
J. LOGIC PROGRAMMING 1993:15:187-230 187

HILOG: A FOUNDATION FOR HIGHER-ORDER LOGIC
PROGRAMMING

WEIDONG CHEN,* MICHAEL KIFER, AND DAVID S. WARREN

D We describe a novel logic, called HiLog, and show that it provides a more
suitable basis for logic programming than does traditional predicate logic.
HiLog has a higher-order syntax and allows arbitrary terms to appear in
places where predicates, functions, and atomic formulas occur in predicate
calculus. But its semantics is first-order and admits a sound and complete
proof procedure. Applications of HiLog are discussed, including DCG
grammars, higher-order and modular logic programming, and deductive
databases. a

1. PREFACE

Manipulating predicates, functions, and even atomic formulas is commonplace in
logic programming. For example, Prolog combines predicate calculus, higher-order,
and meta-level programming in one working system, allowing programmers routine
use of generic predicate definitions (e.g., transitive closure, sorting) where predi-
cates can be passed as parameters and returned as values [7]. Another well-known
useful feature is the “call” meta-predicate of Prolog. Applications of higher-order
constructs in the database context have been pointed out in many works, including
[24, 29, 411.

Although predicate calculus provides the basis for Prolog, it does not have the
wherewithal to support any of the above features, which, consequently, have an ad
hoc status in logic programming. In this paper, we investigate the fundamental
principles underlying higher-order logic programming and, in particular, shed new
light on why and how these Prolog features appear to work in practice. We propose

*Present address: Computer Science and Engineering, Southern Methodist University, Dallas, TX
75275.

Address currespondence to Michael Kifer and David Warren, Department of Computer Science, State
University of New York at Stony Brook, Stony Brook, NY 11794.

Received May 1992.

THE JOURNAL OF LOGIC PROGRAMMING

OElsevier Science Publishing Co., Inc., 1993
655 Avenue of the Americas, New York, NY 10010 0743-1066/93/$5.00

188 WEIDONG CHEN ET AL.

a novel logic, called HiLog, which provides a clean declarative semantics to much
of the higher-order logic programming.

From the outset, even the terminology of “higher-orderness” seems ill-defined.
A number of works have proposed various higher-order constructs in the logic
framework [l, 5, 13, 7, 23, 24, 30, 31,42,45], but with such a diversity of syntax and
semantics, it is not always clear what kind of higher-orderness is being claimed. In
our opinion, there are at least two different facets to the issue: a higher-order
syntax and a higher-order semantics. Logicians seem to have been long aware of
this distinction and, for example, Enderton 116, p. 2821 describes a translation of
the syntactically second-order predicate calculus into a first-order multisorted logic
that admits a first-order semantics.

Informally, by higher-order syntax, logicians mean a language in which variables
are allowed to appear in places where normally predicate and/or function symbols
do. In contrast, higher-order semantics is manifested by semantic structures in
which variables may range over domains of relations and functions constructed out
of the domains of individuals. In a first-order semantics, variables can only range
over domains of individuals or over the names of predicates and functions.

The third component in this picture is the equality theory that is built into the
semantics of the logic. As explained below, an equality theory may bring the
first-order and higher-order semantics closer to each other. In the extreme case,
this theory may imply a l-l correspondence between the domain of individuals and
the domains of higher-order constructs. In this case, higher-order and first-order
semantics become virtually indistinguishable.

We note that the classification based upon semantics has no implication whatso-
ever regarding the “intrinsic higher-orderness,” that is, whether there exists a
sound and complete proof theory for a higher-order semantics. It is quite possible
to replace a higher-order semantics for some languages by an entailment-equivalent
first-order semantics. On the other hand, it is well known that some semantics (e.g.,
the standard semantics of second-order predicate calculus) are inherently higher-
order, and no equivalent first-order substitute exists for the corresponding lan-
guages.

Predicate calculus is the primary example of a logic where syntax and semantics
are both first-order. There are logics that have a higher-order syntax, but a
first-order semantics. F-logic [24, 251 is one example; HiLog, to be discussed in this
paper, also falls into this category. Examples of logics with higher-order syntax and
semantics include COL [ll and Church’s simple theory of types (under the standard
and Henkin’s semantics) [13, 231. On the other hand, LDL [5,46] is a language with
a first-order syntax and a higher-order semantics.

Let us examine the equational theories underlying various logics more closely.
Under a higher-order semantics, an equation between predicate (or function)
symbols, e.g., p = q, is true if and only if these symbols are interpreted via the same
relation (resp., function). Another way of saying this is that logics with a higher-
order semantics have a built-in extensional equality theory of predicates and
functions. In contrast, in HiLog and F-logic, predicates and other higher-order
syntactic objects are not equal unless they (i.e., their names) are equated explicitly.
Thus, it is possible for two predicate symbols, say p and q, to be interpreted by the
same relation and yet the equality p = q be false.

The above examples represent the two extreme cases, in a sense. There are
higher-order languages with a first-order semantics that embody a nontrivial

HILOG 189

equality theory. An example is a subset of AProlog 142, 451 that has no type
variables and whose syntax is essentially the same as Church’s simple theory
of types [13]. Equality in AProlog corresponds to A-equivalence and is not
extensional: there may exist predicates that are not A-equivalent, but are still
extensionally equal.

To better see the role of equational theories on the classification of logical
theories, note that there are two different aspects associated with an expression
that denotes a predicate or a function. For instance, in A-Prolog, one aspect is the
meaning of the expression as a A-term (or, more precisely, as an equivalence class
of A-terms), which we call the intension; the other aspect is the relation or a
function associated with the expression, which we call the extension. These two
aspects become indistinguishable if extensionality axioms are built into the logic.
For instance, in Henkin’s semantics of Church’s type theory [231, it makes no
difference whether predicate variables are considered to range over the domain of
interpretation for predicate names (predicate intensions) or over relations (predi-
cate extensions), since each extension now becomes associated with exactly one
intension, and vice versa.

The distinction between intensions and extensions is important. It is known that
extensions can be notoriously difficult to handle in an efficient manner. Separating
intensions from extensions makes it possible to have an equational theory over
predicate and function names that is separate from the extensional equality of
relations and functions. A logic that avoids an overly strong equational theory of
intensions can have a simple first-order semantics, a decidable unification problem,
and at the same time, a higher-order syntax.

In a type-free logic, the same term may appear in different contexts as predi-
cates or functions of different arities and even as atomic formulas. Thus, the same
intension can be associated with different extensions in different contexts. For
instance, in Lambda Calculus [40], a A-term is considered a function or an object,
depending on its syntactic position. In HiLog, the same symbol may denote a
predicate, a function, or an atomic formula. Semantics of a type-free logic has to
maintain the distinctions between various extensions associated with the same
intension. Since the same variable may appear in different contexts and have
different extensions, it makes better sense for variables to range over intensions
rather than extensions because only intensions remain the same across different
contexts.

In this paper, we present a simple logical framework in which predicates,
functions, and atomic formulas can be manipulated, as first-class entities. It is quite
clear that’in order to support such manipulation naturally enough, the syntax has
to be higher-order. As explained earlier, this leaves open two possibilities for the
semantics. Under higher-order semantics, predicates and functions are identified
by their extensions, that is, two predicates represent the same thing if and only if
their extensions coincide in every appropriate semantic structure. Unfortunately,
extensional equality of predicates and functions is not decidable, in general, which
carries over to the unification problem. For genuine second-order theories (e.g.,
second-order predicate calculus and Church’s simple theory of types, both under
the standard semantics), extensional equality is not even semi-decidable.

In contrast, under first-order semantics, predicates and functions have inten-
sions that can be manipulated directly. Furthermore, depending on the context, the
same intension may assume different roles, acting as a relation, a function, or even

190 WEIDONG CHEN ET AL.

a proposition. The logical consequence relation under a first-order semantics is
likely to be semi-decidable, unless a too strong equality theory destroys this
property. This observation motivates our choice for HiLog.’ The basic idea is to
construct a logic that distinguishes between intensional and extensional aspects of
the semantics and embodies only a trivial equality theory of intensions. Intensions
can be thought of as names of abstract or concrete entities, while extensions
correspond to various roles these entities play in the real world. It has also been
argued by Maida and Shapiro 136, 371 that knowledge representation is part of the
conceptual structure of cognitive agents, and therefore should not (and even
cannot) contain extensions. The reason is that cognitive agents do not have direct
access to the world, but only to one of its representations. Our approach is in the
same spirit and, consequently, extensions of predicates and functions are not
available for direct manipulation. On the other hand, intensions of higher-order
entities such as predicates, functions, and even atomic formulas can be freely
manipulated. Their extensions come into play only when the respective expressions
need to be evaluated. Thus, HiLog combines advantages of higher-order syntax
with the simplicity of first-order semantics, benefiting from both.

The rest of the paper is organized as follows. After a brief motivational
discussion, we formally present the syntax and semantics of HiLog. Then we give
several examples of applying HiLog to higher-order logic programming, DCG
grammars, and modular logic programming. After that, we discuss the relationship
of HiLog to predicate calculus; its relationship to some of the recently proposed
database languages is discussed in Section 5. A resolution-based proof theory of
HiLog is described in Section 6.

2. SYNTAX AND SEMANTICS OF HILOG

2.1. Motivation

Prolog syntax is quite flexible; it allows symbols to assume different roles depend-
ing upon their context (e.g., to have different arities, or to be viewed as a constant,
a function, or a predicate). For instance, in the clause

the symbol f occurs both as a unary and as a binary function, and p appears as a
binary predicate as well as a binary function symbol. Furthermore, the same
syntactic object, p(X, f(a)), is an atomic formula in the first literal of the clause-body
and an individual term in the second.

The support for multiple roles for nonlogical parameters (constants, functions,
and predicates) is a handy feature of Prolog, but unfortunately, this support is
provided in a rather ad hoc way. For instance, while in the above example different
occurrences of the same symbol can be semantically disambiguated simply by

‘This rule of thumb has exceptions, though. For instance, type theory under Henkin’s semantics has
a proof theory despite the fact that Henkin’s semantics is higher-order. In contrast, for certain strains of
first-order annotated logics [26, 271, complete proof procedures may not exist, in general.

HILOG 191

renaming the occurrences off and p, this cannot be done in the following rule:

Here, the individual variable X occurs as a first-order term and as an atomic
formula, and renaming its different occurrences will, intuitively, yield a semanti-
cally different statement.

HiLog supports multiple roles for parameter symbols in a much more general
and elegant manner. Parameters are arityless, and the distinction among predicate,
function, and constant symbols is eliminated. In particular, a HiLog term can be
constructed from any logical symbol followed by any finite number of arguments.
Different occurrences of the same parameter are related to the same object
characterized by the same intension. Associated with such an intension are several
different extensions that capture the different roles the symbol may assume in
different contexts.

The same view is extended to arbitrary terms. HiLog allows complex terms (not
just parameter symbols) to be viewed as functions, predicates, and atomic formulas.
For example, a genetic transitive closure predicate can be defined as follows:

closure(R)(X, Y) + R(X, Y).
closure(R)(X, Y) +-- R(X, Z), closure(R)(Z,Y).

Here, closure is (syntactically) a second-order function which, given any relation R,
returns its transitive closure closure(R). Generic definitions can be used in various
ways. For instance,

parenttjohn, bill).
parenttbill, bob).
managedjohn, mary).
managedmary, kathy).
relation(parent).
relation(manager).
reports_to(Person)(Superior) + relation(Relname),

closure(Relname)(Person, Superior).

will return {bill, mary, bob, kathy} in response to the query ?- reports_to(john)(X),
which is the set of john’s ancestors and bosses.

Often, various applications of Prolog require term traversal: In HiLog, binary
terms can be traversed as follows:

traverseo((Y, Z)) +- traverse(Y), traverse(Z).

Notice that X is a variable that ranges over functions of the language, and
therefore this program is independent of the alphabet of that language. In contrast,
in Prolog, one would have to either specify such a rule for every functor in the
alphabet of the program, e.g.,

traverse(f(Y, Z)) + traverse(Y), traverse(Z).
traversetg (Y, Z)) +- traverse(Y), traverse(Z).
.

