simple HiLog Horn clause: 

P(X,Y) +s(XJ),p(Z,Y). 

this clause also happens to be a predicate logic Horn clause. Its encoding in 
predicate logic is 

oall(apply(p,X,Y)) + oall(apply(q,X,Z)), call(wply(p,ZY)). 

With every clause encoded in this way, each HiLog program, no matter how large, 
defines exactly one Prolog predicate, call/ 1. For Prolog-like efficiency, each predi- 
cate invocation must quickly locate the clauses whose heads might possibly unify. 
In Prolog systems, this is achieved first by branching directly to clauses with the 
same predicate, and then using indexing, normally on the main functor symbol of 
the first argument, to further refine the search. Notice that for the encoding of a 
HiLog program, these two ways of refining the search are not very effective: Prolog 
sees only one predicate, call/l, and the main functors of all those heads are 
apply/n. Thus, the only filtering would come from the arity of “apply.” One 
approach would be to use partial evaluation techniques to optimize the direct 
translation [22]. A problem with this approach is how to treat nonlogical constructs, 
such as “assert.” Another way to improve clause access would be to improve the 
indexing strategy used by the underlying Prolog system, perhaps as proposed in 
[51]. An alternative is to constrain the HiLog programs in such a way as to allow 
simple compile-time optimizations. One way we are exploring is to restrict the 
clauses to those whose heads have a nonvariable symbol in the leftmost position, 
that is, clauses whose heads are rigid terms. In this case, all rigid calls in the bodies 
of clauses can be compiled to branch directly to the appropriate clauses. 

Another issue is the representation of HiLog terms. In Prolog, complex terms 
are normally represented as linked record structures. An n-ary term is represented 
using n + 1 consecutive words; the first word indicates the functor symbol and the 
arity, n, and the following IZ words represent the II arguments. To represent a 
HiLog term, another arity is required. The most natural way uses 12 + 2 words: one 
for the arity, one for (a pointer to) the functor term, and n for the argument terms. 
While this might seem somewhat wasteful of space, using an entire word for a 
relatively small arity, we suspect that this will turn out to be the most efficient 
representation. It is actually a regularization of Prolog’s representation, and will 
make for slightly simpler traversal algorithms. 

A realistic logic programming system must support built-ins, which have nonlogi- 
cal behavior. A decision must be made as to whether these built-ins can be 
accessed by a most general call. For example, should the query + X(Y) be able to 
call the read/l predicate? The most reasonable choice seems to be to exclude this 
possibility. A desired separation of built-in predicates from the rest can be 
achieved by introducing sorts into HiLog [91, that is, by splitting 9 and y into 
disjoint subsets and then proceeding to define HiLog terms of different sorts. In 
this way, “normal” variables will not be instantiable by the symbols that represent 
built-in predicates. If the user wishes to manipulate such symbols, he would have to 
use variables of an appropriate sort explicitly. 

The issue of the “cut” is also complicated. In Prolog, a cut eliminates the 
alternative clauses remaining for the current predicate. Since in HiLog, different 
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calls can access various subsets of clauses, the notion of “predicate” is not so 
well-defined. These and other issues are explored in more detail in [19]. 

8. CONCLUSION: DO WE NEED YET ANOTHER LOGIC? 

Whenever a new logic is proposed, the question is (and should be) raised as to 
whether yet another logic is needed. Why not just stay with the logics we know and 
understand? This is an especially cogent point when the new logic has a simple and 
reasonably direct translation into the granddaddy of all logics, first-order predicate 
calculus, as, in our case, HiLog does. We believe, however, that in the case of 
HiLog, there are at least three reasons why we should seriously entertain the idea 
of this new logic as a basis for logic programming. 

Firstly, programming in HiLog makes more logic programs logical. We all 
admonish Prolog programmers to make their programs as pure as possible and to 
eschew the evils of Prolog’s nonlogical constructs. In Prolog, the intermixing of 
predicate and function symbols, in particular in the predicate, call/ 1, is nonlogical, 
whereas in HiLog, it is completely logical and is a first-class citizen. So in HiLog, 
programmers need not avoid using call/l, and thus have more flexibility in their 
task of writing pure logic programs. 

Secondly, even though one might say that HiLog is simply a syntactic variant of 
Prolog, syntax is important when one is doing meta-programming. Since in meta- 
programming the syntax determines the data structures to be manipulated, a 
simpler syntax means that meta-programs can be much simpler. We saw this in the 
example of translating DCGs to HiLog, to the extent that a meta-program already 
written (the DCG translator) would automatically work in a more complicated 
situation, and so did not need to be changed at all. 

Thirdly, and perhaps most importantly, a different logic encourages in the 
programmer a different way of thinking. Certainly, the translation of any HiLog 
program could be programmed directly in Prolog, but would it be? The DCG 
example, we believe, shows not. Not only is there an issue of efficiency in that the 
translation might not execute as efficiently as the programmer desires, but also that 
the programmer would not even think of that Prolog program. HiLog encour- 
ages the programmer to think about and use parameterized predicates; Prolog does 
not. HiLog programmers would be more likely than Prolog programmers to 
modularize their programs along the lines suggested in Section 4.2 above. The 
language influences the way programmers think, and the programs they write. 

Finally, we would like to point out that HiLog is not the only logic which can be 
encoded in predicate calculus. The classic first-order modal logics provide a rich 
source of examples when a different syntax (motivated by a different philosophy 
of logic) inspired important and useful studies both in Logic and Artificial 
Intelligence. 

In summary, we believe that HiLog offers significant advantages over Prolog, 
and deserves serious consideration as the basis for a new logic programming 
language. 

We are grateful to Leo Bachmair, Thorn Fruehwirth, Sanjay Manchanda, Shuky Sagiv, Rodney Topor, 
and James Wu for their comments on the contents of this paper. We especially thank James Wu for 
suggesting the encoding described in Section 3. Suggestions of the referees are also appreciated. This 
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