192 WEIDONG CHEN ET AL.

or use a built-in predicate arg/3, as in

traverse(Tree) +
arg(1, Tree, Left), arg(2, Tree, Right),
traverse(Left), traverse(Right).

In the latter, the structure of Tree is less visible and even is not enforced (unless
we add another subgoal for checking the total number of arguments).

In databases, schema browsing is common [41]. In HiLog, browsing can be
performed through the same query language as the one used for data retrieval. For
instance,

relations(Y)(X) + X(Y, Z).
relations(Z)(X) + X(Y, Z).
?- relations(john)(X).

will return the names of all binary predicates whose extensions (under Herbrand
interpretations) contain one or more tuples with the token john. HiLog shares this
browsing capability with another recently proposed language, called F-logic [24,25].

The ability to use sets is very important in logic programming. Prolog supports
the use of sets by means of the setof construct, which has only an operational
semantics. Although newer logic languages, such as LDL [5, 461 or COL [l], do
provide semantics for sets, they have to severely restrict their use to avoid logical
paradoxes and/or computational intractability. In HiLog, sets can be represented
naturally by parameterized predicates mentioned earlier. For instance, the follow-
ing HiLog rule defines groups of satisfied employees working for each manager. An
employee is satisfied with the job if and only if he earns more than his boss:

sat_empl(Boss)(Empl) + supervises(Boss, Empl),
sal(Boss, B-Sal), salary(Empl, E-Sal),
E_sal > B-Sal.

The set-term, sat_empl(Boss) is akin to the setof and the grouping constructs of
Prolog and LDL, respectively, although HiLog sets are not constructed or used the
same way. Having defined sets intensionally, via terms, we can go on and use these
sets in other relationships, as in the following fragment that associates packages of
benefits with groups of satisfied employees:

package1 (health-ins).
package1 (life-ins).
package2(free_car).
package2(long_vacations).
benefitdpackagel , sat_empl(john)).
benefits(package2, sat_empl(bob)).

The following is a query regarding benefit packages that bob enjoys as an
employee in the above enterprise:

?- benefits(X,Y), Y(bob) .

Note that the above information about sets can be also encoded in Prolog, but less
naturally. A more detailed discussion of these issues appears in Sections 4, 5, and 8.

As seen from the earlier examples, HiLog terms are also atomic formulas. In
this capacity, their semantics is indirectly captured by the truth value assigned to

HILOG 193

each ground term. For instance, instead of saying that a pair (a, b) is in the
relation for a predicate p, we say that the term p(a, b) denotes a true proposition.
Formal details are provided in the next two subsections.

2.2. Language

In addition to parentheses, connectives, and quantifiers, the alphabet of a language
_Y of HiLog contains a countably infinite set Y of variables and a countable set 9
of parameter symbols. We assume that 7 and 9 are disjoint.

The set 9 of HiLog terms of L is a minimal set of strings over the alphabet
satisfying the following conditions:

. if t, t,, . . . , t, are in z then t(t,,.. ., t,) ~7, where IZ 2 1.

Notice that according to this definition, a term can be applied to any finite number
of terms, and parameter symbols are arityless.

An atomic formula is a term. More complex formulas are built from atomic
formulas in the usual way, by means of connectives V, A (also written as &I, 7,
and quantifiers 3 and V.

In addition, we use +- and c to denote the implication, where (4 + I/J)= (4 c
@)=(c$v -, $1. L’k 1 ewise, C#J + $ and C#J 2 I) will stand for 7 4 V g. The bidirec-
tional implication “ c, ” also has the standard definition.

A literal is either an atomic formula, a positive literal, or the negation 7 A of
an atomic formula A, a negutiue literal. A clause is of the form VX, . . .VX,
CL, v *-a V L,), where L,, . . . , L, are literals and Xi,. . .,X, are all the variables
occurring in L,, . . . , L,. It is usually written simply as L, V ... V L,. When it = 0, a
clause is called the empty clause. A Horn clause is a clause that contains at most
one positive literal. A definite clause is a Horn clause of the form A V 7’ B, V
. . . V 7 B,, where A,B ,,..., B, are atomic formulas; definite clauses are usually

written as A + B 1,. . . , B,, where A is the head and the conjunction B,, . . . , B,, is
the body of the clause.2 A negutiue clause is a clause containing no positive literals.
A goal is a conjunction of literals, and a query is the negation of a goal, which can
be written as a negative clause. For practical applications, we consider definite logic
programs that consist of a finite number of definite clauses. Section 4.1 briefly deals
with logic programs with negation.

2.3. Semantic Structures

Since-at first glance-the semantics of HiLog may seem a bit unusual, we
precede the formal description by an informal discussion that shows how the
semantics of the first-order predicate calculus has evolved to support higher-order-
ness of HiLog. First, we define the Herbrand semantics because it is especially
close to the Herbrand semantics of predicate calculus.

The Herbrund universe for a HiLog language, ._5?, is the set of all ground (i.e.,
variable-free) HiLog terms in 9; Since terms in HiLog are also atomic formulas, it

2As usual in logic programming literature, we use ‘0” to denote conjunction of literals in the clause
body.

194 WEIDONG CHEN ET AL.

follows that Herbrand universe is identical to Herbrand base (cf. [35]). This is not a
coincidence: if we want to manipulate atomic formulas as terms, the former must
be elements of the universe. Now, a Herbrand interpretation is simply a subset of
the Herbrand base (= universe), the definition of Herbrand interpretation com-
monly used in logic programming [35]. The definition of formula satisfaction in
such interpretations simply repeats the corresponding definition in [35].

Although Herbrand interpretations suffice for many of the needs of logic
programming, there are at least two important reasons to be interested in a more
general notion of semantic structure [16]: programs with equality and negation-as-
failure.

Recall that, in first-order predicate calculus, a semantic structure M for a
language 9 is a pair (U, Z), where U is called the domain of M and Z is a function
that interprets parameters of 9 (i.e., constants, function symbols, and predicate
symbols). Z consists of two different mappings, 9and 9. The former, F, interprets
each k-ary (k 2 0) function symbol of 9 by a function Uk c, U; the mapping 9
maps each n-ary predicate symbol to an n-ary relation over U. We consider
constants as 0-ary function symbols, so 9 takes care of constants as well. In what
follows, whenever f is a function symbol, Z(f) will stand for 9(f); when p is a
predicate name, Z(p) will stand for 9(p). Note that the set of function symbols
and the set of predicate symbols are disjoint.

In HiLog, one of our original goals was to eliminate the syntactic distinction
among constants, function symbols, and predicates, so one cannot tell a constant
from a predicate or a function symbol. 3 Therefore, Sr and 9 must map each
parameter symbol to all of the following: an element of U, a function over U, and a
relation on U. Another of our goals was to make symbols arityless. So, each symbol
must be mapped into an infinite tupk of functions and relations, one for each arity.

There is a subtlety, however. How should we interpret a formula like X(a),
where X is a variable? In predicate calculus, such formulas are interpreted with
respect to a variable assignment, which is a mapping u: Y- U. However, u(X) is
an element of the semantic domain U, and in order to interpret X(a) with respect
to u, we must associate relations with elements of U rather than parameters of 9.
Thus, the interpreting mappings F and 9 must associate functions and relations
with every element in U, including Z(s), for each s ~9, not with the symbols in 9.

Following the usual development in predicate calculus, we can extend a variable
assignment v recursively to the set Yof all terms as follows:

l u(s) = Z(S) for every parameter symbol in 9;

l u(t(tt,..., t,>) =9(uwxu(t~), . . . , u(Q).

However, the truth of an atomic formula t(t,,. . . , t,) can be determined either
with respect to the n-ary relation that 9 associates with u(t), that is,
9(u(t)Xu(Ir), . . . , u(t,)), or with respect to the 0-ary relation (i.e., true or false)
which it associates with u(t(t,, . . . , t,)), that is, Si’l(u(t(t,, . . . , t,))). Both alternatives
seem reasonable, but the second one results in a more uniform treatment of HiLog

‘This is not to say that we dismiss the utility of typing. To the contrary, we distinguish between
well-formedness and typing, which we feel are orthogonal concepts. Our goal here is to relax the
stringent well-formedness requirements of predicate calculus, while preserving the ability to talk about
type correctness. An attempt to introduce types into HiLog is described in [9].

HILOG 195

terms. Furthermore, it turns out that under certain natural assumptions, these two
choices lead to the same semantics.

It is easy to see now that adopting the second alternative obviates the need for
9. Indeed, all we need is to classify elements of the domain U into the intensions
of true and false propositions. A simple way to do this is by introducing a subset
U,,,, G U that designates propositions that are true in M. Coming back to Her-
brand interpretations discussed at the beginning of this section, we see that-in
the Herbrand case-l&,, is precisely that subset of the Herbrand base that
determines the interpretation.

After this informal introduction, we are ready for the formal development. A
semantic structure for HiLog, M, is a quadruple (U, U,,,,, I,F), where

l U is a nonempty set of intensions for the domain of M;

. u,U? is a subset of U that specifies which of the elements in U are intensions
of true propositions;

l I: 9’-, U is a function that associates an intension with each logical symbol;

l 97 U * rIt= ,[Uk - U] is a function, such that for every u E U and k 2 1,
the kth projection of flu), also denoted by u$), is a function in [Uk * Ul.
Here, ll denotes the Cartesian product of sets and [Uk - VI is the set of all
functions that map Uk to U.

Given a semantic structure M and a variable assignment u: 7+-+ U, we extend it
recursively to the set 9of terms as follows:

l u(s) = Z(S) for every s 67;

l dt(t,, . . ., t,)> = Mt)>$“‘Mt,>, . . .,dtJ.

Let C#I be an atomic formula. It is satisfied by M under u, denoted M bU 4, if and
only if 44) E U,,,,.

We thus see that a HiLog term may represent an individual, a function, a
predicate, or an atomic formula in different contexts. The intension of a term is its
associated element in the universe U. Extensional aspects of terms are captured as
follows. The extensional aspect of a term, viewed as a proposition, is its truth value
defined by its membership in U,,,,, while the extensional meaning of a term in its
capacity as a function is captured by R For example, if a term t appears as a k-ary
function, e.g., in t(t,,. . ., tk), its extensional meaning under a variable assignment u
is the kth projection of the vector of functions associated with the intension of t,
that is (u(t))$). On the other hand, the role of the above term as a proposition is
indirectly captured through 9 and U,,,,, so that t(t ,,...,tk) is true if and only if
u(t(t ,,.e.,t,))E v,,,,.

Finally, the meaning of complex formulas is defined in the standard way:

l MK,(+r\$,)ifandonlyifMb, 4andMb,, 4;

l Mk,(4V$)ifandonlyifMK, +orMb=, t,!t;

l Ml=,(T+)ifandonlyifMK, 4;

l M bv (VX>+ if and only if for every variable assignment, CL, that may differ
from u only on X, M KcL 4;

l M bv (3X)+ if and only if for some variable assignment, CL, that may differ
from u only on X, M ticl 4;

196 WEIDONG CHEN ET AL.

For closed formulas (i.e., formulas all of whose variables are quantified), M K,, 4
does not depend on u, and we can write simply M K 4.

Interpreted symbols, such as “ = ,” “ true,” and “false,” can be incorporated into
HiLog by requiring that interpretations satisfy the following restrictions:

l Z(true) E U,,,,;

l Z(false) GE U,,,,;

l Z(=)$k’(u 19.. .7 u,) E u,,,, if and only if u, = u2 = ... = uk (i.e., if all the ui’s
denote the same element of U).

Compared with other higher-order logics, such as Church’s theory of types [13]
and AProlog [42, 451, HiLog treats only atomic formulas as first-class objects.
Formulas that contain connectives, such as “and,” or,” or “not,” could be build
into HiLog by making these connectives into constants and requiring every seman-
tic structure to satisfy the following conditions:

l Z(and$)(d,, d2) E U,,,, if and only if both d, and d, are in V,,,,, for every
d,, d, E U;

l Z(or)$?(d,, d,) E U true if and only if d, or d, are in U,,,,, for every d,, d, E U;

l Z(not$)(d) E U f,Llf2 if and only if d is not in Qr,,, for every d E U.

Alternatively, the above connectives can be defined using HiLog clauses, e.g.,
and(X, Y):-X, Y. Encoding formulas with quantified variables would require the
introduction of A-abstraction into HiLog, which also can be done, but is beyond
the scope of this paper.

3. RELATIONSHIP TO PROLOG AND PREDICATE CALCULUS

In this section, we show from various perspectives that HiLog is, in a well-defined
sense, a faithful extension of predicate calculus. In the sequel, we will use “PC” as
an abbreviation for “predicate calculus.” First, we compare HiLog to what we call
contextual predicate calculus. This is an extension of ordinary, “pure” predicate
calculus, and is inspired by the way Prolog permits the use of the same symbol in
different contexts (e.g., as a predicate symbol or as a function symbol of different
arities). Syntactically, formulas in contextual PC are also well-formed in HiLog,
and therefore there is a question of whether the validity problems for such
formulas under the semantics of HiLog and contextual PC coincide. We show that
this is not always the case, but under certain conditions, the two validity problems
do coincide. In the second subsection, we consider formulas in pure predicate
calculus. Such formulas are also well-formed in contextual PC, and therefore also
in HiLog. We then establish that the validity problem in pure PC coincides with
the same problem in HiLog for an even larger class of formulas than in the case of
contextual PC. The third subsectioe shows that every HiLog formula can be
encoded as a formula in pure PC.

3.1. Validity in Contextual Predicate Calculus and HiLog

In Prolog, the same symbol may appear in different contexts as a predicate, a
constant, or a function symbol; the same symbol can even occur with different
arities in different parts of the program. The exact role played by an occurrence of

HILOG 197

a symbol depends on the context in which this symbol occurs. Such Prolog
programs are normally understood as formulas in predicate calculus in which
different occurrences of the same symbol are replaced by different function or
predicate symbols (whichever is appropriate) of suitable arities. This ad hoc use of
parameter symbols in multiple roles motivates a simple extension of PC, which we
call contextual predicate calculus.

A language 2 of contextual PC contains a set of parameter symbols, 9, and a
set of variables, Y”. A term is either a variable, a parameter symbol, or an
expression of the form s(t,, . . . , n , r > where s ~9, n > 0, and t,, . . . , t, are terms. An
atomic formula is any term other than a variable, and the rest of the definitions are
as usual.

Clearly, contextual PC is an extension of PC in the direction of HiLog, but is not
as radical. It stops short of introducing a higher-order syntax (because s above is an
element of 9, not a variable). Every formula in contextual PC is also a formula in
HiLog. On the other hand, X and X(a)(b) are well-formed formulas in HiLog, but
not in contextual PC. Similarly, every PC formula is also a formula in contextual
PC, but not vice versa, e.g., s(s, s) is a formula in contextual PC, but not in PC.

Semantics of contextual PC is also a middle ground between HiLog and pure
PC. A semantic structure for a contextual PC language is a tuple M = (U, Z9, I9 >.
For each symbol s ~9, the function I7 associates an infinite tuple (fO, fi, f2,. . . >,
where f0 is an element of U, and for i > 0, f, is a function U’ H U. Likewise, Z,(s)
is a tuple (po,p1,p2,...), where p. is a 0-ary relation, p, is a unary relation, etc.
We will denote the kth components of the above infinite tuples by Z$‘(s) and
Z$‘(s), respectively. (Recall that a 0-ary relation is a set of 0-ary tuples, and that
there is only one such tuple-the empty tuple (>. Therefore, there are only two
0-ary relations: the empty one and the relation {(>}. The former is used to
interpret false propositions, while the latter interprets true propositions.)

Given a variable assignment u: 7 c, U, we define u(s) = s, whenever s ~9, and
UN 1,. . . , t,)) = Z$)(sXu(t,), . . . , ~4,)). If s(t,, . . . , t,) is an atomic formula, M bV
s(t ,, . . . , t,) if and only if (u(t,), . . ., u(t,)) E Z$)(s). The rest of the definition of F
is the same as for PC and HiLog.

Although there are contextual PC formulas that are not well-formed in PC, any
such formula, 4, can be transformed into a formula 4’ in PC by replacing
occurrences of each parameter symbol as follows. All occurrences of s as a k-at-y
function are replaced by a new k-ary function symbol s$; all occurrences of s in
the position of a k-ary predicate are replaced by a new predicate symbol s$. For
instance, under this transformation, s(s, t(t)) becomes s$<s& tk<t$>>. This transfor-
mation is explicit in Prolog where parameter symbols can assume multiple roles. A
justification for using this transformation stems from the following easy fact.

Lemma 3.1.

1) A formula in contextual PC is valid if and on& if its transformation into pure PC
is valid.

2) A formula in PC is valid if and only if it is also valid when considered under the
semantics of contextual PC.

PROOF. Let 9 be a language of contextual PC, and let 9’ be the corresponding
language of pure PC in which the transformed formulas are expressed. That is, if 9
is a set of parameters of 2, then the set of function symbols of 2 is {s$k 2 0,

198 WEIDONG CHEN ET AL.

s ~54, where the superscript indicates the arity; (s$(k 2 0, s ~91, is the set of
predicate symbols of 2’.

The proof of 1) is then carried out by constructing an isomorphism .& between
the sets of semantic structures for 9’ and _.‘?I such that if M = (U, ZF, Zya) is a
semantic structure for 9, 4 is a formula in 9, and 4’ is its translation to _Y’,
then M k 4 if and only if &Ml F 4’. d(M) = (U, Z) is constructed in an obvious
way: Z(s$) = Z$kk’(s), and I(&) = Z&k)(s).

To prove 21, consider _Y”, a language of PC. Let 9” be a language of contextual
PC with the same sets of parameters and variables. Let M’ = (U, Z) be a semantic
structure of 9. The corresponding semantic structure M” = (U, Z9, Z, > is con-
structed thus: if p is a k-ary predicate symbol in Y, then Z$k’(p> = Z(p); if f is a
k-ary function symbol in _Y’, then Z$k)(f) = Z(f). The rest of Z9 and IF can be
arbitrary. It is easy to see that a PC formula 4 in 9’ is true in M’ if and only if it
is true in M”. Thus, if such a formula is valid when considered as a formula in _Y’,
then it is valid as a formula in ._F’.

By reversing the above construction, for every semantic structure M” of the
language 9” of contextual PC, one can construct a PC structure M’ for 9’ such
that a PC formula 4 in 9’ is true in M” if and only if it is true in M’. Thus, if 4 is
valid as a PC formula in _Y’, it is valid as a formula in the contextual PC language
_Y. 0

The above lemma essentially says that contextual PC is only a minor extension
of PC. However, because of the greater similarity between the synax of contextual
PC and HiLog, it is instructive to investigate the relationship between the validity
problems in these two logics. Suppose 9 and 7 is a set of parameters and
variables, respectively. Let 9H be a language of HiLog, and let _9$ be the
sublanguage of contextual PC. In view of Lemma 3.1, it is tempting to’think that
every formula in _9$ is valid under the semantics of contextual PC if and only if it
is valid under the semantics of HiLog. It turns out that the difference between
these semantics is more fundamental than in the case of the two flavors of PC.
Consider the following formula that is valid in HiLog:

(s(a) = r(b,o)) = (s(a) ++ r(b, o)) (1)
It is easy to see that this formula is not valid in contextual PC, for the latter can
assign relations to the parameters s and r that are not related in any way to the
meaning assigned to the terms da) and r(b, cl. This stands in sharp contrast with
HiLog where truth value is assigned to intensions of atoms, and according to the
premise of (11, the terms s(a) and r(b, c) do have the same intension; hence, as
atomic formulas, they also must have the same truth value.

Nevertheless, there is a correspondence between valid formulas of 9p in HiLog
and contextual PC in the important cases described in Theorem 3.1 below.

Definition 3.1. Given a language 9 of contextual PC, a semantic structure M =
(17, ZF, Z9 > is free if and only if for every pair of parameter symbols f and g and
for any pair of arities 12 2 0 and m 2 0, the following holds:

l for all u,, . . ., u, and q,. . . , urn in U, Z~)(fXul,. . ., un> =Z~m’(gXu,, . . .,u,)
if and only if f and g are identical symbols, n = m, and ui, ui are identical
elements in U, for all i (1 5 i 5 n).

Definition 3.2. A sentence 4 in contextual PC is freely-interpretable if it has the

HILOG 199

following property:

l if $J is satisfied by every free semantic structure, then it is satisfied by all
semantic structures.

Theorem 3.1. Let, as before, 9” be a language of HiLog, and let 9r be the
corresponding sublanguage of contextual PC (i.e., they share the same set 9 of
parameters and the set Y of variables). Let 4 be a formula in 9r. Then

1) if kcPc c$, then tihitoe 4;
2) if 4 is freely-interpretable, then bhilos 4 if and ont’y if t=‘J” 4.

Here, FPc and bhi”s denote the logical implication relation with respect to the
semantics of contextual PC and HiLog, respectively.

PROOF. We prove both directions of 2). The proof of the “if’ direction of 21 is also
a proof of 1). To prove 21, suppose that k hi’og 4 holds. We show that k ‘PC C#J
holds as well. Given a pee semantic structure M, = (U, I,, I9 > for _YP, we
construct a semantic structure M, = (U, U,,,,, Z,F) of PH as follows:

l the domain, U, is the same as in M,;

l Z(s) = Z$‘(s> for every symbol s of 9;

l for every u E U and every k 2 1, if u = Z$?‘(s) for some s ~9, then u$’ =
Zg’(s)* otherwise > 7 define u$k’(u I,...ruk)=d forsomelixed dEU;

l u E u,,,, if and only if one of the following conditions holds:
--u = Z$)(s) for some s ~9 such that Z$“(s) is a nonempty 0-ary relation4

(equivalently, if M, k s); or
--u = Z$)(SXU,, . . .) u,) for some s ~9 and ui E U (1~ i 5 k), such that

(U 1,. . .) Uk) E Z‘$‘(s).

The semantic structure M, is well-defined since M, is free. It can be shown by
induction that for any formula 4 of _5$ and any variable assignment u,M, kv 4 if
and only if M, b,, 4. Therefore, if khilog 4, then C#J is satisfied in every free
semantic structure for PP. Since C$ is freely-interpretable, it is satisfied in
every semantic structure for PP, that is, FP’c#J holds.

To prove the other direction of 21, let us assume that kcPc+ holds. We need to
show that khijog C$ holds as well. Given a semantic structure M, = (U, U,,,,, Zv,F)
for 9”) we construct a semantic structure M, = (U, Z,, Z,) for PP as follows:

l the domain, U, is the same as in M,;

l for every symbol s of PH,
-Z$)(s) = Z,(s).
-Z$kk’(s) = CZH(i))&!), for every k 2 1;
-Z$‘(s) is a nonempty 0-ary relation (equivalently, MP k s) if and only if

Z&1 E u,,,,;
(u r,..., uk > E Z&!)(s), k 2 1, if and only if (Z,(S)>$~(U,, . . . , uk) E U,,,,.

Again it can be shown by induction that for any formula C$ of _P,, and any variable

4Recall that the nonempty 0-ary relation interprets true propositions, while the empty relation
interprets false propositions.

200 WEIDONG CHEN ET AL.

assignment u, M, E,, 4 if and only if M, kV 4. Therefore, if there exists some M,
such that M, #” 4, a semantic structure M, of _L$ can be constructed such that
M, K 4, contrary to the assumption. Thus khi”g 4 holds. 0

Although the condition in Theorem 3.1 is not syntactic, it encompasses impor-
tant classes of formulas. The following lemma shows that all equality-free formulas
of predicate calculus are freely-interpretable. The other interesting class that is
particularly important for logic programming consists of sets of definite clauses
with equality, but such that the equality is restricted to clause bodies. If G is a
query and is a negative clause and P is a definite logic program (possibly with
equality in clause bodies), then evaluating the query amounts to showing that the
set S = G UP is unsatisfiable. Since Theorem 3.1 concerns validity (which is a
contrapositive of unsatisfiability), the class of formulas to consider in this theorem
is { 7 SIS is a conjunction of Horn clauses free of equality in the head}.

Lemma 3.2. The following classes of contextual PC formulas are freely-interpretable:

1) Sets of equality-free sentences.
2) Formulas of the form 7 S, where S is a conjunction of Horn clauses free of

“ = ” in clause-heads.

PROOF. Consider a language 9 of contextual PC with a set of parameters 9. Let
4 be a formula in 9 that has one of the forms 1) or 2) above. Assume that for
some semantic structure M = (17, Z,, Z9> for 9, M # 4. We show that there exists
a free semantic structure M’ = (U’, Z$, I&> such that M’ # 4.

The domain U’ of M’ is a free algebra built out of the elements of U and the
parameter symbols of 9. In other words, it is a minimal set satisfying the following
conditions:

l UUPLU’;

l if dI,..., d, are in U’ and s ~9, then the abstract symbol s(d,, . . . , d,) is in
U’ for every k 2 0.

For every s ~9, define Z$“(s) = s, and for each k 2 1 define Z$k’(sXd,, . . . , d,) =
s(d 1,. . . ,dk) for all d,, . . ., d, in U’.

There is a natural mapping *: U’ e U defined thus: for every element u in U’,
the corresponding element u* in U is such that:

0 u*=u ifuEU 7 7
. s* = Z$)(s), if s ~9, and

l (s&r,..., z&J)* = z$)(sXu* 1,. . . , u,*>.

Next, define Z,$k,‘k’(s) as follows: (u,, . . . , uk > E Zsk)‘k’(s) if and only if (UT,. . . , u:) E
zAkT p>.

By the definition, M’ is a free semantic structure, and the mapping *: U’ e U is
a homorphism of M’ onto M [16]. By the Homomorphism Theorem [16L5 the

‘In [16], the Homomorphism Theorem was stated for PC. Its validity for CPC is immediate from
Lemma 3.1.

HILOG 201

following properties hold:

i)

ii)

iii)

iv)

If u: V+-+ U’ is a variable assignment with respect to M’, then there is a
variable assignment v*: Y-, U with respect to M, defined as follows: for
each variable X of 9, u*(X) = (u(X))*;
For any term t of 9, v*(t) = (u(t))*, where u*(t) is evaluated with respect
to M while u(t) is evaluated with respect to M’;
The mapping u r* u* is an epimorphism of variable assignments, i.e., for
every variable assignment p for M, there is an assignment u for M’ such
that u* = p;
For every equality-free formula 4, M’ K,, 4 if and only if M KU* 4.

Obviously, 1) follows from iii> and iv).

To show 21, let S be a conjunction of Horn clauses free of equality in clause
heads. To show that 7 S is freely-interpretable, we prove that M #,, 1 S implies
M’ kt u 7 S. The latter is the same as saying that M kV. S implies M’ i=” S, and
since S is a conjunction of clauses, we only need to establish this fact for the case
of a single clause, r, that is, to show that M k,,, r implies M’ k=” r.

Let r be a clause of the form L, V ... v LL. Assume that M k==,, r. Then there
exists some literal Li such that M k=,, L,. If Lj is not an equality literal, then
M’ kv Li, by iii), and thus M’ kU r. If Li is an equality literal, then Li must be of
the form ~(t, = t,), by the assumption. It follows from the definition of the
mapping “*” that if u(t,) = u&l, then also u*(t,) = u*(t,) (but the opposite may
not be true). Hence, M k,, Li implies M’ kV L,, and also M’ kv r. 0

It is interesting to note that although formulas of the form 7 S in the above
lemma are freely-interpretable, S itself may not be freely-interpretable. A simple
example is the formula c + a = b that is true in every free interpretation, but is not
a valid formula in general.

3.2. Validity in Pure Predicate Calculus and HiLog

Since formulas in pure PC are also formulas in contextual PC, the results of the
previous subsection hold for PC formulas as well. However, since the language of
PC is a subset of contextual PC, we can obtain a stronger result than the
specialization of Theorem 3.1 to PC.

Definition 3.3. Let P be a set of formulas in a PC or a contextual PC language 9.
Let y denote the cardinality of the set of parameters of _Y. We say that P is
cardinal with respect to _Y if the following property holds:

l If P is true in every semantic structure M such that the cardinal@ of the
domain of M is at least y, ‘then P is true in every semantic structure of _Yz?‘.~

Lemma 3.3. Every freely-interpretable formula in contextual PC is cardinal. In particu-
lar, the formulas of the form described in Lemma 3.2 are cardinal.

61mplicit here is the assumption that whenever P is viewed as a PC formula, then M is a PC
structure, and when P is viewed as a CPC formula, then M is a CPC structure.

202 WEIDONG CHEN ET AL.

PROOF. For simplicity, we will prove the lemma for languages with finite sets of
parameters. It suffices to show that every free semantic structure for a language 9
of contextual PC has an infinite domain. Then, if 4 is freely-interpretable, suppose
that it is true in every semantic structure of cardinality at least y. Then it holds in
every infinite and, in particular, every free semantic structure. Hence, since 4 is
freely-interpretable, it holds in every semantic structure.

Let M = (U, Z,, 9) be a semantic structure for 9, and let s be a parameter in
9. Such an s always exists since any language of CPC contains at least one
parameter symbol (or else no well-formed formulas can be constructed in this
language). Let u0 = Z(s), U, = Z$)(sXu,>, u2 = Z$‘(sXu,), and so on. Then, by the
definition of free structures, uO, u,, u2, and so on, are all distinct elements of U.
q

It is easy to see that the class of cardinal formulas strictly contains the class of
freely-interpretable formulas. Lemma 3.3 provides for the inclusion. To show that
this inclusion is strict, note that every propositional Horn rule (in PC or CPC> with
a nontrivial equality in the body [e.g., p + (a = b)] is cardinal, but not freely-
interpretable.

Theorem 3.2. Let 4 be a set of formulas in PC (and hence in HiLog). Then

l if 4 is valid in PC, then it is valid in HiLog;

l if 4 is cardinal, then it is valid in HiLog if and on& if it is valid in PC.

Before presenting the proof, we show that the second part of this theorem may
not hold if 4 is not cardinal, or it is a CPC but not a PC formula. Consider the
following formula:

(q(a) t) r(a)) + VXVY(X=Y).

Clearly, this is a well-formed formula, both in predicate calculus and in HiLog.
It is also a valid HiLog formula because whenever the right side of the formula is
true in a semantic structure M = (17, U,,,,, Z,9>, the domain of this structure must
be a singleton element. So, in M, q and r are mapped to the same element of U.
Therefore, Z(q(a)) =Z(r(a)), and the left-hand side of the formula holds true.
However, this formula is not valid in predicate calculus, since it is falsified by every
semantic structure that has a one-element domain and interprets q by an empty
relation while r by a nonempty one. One reason for this discrepancy between
HiLog and predicate calculus is that the domains’of quantification are different: in
HiLog, this domain contains r and q, while in predicate calculus, it does not.
Therefore, predicate calculus has, in a sense, more interpretations than HiLog.
Another reason is that the truth of atomic formulas is defined via intensions of
these formulas in the domain of interpretation rather than via relations associated
with predicate symbols.

The second part of Theorem 3.2 hinges in an essential way on the assumption
that 4 is a well-formed formula in predicate calculus. It is not true, for example,
for formulas in contextual predicate calculus. Consider

(s(a) c, r(D)) +- (s(a) = r(b)). (2)

This formula is not well-formed in PC (s and r play multiple roles here), but it is
well-formed in contextual PC. It is also a cardinal formula. It is easy to see that (2)

HILOG 203

is valid in HiLog, but not in contextual PC (the latter is because semantic
structures in contextual PC can assign different truth values to the atoms s(a) and
r(b), even if the terms s(a) and r(b) have the same intension). Another observation
is that (2) is cardinal, but not freely-interpretable (it holds in every free structure
because the premise is always false; however, as noted above, this formula is not
valid in contextual PC).

Since the class of cardinal formulas in PC is strictly larger than the class of
freely-interpretable formulas, Theorem 3.2 strengthens the result of Theorem 3.1
for the class of PC formulas. In fact, since cardinal PC formulas that are valid in
HiLog are also valid in PC (Theorem 3.21, it follows that they are also freely
interpretable (as are all valid formulas). Thus, Theorems 3.1 and 3.2 together imply
that all cardinal, yet nonfreely-interpretable PC formulas are not valid in HiLog
and in PC. (This means that these theorems identify the same class of valid PC
formulas that are also valid in HiLog. However, Theorem 3.2 identifies a strictly
larger class of nonvalid PC formulas that are also nonvalid in HiLog.)

PROOF. Let A$ be a language of PC with a set of parameters 9 and a set of
variables V. Let -EL;I be a language of HiLog with the same sets of parameters and
variables.’

We define a pair of mappings:

l HtoP: PH-Structures HP,,-Structures

l PtoH: &-Structures +_.5$,-Structures

such that for any predicate calculus formula over _J$,, the following holds, where
k PC and k hilog denote logical entailment in predicate calculus and HiLog,
respectively.

Property 1. If M, is a semantic structure for _& and HtoP CM,) kPc 4, then
M, bhilog 4.

Propeq 2. If M, is a semantic structure for _5& such that the cardinality of the
domain of M is at least that of 9 and PtoH (M,) khilog 4, then M, t=Pc 4.

The theorem immediately follows from the existence of the mappings with these
two properties.

To construct HtoP, let M, = (U, U,,,,, H, Z S) be a semantic structure for 9’“.
Define the corresponding structure for L& as follows: HtoP CM,) = (U, ZP) has
the same domain, U, as M,, and Zp is defined below:

l Z,(c) = ZJc), if c is a constant of _Y$q

l Z&7 = (ZH(f))$k’, if f is a k-ary function symbol of -rtp; and

l Z,(p)=Ku,,..., u,)Kz,(p))$m)(u,,...,U,)E u,,,,l.

Now, Property 1 follows straightforwardly, by induction on the structure of 4. Note
that here we did not impose any restrictions on semantic structures.

To prove Property 2, we define PtoH as follows. Let M, = (U, ZP) be a semantic
structure for _Y$, where the cardinal&y of U is at least as high as that of 9.

‘It is important for the following construction that HiLog interpreted parameters, such as “ = ,”
“true,” and “false,” are never used as function symbols in the PC language _S+.

204 WEIDONG CHEN ET AL.

Because of the cardinality assumption, there is a mapping ZH from 9 to U such
that

l Z,(c) = Z,(c) for every symbol c in 9 that corresponds to a constant symbol
c of _5$; and

l ZH(f) #Z”(g) for every pair of distinct symbols f and g in 27 that corre-
spond to function symbols (of arity > 0) or predicate symbols of .Epp.

We can now define PtoH(M,) = M, = (U, V,,,,, Z,,F), where

l the universe, U, of M, is the same as that of M,;

l the mapping ZH from the parameters ~7 of ~9~ to U is the one defined in
the previous paragraph; and

l 9 is defined thus:
-If f&Y corresponds to a k-ary function symbol of _.Y&, where k 2 1,

then (Z,(~))$)(U~, . . . , u,) = Zp(fX~l,. . . , u,); for other arities r (r # k),
(I&))$) is defined arbitrarily.

-If p ES is an m-ary predicate symbol, where m 2 0, then (Z,(p))$“’
(24 ,,. . ., u,) is in U,,,, if and only if (u,,. . .,u,) E Z,(p); there are no
other requirements to the definition of (Z,(p))$“). Neither are there any
requirements to (Z,(p))$“’ for other arities s, where s # m.

-On other elements of U, F is defined in an arbitrary way.

Since ZH maps distinct function and predicate symbols of 9 into different
elements of U, the mappings (Z&))$) and (Z,(p))$“’ are well-defined.

Let u be a variable assignment. Since -E” and L?$ share the same set of
variables and PtoH(M,) shares the domain U with M,, u is a variable assignment
for both PtoH(M,) and M,. Let V, and u, denote the extensions of u to the set
of all terms in 9H and _!&, respectively. The following properties can be proved by
induction:

l for any term t of _2$ in PC (which is also a term in L?&), u,(t) = u,(t);

l for any formula 4 of _5$ in PC (which is also a formula in L?,,), PtoH(M,)
+iilOg 4 if and only if M, ki” 4.

Therefore, if 4 is valid in HiLog, 4 is valid in all semantic structures M, such that
the cardinality of the domain of M, is at least that of 54 If 4 is also cardinal, this
implies that 4 is true in all semantic structures of -E?p. 0

3.3. Encoding HiLog in Predicate Calculus

Since HiLog syntax is richer than that of predicate calculus, it may seem that
HiLog is a more expressive logic. It turns out, however, that every HiLog formula
can be encoded in predicate calculus, and therefore these two logics are equally
expressive. It should be borne in mind, though, that our objective is not to devise a
more expressive logic, but a logic whose syntax is more suitable for logic program-
ming. In this respect, one can compare programming in HiLog versus Prolog to
programming in Prolog versus Horn logic. It is well-known that Horn logic has the
computational power of a Turing machine and, therefore, is sufficient for all
computational needs. However, the programmer’s convenience and the need to

HILOG 205

simplify problem specification call for a richer syntax (negation, etc.), and this is
why Prolog has the additional constructs it is notorious for. More discussion of this
issue appears in Section 8.

The following encoding of HiLog in predicate calculus was suggested by WU
[59]. Given a HiLog language L& with a set of variables 7 and parameters 9, we
define _Y’ncode to be a language of predicate calculus with the set of variables Y’“,
constant symbols Y, a unique predicate symbol “call,” and for each n 2 1, an
(n + l)-ary function symbol apply,, r. Given a HiLog formula 4, its encoding in
predicate calculus, c&*, is determined by the following recursive transformation
rules. In these rules, encode, is a transformation that encodes HiLog terms that
appear in contexts where they are interpreted as atomic formulas, and encode,
encodes these terms in all other contexts.

l encode,(X) =X, for each variable XE 7;

l encode,(s) = s, for each logic symbol s ~9,

l encode,(t(t,, . . . , t,)) = apply,, + ,(encode,(t), encode,(t . . , encode,(t,N;

l encode,(A) = call(encode,(A)), where A is a HiLog atomic formula;

l encode&A v B) = encode,(A) v encode,(B);

l encode,(A A B) = encode,(A) A encode,(B);

l encode,(7 A) = 7 encode,(A);

l encode,((QX)A) = (QX)encode,(A), where Q is either 3 or V.

Given a HiLog semantic structure M = (U, U,,,,, ZH,F), the corresponding
predicate calculus structure, encode(M) = (U, Z,>, is defined as follows:

l Z,(c) = Z”(c), for each c ~9,

l Z,(apply,+ ,Xu, q,. . . , u,> = hd$“)h,, . . . , u,);
l Z,(call) = U,,,,;

l the equality predicate “ = ” has the standard interpretation in encode(M)

(i.e., ZP(=)d~f{(~,~)Iu E U]).

The following result and its proof are due to Wu [59]. The reason for the special
treatment of “ = ” in the above definitions will become apparent in Section 6.4.

Theorem 3.3 (Encoding Theorem). Let C$ be a HiLog formula and M a semantic
structure. Let v be a variable assignment for the free variables in 4. Then

M k,, C$ ifand onb if encode(M) kU encode,(4).

PROOF. By structural induction, v(t) = v(encode,(tN, for every HiLog term t.
Consider now a HiLog atomic formula A, other than an equation. By the definition,
encode,(A) = call(encode,(A)). Therefore, M kv A

if and only if v(A) E U,,,,;
if and only if v(encode,(A)) E Z,(call);
if and only if encode(M) kv caINencode,(A
if and only if encode(M) kU encode,(A).

206 WEIDONG CHEN ET AL.

The above derivation holds for the equality predicate as well because of the
special interpretation assigned to “ = ” in Section 2.3.

We have thus proved the claim for atomic formulas. The rest of the proof is an
easy induction on the structure of HiLog formulas. [7

Let LY denote the following sentence: (VX, Y)call(apply,(= , X, Y)) c) X = Y. Then
we have the following corollary that relates the validity of a formula in HiLog and
of its encoding in PC.

Corollary 3.1. Let 4 be a HiLog formula. Then 4 is valid if and only if (Y I
encode& 4) is valid in predicate calculus.

PROOF. Let _9$H be a HiLog language. It is easy to see that the function encode is
a l-l and onto mapping from HiLog semantic structures of -EI;I to PC semantic
structures of 9~ncode that satisfy the aforementioned formula 4 (the language

-Gncode was defined earlier, before the definition of the encoding of HiLog in PC).
Indeed, we could use equations for encode “in reverse” to define a function
decode such that decode(encode(M)) = M. The claim now follows from Theorem
3.3. El

We conclude this section with a few remarks that shed some light on the
relationship between HiLog and the second-order predicate calculus under the
standard semantics [16]. Clearly, one should expect certain similarities because, for
example, quantification over predicates and function symbols is allowed in both
logics. On the other hand, the first-order nature of HiLog semantics suggests that
there must be very significant differences.

For a similarity, it is easy to see that the language of HiLog is rich enough to
express so-called extensionality axioms. For instance, for arity 2, we can write

VPVQ(eq2(P,Q) ++ VXVY(P(X,Y) - Q(X,Y))) (3)

According to (31, eq2(P, Q) is true if and only if P and Q are the same when viewed
as binary predicates. This formula is identical to the extensionality axiom for binary
predicates in second-order logic with the standard high-order semantics. Thus,
HiLog syntax appears to be rich enough to capture both the intensional and
extensional aspects of functions and predicates.

However, a critical difference between the semantics of HiLog and the standard
semantics for second-order logic is the domain of variables. In HiLog, variables
range over a nonempty set of intensions. So, in (31, P and Q range only over the
intensions of binary relations, but there also may be relations without the corre-
sponding intensions (the latter do not affect the meaning of (3) in HiLog). In
contrast, in the standard second-order semantics, the domain of predicate variables
P and Q is the set of all binary relations over the individual domain. Therefore,
the extensionality axiom of standard second-order logic talks about all possible
relations. Although this distinction does not appear to have impact on the meaning
of (3) in HiLog versus second-order PC, it does make a difference for the so-called
relation comprehension formulas [161:

3PVX , . . .VX,(P(X, . . . ,X,) ++ qq (4)

where 4 is some formula in which P does not occur free, and the only free
variables are X,, . . . , X,. It is well-known that these formulas are valid in the
standard second-order predicate calculus. It turns out however, that they are not

HILOG 207

valid in HiLog. For instance, the formula:

3PVXvY(P(X,Y) ++ 7p(X,Y)) (5)

is not valid in HiLog. One HiLog semantic structure which falsifies it is
((d},{d}, Z,9>, where Z(p) = d, and @‘Cd,. . . , d) = d for all k(k 2 1). Intuitively,
this happens because domains of HiLog interpretations do not necessarily have
intensions for complements of relations associated with predicate names. Whether
this effect is desirable or not depends on the intended meaning of quantification.
In HiLog, the quantification is over intensions, and since there is no name for 1 p
in S; (5) is not valid.

4. APPLICATIONS OF HILOG

As explained earlier, although the semantics of HiLog is first-order, a term can be
viewed as an individual, a function, or a predicate, depending on the context in
which it appears. When functions or predicates are treated as objects, they are
manipulated as terms through their intensions: when applied to arguments, they
are evaluated as functions or relations through their extensions. By distinguishing
between intensional and extensional aspects of functions and predicates, HiLog
preserves the advantages of higher-order logic and avoids the computational
difficulties with extensions introduced by higher-order semantics. In this section,
we review a subset of HiLog that is suitable for logic programming, and then show
its uses in higher-order logic programming, definite clause grammars in natural
language processing, and other areas.

4. I. Logic Programming in HiLog

For practical applications, we consider logic programming instead of general
theorem proving with HiLog. By a logic program, we mean a finite set of formulas
of the form

vx, . ..VX.(A +-, A .** AL,)

where m 2 0, A is an atomic formula, L,, . . . , L, are literals, and Xi,. . . , X,, are
all the variables occurring in A, L,, . . . , L, [35]. Each universal formula in a
program can be written as a general clause. However, in logic programming, such
clauses are often written as:

A+L ,,..., L,.

If L 1,. . . , L,,, are atomic formulas, such clauses are, called definite. Horn clauses,
and a logic program consisting of only definite clauses is called a definite logic
program.

For definite logic programs, standard logic programming techniques [54, 4, 351
can be used to define the declarative and procedural semantics. The only differ-
ence is the form of atomic formulas and unification (unification is discussed in
Section 6.3). For instance, for definite HiLog programs, the model intersection
property holds and, therefore, each such program has a unique minimal (with
respect to set inclusion) Herbrand model. The Tp operator is also defined as usual:
if H is a Herbrand interpretation and P is a definite program, T,(H) is the set of all
literals that are heads of ground clauses of P whose body is satisfied in H. The

208 WEIDONG CHEN ET AL.

standard results about fixpoint also hold. These facts are easy to verify directly or
with the use of Theorem 3.3.

For logic programs with negation, semantics is defined by choosing one or
several of the minimal Herbrand models. For instance, the definitions of well-
founded semantics [50,52, 55,561 and stable model semantics [20] are independent
of the notions of atomic formulas and Herbrand bases, and thus the same
definitions can be applied to HiLog. Some results on negation in HiLog can be
found in 1531.

4.2. Higher-Order and Modular Logic Programming

Higher-order constructs have been found very useful in programming practice. An
example is the maplist of Lisp. It can be defined in HiLog either as a higher-order
predicate

maplidf, [I, [I).
maplist(F, [XJRI, [VIZ]) + F(X, Y), maplist(F, R, 2).

or as a generic predicate

maplist(f)([l, [I).
maplist(F)([XIRl, IYIZI) + F(X, Y), maplist(F)(R,Z).

The latter is possible since HiLog allows complex terms such as maplist to
appear as predicates.

The example in Section 2.1 shows the usefulness of generic view definitions,
such as closure, in databases. Generic transitive closure can also be defined in
Prolog:

closure(R, X, Y) + C =..[R, X, VI, call(C).
closure(R, X, Y) +- C =..[R, X, Zl, call(C), closure(R, Z, Y).

However, this is obviously inelegant compared to HiLog (see Section 2.0, since this
involves both constructing a term out of a list and reflecting this term into an
atomic formula using “call.” The point of this example is that the lack of
theoretical foundations for higher-order constructs in Prolog resulted in an obscure
syntax, which partially explains why Prolog programs involving those constructs are
notoriously hard to understand.

It turns out that since variables may be instantiated to HiLog terms which in
turn have a propositional meaning, there is no need for the infamous “call”
predicate that is built into Prolog. The latter is naturally defined in HiLog as

call(X) + X.

which has the intended semantics.
Higher-order constructs have been also used in database languages, such as

COL [l] and LDL [5, 461, for modeling complex objects containing sets. The
original semantics of these languages, as described in [l, 5, 461, is higher-order,
which leads to certain semantic and computational difficulties. In Section 5, we
propose an alternative semantics for COL and LDL using HiLog, and argue that
the latter is computationally more tractable and practically more convenient.

Modular logic programming is another application where higher-order logic can
be employed. In [7, 81, a theory of modules is developed based upon standard

second-order logic. The semantics of a module is a second-order relation over
first-order predicates interpreted as first-order relations. The relational view of
modules is a natural extension of logic programming. However, standard second-
order logic is not recursively axiomatizable, and the practical usage of modules
does not need the full power of second-order predicate calculus.

HiLog can be used to provide a simple alternative semantics for modular logic
programming which, unlike [7,8], has a sound and complete proof theory. Consider
the following program fragment (which is well-formed both in predicate calculus
and in HiLog):

trans(X, Y) + edge(X, Y).
trans(X, Y) + edge(X, 21, trans(Z, Y).

To turn it into a module definition, we need to determine its interface with other
modules. This program fragment contains a definition for trans in terms of edge.
Suppose that predicate trans is exported and predicate edge is a parameter which
can be instantiated to any binary predicate of the user’s choice. To obtain a module
definition, we replace each nonglobal predicate symbol by a predicate variable of
the same arity, where different predicate names are replaced by distinct variables.
This is done to ensure the local scope of those symbols, since only variables have
local scopes in logic. In the concrete syntax of [7], the module definition for
transitive closure may look like this:

mod_trans(ln, Out) {
Out(X, Y) + In(X, Y).
Out(X, Y) +- In(X, Z), Out(Z, Y).

1.

The head of a module definition defines module interface. It consists of
exported predicate parameters (like Out) and input predicate parameters (like In);
the body of a module definition is the “implementation” of the module. Individual
variables are still universally quantified with respect to each clause in the body
(unless they are also module interface parameters, which is discussed in [7, 81).
Noninterface predicate variables in the body, if any, represent priuate predicates
that are not to be seen outside the module. The quantification of predicate
variables is such that all input predicate parameters are universally quantified and
all other predicates (private and exported ones) are existentially quantified inside
the scope of the universal quantification of the input predicate variables. It is
precisely due to this existential quantification of predicate variables that the local
data in the module are shielded from outside.

The above module definition not only defines first-order predicates in the body
of the module, but also the second-order predicate corresponding to the module
name, namely, mod_trans. The above module definition can be given meaning via
the following formula:

Vln30ut(mod_trans(ln, Out) A
VXVY(Out(X, Y) + In(X, Y)) A
VXVYVZ(Out(X, Y) + In(X, Z) A Out(Z, Y))

1

Under the second-order semantics of [7,8], mod-trans is treated as a second-order
predicate symbol. Instead of interpreting the above formula under the standard

210 WEIDONG CHEN ET AL.

second-order logic, we can interpret it as a formula in HiLog, getting a more
tractable semantics for modules. Under the HiLog interpretation, mod_trans is
simply a first-order parameter symbol, just like link. In an implementation, existen-
tial variables can be eliminated by Skolemization, which preserves unsatisfiability in
refutational theorem proving (e.g., SLD-resolution).

After a module is defined, it can be used just as any other predicate, except that
it may also take predicates as arguments. Consider the query

link(a, b). link(b, d). link(d, e). link(a, c).
?-mod_trans(link, Closure), Closure(a, X).

where Closure is a predicate variable and X is an individual variable.
Under the second-order semantics, Closure will be bound to a relation corre-

sponding to the transitive closure of the link predicate. Therefore, X can be bound
to any node reachable from a, and the answer to this query will be the set of all
such nodes.

Under the HiLog semantics, Closure will be bound to an intension,~, in the
domain of quantification, rather than a relation. Nevertheless,.the binary relation
associated to c by HiLog semantics (that is, (c$)>-I(&,)) will be the same as
under the second-order semantics-the transitive closure of link. Therefore, once
again, X can be bound to any node reachable from a, and the set of answers to the
above query will be the same as before.

The HiLog semantics for modules yields the same result as [7] in most cases, but
disagrees with [7] in marginal situations when the inherent difference between the
intensional treatment of predicates in HiLog and the extensional treatment in [7,8]
becomes essential. For instance, when two different predicates p and q that are
extensionally equivalent are to be unified, they are unifiable in the standard
second-order semantics, but not in HiLog.

Another difference is that HiLog modules have features not found in [7]. For
instance, modules in [7], being second-order predicates, cannot be imported into
other modules, since second-order predicates cannot be arguments to other
second-order predicates. Therefore, manipulating modules requires more than just
a second-order PC. In contrast, there are no such difficulties in HiLog, and module
names, being merely first-order terms in HiLog, can be passed to other modules as
parameters.

4.3. Definite Clause Grammars in HiLog

Definite clause grammars (DCGs), developed for processing natural language [47],
extend the context-free grammars by adding arguments for checking the agreement
among linguistic structures, and by allowing arbitrary computation in the body of a
rule. They can be translated into Prolog by adding an additional pair of arguments
for representing the string of words being parsed. As an example, consider the
following DCG rules:

s(sent(Subj, Verb)) -+ np(Subj, Num), vp(Verb, Num).
np(Word, Num) + [Word], {isproper_name(Word, Num)).
vp(Word, Num) + [Word], (isverb(Word, Num)).

HILOG 211

The standard transformation yields the following Prolog program:

s(sent(Subj, Verb), LO, L) t np(Subj, Num, LO, Ll), vp(Verb, Num, Ll, L).
np(Word, Num, LO, L) t connect(Word, LO, L), isproper_name(Word, Num).
vp(Word, Num, LO, L) t connect(Word, LO, L), isverb(Word, Num).
connect(Word, [Wordill], L).

Suppose we have the following facts:

ispropername(john, singular).
isverbtwalks, singular).

Then, parsing a natural language sentence such as

:: = john walks.

will be reduced to evaluating a logical query

?-s(X, [john, walks], [I).

Although Prolog is adequate for many languages defined by DCG grammars,
there are cases in which generic grammatical rules become necessary. Optionality
of a nonterminal symbol and the occurrence of an arbitrary symbol zero or more
times are some of the examples [2]. Such rules can be specified as follows (adapted
from [21):

option(X) + X.
option(X) + [I.

seq(X) -+ X, seq(X).
seqo0 + [I.
nonempty_seq(X) + X, seq(X).

Unfortunately, the above translation into Prolog no longer works, since Prolog
does not allow variable predicates. Indeed, blindly following this recipe, we would

get

nonempty_seq(X)(LO, L) + X(L0, Ll), seq(X)(Ll, L).

which is a HiLog, but not a Prolog rule. To overcome this problem, we could try to
turn X(L0, L) into something like NewX=..[X, LO, Ll, call(NewX). However, even
this patch does not work all the time. Because of the syntactic limitations of Prolog,
special mechanisms for translating such grammars into Prolog are needed, and
papers have been written on that subject (e.g., [2]). In contrast, as we have just
seen, translation of generic grammars into HiLog is immediate, and does not
require any special machinery: we simply go on (as suggested by the standard
algorithm) and replace each nonterminal, N, by a HiLog atom N(L1, L2). Regard-
less of whether N is a predicate symbol, a function symbol, a variable, or a term,
HiLog accommodates them all, due to the richness of its syntax.

As a matter of fact, even the original DCG-to-Prolog translation could be made
more natural in HiLog. DCG nonterminals with parameters are readily trans-
formed into parameterized predicates in HiLog. For example, the first DCG rule

212 WEIDONG CHEN ET AL.

above:

sht(Subj, Verb, LO, L)) -, np(Subj, Num, LO, Ll), vp(Verb, Num, Ll , L).

would become

s(sent(Subj,Verb))(LO, L) +- np(Subj, NumHLO, Ll), vp(Verb, Num)(Ll, L).

4.4. Quey Evaluator

Consider relational expressions composed from, say, binary relations connected by
the relational operators minus, union, and the like. Suppose that the parser has
already produced a parse tree (parsing is easy using Horn clauses) of the expres-
sion in the form of a term, say, minus(union(p, q), intedq, r)), or similar. As the
next step, we would like to write an evaluator for such expressions, which in HiLog
looks as follows:

minus(P, Q)(X, Y) +- P(X, Y), 7 Q(X, Y).
union(P, CWX, Y) + P(X, Y).
union(P, Q)(X, Y) + Q(X, Y).
.

For comparison, we present an analog of the above program in Prolog. The
simplest approach to this problem seems to be to define a translation predicate, tr,
that converts parse trees into Prolog goals, and then use call. The rules for tr are as
follows:

tr(minus(P, Q),X,Y, (Gl, not (G2))) + tr(P, X,Y, Gl), tr(Q,X, Y, G2).
tr(union(P, Q), X, Y, (Gl; G2)) + tr(P, X, Y, Gl), tr(Q, X, Y, G2).
.

tr(P, X, Y, Atom) + Atom =..[P, X, VI.

The first observation about this Prolog program is that it is clumsy compared to its
HiLog counterpart (notice that the arguments X,Y in tr are essential for the
program to run correctly). Second, the last rule is intended to capture the situation
where P is instantiated to a predicate symbol. However, this restriction is only
implicit in the built-in predicate “ =..” which will give an error if P is not a
predicate symbol. One way to get around this is to list all the facts such as
tr(p, X, Y, PM, VI) (f or each predicate symbol) in advance. However, this is particu-
larly inconvenient in the database environment when the user may create or delete
new relations, since the above program would have to be updated each time.

The ease of writing the above program in HiLog stems from the ability to
represent intermediate results of query evaluation in a natural way. For instance,
minus(p, q) can be viewed as the name of an intermediate relation for the result of
subtracting Q from P. However, it should be clear that in order to take full
advantage of HiLog, arities of all relations must be known at compile time, since
we must know how many variables should appear in various places in rules.
Therefore, rules for the relational operators that do not change the arities of
relations (like the ones above) look particularly attractive in HiLog. On the other
hand, operators such as join or Cartesian product require a heavier machinery,
such as jimctor and arg. Still, this program would be much more elegant in HiLog
than in Prolog.

HILOG 213

4.5. Type Checking

Recently, Thorn Fruehwirth pointed out to us that the monomorphic type checking
system of [17] can be naturally extended to a polymorphic type checking system for
HiLog 1181, while expressing general polymorphism in predicate calculus is usually
quite cumbersome. The use of HiLog as a language for type specification is further
explored in [9].

5. HILOG AS A DATABASE PROGRAMMING LANGUAGE

In this section, we show that HiLog provides an alternative (first-order) semantics
to some of the well-known database languages with higher-order semantics, thereby
eliminating some of their problems. Specifically, we will focus on COL [ll and LDL
[5, 461. After that, we will discuss various applications of HiLog to object-oriented
databases.

COL [l] is a logic-based language for complex objects. One notable feature of
COL is that, in addition to finite set construction, it also provides so-called “data
functions.” These functions may take sets and individuals as arguments, and return
sets as results. Data functions can be defined by either facts or rules. For example,
some of the operations over sets can be defined as data functions as follows [ll:

X E intersection(S1, S2) + X E Sl, X E S2.
X E union(S1, S2) + X E Sl.
X E union(S1, S2) + X E S2.
X E difference(S1, S2) + X E Sl , not (X E S2).

Notice that variables Sl, S2 range over a domain of sets, and thus, according to
our classification, the semantics of COL is higher-order. This higher-orderness
presents certain semantic problems for logic programs in COL. Consider the
following example adapted from [l]:

persontpeter, {bridge)).
person(thom, (chess, tennis)).
person(thom, hobbytpeter)).
Y E hobby(X) + person(X, Z), Y E Z.

This program is unstratified in COL, since hobby and person mutually depend on
each other and, therefore, the following perfectly legal queries that request all of
Thorn’s hobbies and inquire whether Thorn plays bridge, will be rejected:

?-X E hobby(thom).
?- person(thom, {chess, tennis)).

To cope with this problem, [l] proposes to use an analog of the notion of local
stratification adapted from logic programming [49].

For simplicity, we restrict our attention to COL programs without tuple con-
structs, and such that their finite set-constructs have no variables. Thus, the forms
such as {a, b} are allowed, but {a, b, X} are not. Later we will show how to extend
our results to the general case. Now, the restricted COL programs can be
transformed into HiLog programs as follows:

1) Replace every finite set construction {a,,. . . , an}, that appears in the COL

214 WEIDGNG CHEN ET AL.

program by a new HiLog logical symbol, sym, and add the following facts to
the program: sym(a, 1,. . . , sym(a,). Identical finite set constructions must
be consistently -replaced
{chess, tennis}) will be
following pair of facts:

hobby_thom(chess).
hobby_thom(tennis).

by- the same symbol. For instance, person(thom,
replaced by person(thom, hobby-thorn), and the

2) Replace COL-formulas of the form X E f(. . .) by HiLog formulas f(. . . J(X).

Then the above program is transformed into the following well-formed HiLog
program:

persontpeter, hobby-peter).
person(thom, hobby-thorn).
person(thom, hobby(peter)).
hobby_peter(bridge).
hobby_thom(chess).
hobby_thom(tennis).
hobby(X)(Y) + person(X, Z), Z(Y).

and the corresponding queries become

?- hobby(thom)(X).
?- person(thom, hobby-thorn).

These queries yield the same results as their counterparts in COL (provided that
the above unstratified COL program is given the intended semantics). For another
example, consider the COL query

?- person(thorn, { chess}) .

to the above database (with the last rule deleted, to ensure stratification). This
query fails because (chess) and {chess, tennis} are two different sets. The corre-
sponding HiLog query is

?- person(thom, another-hobby-thorn), another_hobby_thom(chess) .

[and the database must contain another_hobby_thom(chess)l. This query also
fails since, similarly to COL, another-hobby-thorn represents a different set of
hobbies than hobby-thorn. However, the query

?-person(thom, hobby-thorn), hobby_thom(chess) .

succeeds, since it is asking whether Thorn plays chess, while the previous query
inquired whether {chess} is one of Thorn’s hobby sets. Notice that the semantics of
COL treats Thorn as if he had different sets of hobbies in different “frames of
mind,” and we have been able to capture this aspect of COL pretty adequately. In
contrast, in COL, there is no easy way (without introducing additional rules) to ask
whether Thorn plays chess, which demonstrates greater flexibility of HiLog
compared to COL.

There is, however, a significant difference between the semantics of COL and
that of HiLog. For instance, suppose that instead of the previous clause for hobby,

HILOG 215

the hobby-function is defined as follows:

chess E hobby(peter).
bridge E hobbytpeter).

Then the query

?- person(thorn, { bridge, chess}) .

returns the answer “true” in COL, while the corresponding query

?- person(thom, yet-another-hobby-thorn) .

in HiLog returns “false.”

This difference stems from the fact that in COL, the domain of set variables
consists of sets (extensions), while the domain of variables in HiLog is a set of
objects (intensions). Thus, in COL, person(thom, hobby(peter)) is evaluated to
person(thom, (bridge,chess}), which allows the above COL query to succeed.
Our contention is, however, that the separation of intensional and extensional
aspects in HiLog makes it more flexible: the extensional semantics of COL can be
captured in HiLog rather easily, by defining extensional equality of intensions. For
instance, the following formula

VPVQ(eq1 (P,Q) ++ VX(P(X) ++ Q(X)))

says that P and Q always represent the same unary relations extensionally; P and Q
may be intensionally different, though, and nothing is said about, say, binary
relations represented by P and Q. However, the above axiom does not quite
capture our intentions. What we really need is the extensional equality of predi-
cates with respect to the intended semantics of logic programs. For the purpose of
this section, we adopt the perfect model semantics of locally stratified programs,
which can be defined for HiLog along the lines of [49].’ The intended extensional
equality can now be captured via the following rules with negation:

eql (P, Q) 6 subset(P, Q), subset(Q, P).
subset(P, Q) + not not_subset(P, Q).
not_subset(P, Q) t P(X), not (Q(X).

Now, if desirable, HiLog can simulate the extensional semantics of COL for the
above query as follows:

?-person(thom,X) , eql (X,yet_another_hobby_thom) .

Recall that according to the first transformation rule, the database would contain
the facts

yet_another_hobby_thom(bridge).
yet_another_hobby_thom(chess).

Since person(thom, hobby(peter)) is one of the original facts in the database, the
above HiLog query succeeds with X = hobbytpeter).

‘[53] defines a well-founded semantics of HiLog, which is analogous to [56].

216 WEIDONG CHEN ET AL.

So, to simulate the semantics of COL more closely (but still not exactly), we
must add one more transformation rule, which must be applied after the first two:

3) Replace every literal p(. . . , t,. . .I in the body of a rule (including the
queries), whether t is either a term involving a data function or a constant
that replaces a finite set construction (introduced by the first transformation
rule), by the following conjunction: p(. . . , X, . . .I, eql(X, t). For instance, in
the above, the query

?- person(thom, yet-another-hobby-thorn).

was replaced by

?- person (thorn, X) , eql (X, yet-another-hobby-thorn) .

We complete our discussion of COL by showing how to extend the translation
described above to the general case. Capturing the tuple construct is easy. We just
reserve a parameter symbol, say tuple, for the specific purpose of representing
COL tuples; e.g., [a, bl and [c, d, e] become tuple(a, b) and tuple(c, d, e), respec-
tively. For the set construct, we reserve a special symbol, setc. Now, every finite set
construct, e.g., {a, b, X, d 1, should be replaced by a HiLog term, setc(a, b, X, d), and
the appropriate facts
be

setc(a, b, X, d)(a).
setc(a, b, X, d)(b).
setc(a, b, X, d)(X).
setc(a, b, X, d)(d).

must be added to the database. In our example, these would

The transformation rule 2) requires no change; in rule 31, we only need to replace
the phrase “constant replacing a finite set construct” by the phrase “set term
replacing a finite set construct.”

LDL [5, 461 is another influential logic database language with a higher-order
semantics. In addition to finite set construction, it provides the so-called grouping
construct, which is even more general than data functions of COL. Again, LDL
programs can be translated into HiLog with an alternative, first-order semantics.
Similarly to COL, certain programs that are not well-formed in LDL can be given
satisfactory semantics by such a translation,

Finite set constructs of LDL are translated into HiLog the same way as in the
case of COL. For the grouping construct (which in LDL can occur only in rule
heads), we can do the following:

Replace every LDL rule of the form p(x’, <v’>> + body, where x’, Y’ are vectors
of variables, by the pair of .HiLog rules:

p(x’, sym(X’>> + body.

sym(&% + body.
where sym is a new HiLog symbol.

Consider the following LDL program:

p(X).
p(oO> +- p(X).

HILOG 217

Intuitively, this says that p is true of all elements of the domain, and also of some
other element of the domain that, in some sense, is the set of all domain elements.
However, in LDL, sets are members of the domain on a par with individuals. As a
result, the above program becomes tantamount to the famous set theoretic para-
dox, since p has to contain the set of all sets as an element. The corresponding
HiLog program is

p(x).
p(a) + ~00.
a00 + ~00.

It defines a predicate which is true of every element in the domain. It also defines
a as a symbol that represents the entire domain, whenever this symbol appears as a
constant within an atomic formula. This corresponds to the aforementioned
intuitive meaning of the above LDL program, which favors the HiLog semantics
over LDL. This also shows that, in general, the translation of LDL into HiLog does
not capture all the power of the grouping construct.’ However, in most “normal”
cases of grouping in LDL, the corresponding HiLog program gives the same result.
For instance, consider the set-intersection example from [5]:

intersect(S, T, (X)) + member(X, S) , member(X, T) .

The corresponding HiLog program is

intersect@, T, inter@, T)) + member(X, S), member(X, T).
inter@, T)(X) + member(X, S), member(X, T).

which gives the same result. Note, however, that in HiLog, set intersection has a
more concise and elegant representation:

inter(S,T) (X) c S(X) ,T(X).

We thus see that HiLog provides an alternative (we believe, computationally
more attractive) semantics to LDL. Unlike COL, where it seems that HiLog can
closely mimic the semantics, there is a more dramatic difference between HiLog
and LDL because the latter is so expressive that even logical paradoxes can be
represented without much difficulty. Such paradoxes are not representable in
HiLog since the latter has a first-order semantics, and the translation of paradoxi-
cal LDL rules yields rather benign HiLog programs.

To conclude this comparison, we mention that the alternative semantics for sets
in LDL and COL described above is in the same spirit as the semantics described
in C-logic [12] and O-logic [28], although the latter are first-order (object-oriented)
languages. It appears, thus, that higher-orderness of the syntax of HiLog is
inessential in order to simulate sets. However, it is essential for other applications
described earlier. It seems like an interesting observation, therefore, that changing
the philosophy behind logical languages can-in some cases-eliminate the need
for higher-orderness either in semantics, or in syntax, or in both.

Another promising application of HiLog in the database field is its use as an
implementation vehicle for object-oriented languages recently proposed in [12, 28,
24, 251. C-logic [12] is the simplest of the three; it supports complex objects, object

‘In our opinion, the above discussion suggests that capturing the semantics of grouping construct
exactly is not necessary and even may be harmful.

218 WEIDONG CHEN ET AL.

ids, sets, and classes. For instance, the “hobby” example discussed earlier can be
represented in C-logic as follows:

person: peter[hobby -+ {bridge}].
person: thomrhobby -+ {chess, tennis)].
thom[hobby + (X}] + petetfhobby --f (X)1.

yielding the same results as those produced by the corresponding HiLog represen-
tation.

C-logic admits a natural translation into predicate calculus by viewing each class
symbol (e.g., person) as a unary predicate, and each set-valued attribute (e.g.,
hobby) as a binary predicate [121. O-logic [281 extends C-logic by allowing single-
valued attributes and by introducing a lattice structure over object ids, which helps
to localize the effect of data inconsistency. Translation of O-logic into predicate
calculus is just a shade more complex; it additionally requires the axiomatization of
functional attributes and data inconsistency. F-logic [24, 251 takes object-oriented
logics to a new dimension by introducing higher-orderness with a first-order
semantics, in the same spirit as HiLog. Although it can be encoded in predicate
calculus, this encoding is neither natural nor suggestive of an efficient implementa-
tion. However, an extension of the algorithm from [12] would translate F-logic into
HiLog quite naturally.

This opens up a possibility of using HiLog for fast prototyping of object-oriented
logic languages. Compared to the direct implementation of object-oriented data-
bases, the advantage of HiLog as an implementation platform is that it can be
relatively easily implemented using one of the already available technologies
developed for Prolog [58, 431 or LDL.

6. PROOF THEORY OF HILOG

Because of the encoding in Section 3, one can use a proof theory for predicate
calculus in order to prove theorems for HiLog. However, a proof theory stated in
terms of this encoding is neither intuitive nor suggestive of a possible efficient
implementation. Furthermore, extensions of HiLog will be developed in order to
support more features such as lambda abstractions and dynamic updates, and these
extensions may not have a direct translation into predicate calculus. A direct proof
theory of HiLog is therefore important in its own right, and it may provide
additional insights for further investigations of HiLog extensions.

In this section, we present a resolution-based proof theory given directly in
terms of HiLog. The following issues are examined: Skolem and Herbrand
theorems, unification, and resolution. The discussion follows the development of
resolution-based proof theory for predicate calculus [6].

6.1. Skolemiza tion

Given a sentence 4 in HiLog, it can be transformed into an equivalent formula 4’
in prenex normal form Q, X, . . . Q, X, $, where Qi (1 I i 5 n> is either V or 3, $ is
a quantifier-free formula in conjunctive normal form, and Xi (1 I i I n) are all
variables occurring in $. The rules for this transformation are identical to those
for the ordinary predicate calculus, since the usual De Morgan’s laws apply due to

HILOG 219

the fact that the definition of the logical entailment relation b,, in Section 2.3 is
identical to that in predicate calculus (except for the notion of atomic formulas).

Because of the similarities between HiLog and predicate calculus, one might
think that by eliminating all existential quantifiers in 4’ using the usual Skolemiza-
tion process in predicate calculus, we will obtain a Skolem standard form 9* of 4,
which is unsatisfiable if and only if 4 is too. However, the unsatisfiability of +*
does not entail the unsatisfiability of 4.” To see this, consider

$I = VX3Yp(X,Y) A VF3Z7p(Z, F(Z)).

Converting 4 into prenex normal form and then Skolemizing X and Y in the
ordinary manner (using the new function symbols g and h) yields

9* = VXVF(p(X, g(X)) A ~Po-wJw)H)~

It is easy to see that 4 is satisfiable in HiLog (but not in the second-order
predicate calculus!), which can be verified directly by constructing a semantic
structure M = (U, U,,,,, Z,Y) in which for every u E U, the function u!$’ is differ-
ent from all the functions A: U++ U defined by the expression VX3Yp(X,Y). In
contrast, + is unsatisfiable, since

P(W AJ(%N) * ~P(W AlmN)

is an instance of +*.
Intuitively, the reason why the usual Skolemization process misbehaves is that in

HiLog, it is not enough to choose a new symbol to represent a new Skolem
function: such a symbol also needs to be assigned a new intension. Indeed, we have
to assign an appropriate Skolem function as an extension of the symbol introduced
by Skolemization. In predicate calculus, extensions are assigned directly to function
symbols and, therefore, by choosing a new function symbol, we can construct a
semantic structure for any desired Skolem function. In contrast, HiLog assigns
extensions to intensions of function symbols, and simply choosing a new symbol is
no longer enough: we should be able to assign a new intension to such a symbol,
which-as the above example shows-is not always possible. In fact, as we shall
see, choosing a new symbol is not that crucial for Skolemization in HiLog.

One way to overcome this problem is to modify Skolemization so as to avoid the
need to assign new intensions to Skolem functions. Instead of introducing a new
Skolem symbol, we will use an unused a&y of one of the old symbols, patching the
extra argument positions. For the formula 4 above, we could use, say, symbol p
with the arity 3 for Y and with the arity 4 for Z, obtaining the following Skolemized
form:

VXP(XPOCP,P)) AVF~P(P(F,P,P,P),F(P(F,P,P))).

Notice how the symbol p was used to fill in the argument positions of the terms
p(X, P, P) and p(F, p, p, p).

Let 57 be a language of HiLog that contains at least one parameter symbol.
Given a formula +. of 9 in prenex normal form Q, X, . . . Q, X,, I/J, where Q,<l I
i <n) is either V or 3. J/ is a quantifier-free formula in conjunctive normal form,
and X&l I i I n) are all variables occurring in +!J. Suppose that Qi is the leftmost

lo We are grateful to one of the referees for suggesting this example and pointing out a mistake in an
earlier draft of this paper.

220 WEIDONG CHEN ET AL.

existential quantifier in 4. Let k be the maximum arity that has been used in 4,
which exists since 4 is finite. We obtain a new formula C& by eliminating the
leftmost existential quantifier Q in 4 and replacing every occurrence of Xi in I)
with p(X, 7*..,xi_1,p,... , p> which has m&k + 1, i - 1) arguments. Assume that
there are m existential quantifiers in &,. We repeat this process for every
+ji<j < m), and finally derive a formula 4, without any existential quantifiers. The
formula &,, is called the Skolem standard form of c#+

Lemma 6.1. A sentence C$ is unsatisfiable if and only ifits Skolem standard form c$* is
unsatisfiable.

PROOF. Without loss of generality, we assume that 4 is already in prenex normal
form. Let +a be C$ and let m be the number of existential quantifiers in 4. Then
c$* is &, where each 4j (1 5 j I m) is obtained from 4j_ 1 by the above Skolem-
ization process. We show that &j is unsatisfiable if and only if +j_ 1 is unsatisfiable.

Let 4j_ 1 be in a prenex normal form VX, . . . VXi_ 13XiQi+ 1 Xi+, . . . Q,X,
44X,,..., X,], where Xi is the leftmost existential variable, @IX,, . . . , X,1 is a
formula in conjunctive form, and X,, . . . , X, are all the variables occurring in it.
Suppose that k is the maximum arity that has been used in +j_ Ir and f is the
parameter symbol used in the Skolemization of Xi. Then +j is of the form

VXr .*.VXi_,Qi+,Xi+r .**Q,Xn

where f(X1,...,Xi_l,f,... , f) has max(k + 1, i - 1) arguments.
Suppose that 4j_ 1 is true in a semantic structure M = (U, U,,,,, Z,F>, but 4j is

unsatisfiable. Then for every .x1,. . . , xi _ 1 E U, there exists xi E U such that

Mb” Qi+,xi+,...Q,x,~Ixx,,...,x,], (6)

for every variable assignment u that maps X,, . . . , Xi to x,, . . . , xi, respectively. We
construct a new semantic structure M’ = (U, I!&,,, Z,Y>, where Y is exactly the
same as Y except that for every x1,. . . , xi-r E U, Z(f$+‘(x,, . . . ,
Xi-l,z(f)>**.7 Z(f)) =xi, where xi is chosen as explained in (6) above. Since the
arity k + 1 is not used in 4j_ ,, the function Z(f),$+ ’ is not used to determine
whether (6) holds. This, together with the fact that the domains of M and M’
coincide, yields M’ kU +j. Since u was chosen arbitrarily for X,, . . . , Xi_, and Xi
does not occur in 4j, it follows that M’ k 4j, contrary to the assumption that +j is
unsatisfiable. Therefore, 4ji 1 must be unsatisfiable.

For the reverse direction, assume (in the above notation) that f(is true in a
semantic structure M, but 4j_, is unsatisfiable. Following the defimtron, it can be
verified that +j_, is true in M-a contradiction. Thus, +j must be unsatisfiable.
0

Note that Skolemization in HiLog, as presented above, works for finite sets of
formulas only. A solution that also works for infinite sets is proposed in 191. The
idea is to introduce sorted symbols into HiLog and then use classical Skolemiza-
tion, which does not rely on the existence of unused arities. This, however, requires
an extension to HiLog and will not be discussed here (see [9]).

HILOG 221

6.2. Her-brand’s Theorem

Once Skolemized, we can restrict our attention to universal formulas, i.e., to
formulas in prenex normal form whose prefix contains universal quantification
only. Furthermore, transforming such formulas into conjunctive normal form yields
HiLog formulas in the clausal form. As usual, we can then drop quantification
altogether with the understanding that clauses are implicitly universally quantified.
Variable-free formulas are called ground. The rest of the formulas are nonground.

Herbrand interpretations for HiLog were defined in Section 2.3. Recall that
given a HiLog language _Y, its Herbrand universe, HU(_Y), coincides with its
Herbrand base, and is defined as the set of all ground (i.e., variable-free) HiLog
terms. However, when the equality predicate is taken into account, the definition of
Herbrand interpretations needs adjustment.

Definition 6.1. Let 9 be a HiLog language and let H be a subset of its Herbrand
base. Then H is called a Herbrand interpretation if it is closed under the
congruence:”

. (a!=a)~H;

l if(a=p)EH,then(p=a>EH;

l if(cw=P),(P=Y)EH,then(cu=y)EH;

. if L, ((Y = p) E H and L’ is the result of replacing an occurrence of cy in L
by /?, then L’ E H.

Given a Herbrand interpretation H, we can define satisfaction of formulas in H
similarly to the classic case:

l If a is a ground HiLog atomic formula, then H != a if and only if a E H.

l If 4 and 4 are ground HiLog formulas, then
- Hb(+v$)ifandonlyifH!=+orHK$;
- Ht=(+/\JI)ifandonlyifHb+andHb$;
- H K 7 4 if and only if it is not the case that H t= 4.

l If 4 is a universal formula, then H K 4 if and only if H I= 4’ for every
ground instance 4’ of C#L

To avoid possible misunderstanding, recall that in the presence of equality, we
only consider those semantic structures that assign the intended meaning to the
equality predicate (see Section 2.3). To emphasize this fact, we will call such
semantic structures E-structures. We can then talk about E-unsatis$able and
E-valid formulas, i.e., formulas that are false (resp., true) in all E-structures.

Lemma 6.2. Let -13 be a HiLog languhge. For every E-structure M, there is a Herbrand
interpretation H, such that for every universal formula 4, M b 4 if and only if
H, ti 4. Likewise, for every Herbrand interpretation H, there is an E-structure M,
such that H K r$ if and only if M, K 4, for every universal formula 4.

PROOF. If M is an E-structure, then the corresponding Herbrand interpretation
H, is simply the set of all ground atomic formulas of 9’ satisfied by M.

“The two formulas in the middle follow from the other two.

222 WEIDONG CHEN ET AL.

Conversely, let H be a Herbrand interpretation. The corresponding E-structure
Mu = <u, u,,,,, Z,S> is defined thus:

1) Ud~fZW(_Y)/ = , the factor-space of the Herbrand universe, HU(_Y), with
respect to the equivalence relation induced by the equality atoms in H. If
s E ZWW), its corresponding element in U will be denoted by [s].

2) u,,,,Zf H(_Y)/ = , the factor-space of H with respect to the aforementioned
equivalence relation.

3) I: Y-, U is obtained from the identity embedding Z& 9’~ Z-ZZ.K.55’) by
composing Id with the natural epimorphism HULY) ++ U, i.e., for each
s EP, Z(s) = 1.71.

4) 9 is defined thus: for every [sl E U and k 2 0, [sl$Y[t,l,. . . ,[tkl) =

[SO 1,...,t/Jl.
It is left to the reader to verify that M and H, (resp., H and MH) stand in the
desired relationship to each other. The proof is carried out by structural induction
on HiLog formulas, similar to the classic case. 0

As a consequence of the above lemma, a universal formula is E-unsatisfiable if
and only if it has no Herbrand model:

Corolla y 6.1. A set S of HiLog clauses is E-unsatisfiable if and only if S is fakre under
all Herbrand interpretations of S.

Theorem 6.1 (c& Herbrand’s Theorem). A set S of HiLog clauses is E-unsatisjiable if
and only if there is a finite E-unsatisfiable set S’ of ground instances of clauses of S.

PROOF. It is easy to verify that for any set of HiLog clauses S, the encoding of
Section 2.3 establishes a l-l correspondence between Herbrand interpretations of
S and those of encode,(S). The only subtlety here is that, in HiLog, the Herbrand
universe and the Herbrand base coincide, while in predicate calculus, they are
distinct. For this reason, the Herbrand universe of encode,(S) is obtained by
applying encode, to the Herbrand universe of S, while the Herbrand base of
encode,(S) is obtained from that of S via encode,.

Herbrand’s theorem for HiLog now directly follows from Theorem 3.3 and the
analogous result in predicate calculus [6]. q

6.3. Unifca tion

Although HiLog allows arbitrary terms to appear in places where only predicates
and functions are usually allowed in predicate calculus, unification in HiLog is a
very simple extension of unification in predicate calculus and is decidable. This is
mainly because HiLog separates intensions from extensions and does not have any
nontrivial built-in equality theory over intensions.

Except for the different notion of terms in HiLog, the definitions of substitu-
tions, applications of substitutions to terms, and substitution composition in HiLog
are the same as those in predicate calculus [6].

Definition 6.2. A substitution is a finite set of the form {tl/XI,. . . , t,,/X,J, where
X 1,. . . , X,, are distinct variables, and every term ti is different from Xi, where
Ili<n.

HILOG 223

Definition 6.3. A unifier for a set of HiLog terms {e,,. . . , ek] is a substitution 8
such that e,B= ... =e,O. Aset {e ,,..., ek} is unifiable if it has a unifier.

Definition 6.4. A unifier u for a set {e,, . . . , ek) of expressions is most general if and
only if for each unifier 8 for this set, there is a substitution h such that 8 = uA.

Following [39], we can derive an efficient unification algorithm by solving
equations. An equation is of the form t, = t,, where t,, t, are terms. An equation
set (possibly empty) is solved if it has the form (X, = t,, . . . , X, = t,) and the Xi’s
are distinct variables which do not occur in any tj (1 <j I n). Notice that a finite
equation set in solved form can be naturally viewed as a substitution.

A solution of the equation set {tl = sl,. . . , t, = s,J is a substitution 8 such that
tit3 = si 8 (1 I i 2 n). An equation set is solvable if it has a solution. A solution u
for an equation set E is most general if and only if for each solution 8 of E, there
is a substitution A such that 8 = uA.

Given a finite equation set, the unification algorithm nondeterministically
chooses an equation from the equation set to which it applies one of the following
transformations according to the form of the selected equation:

1) For t(t,, . . ., t,) = s(s,, . . ., sm), where n # m, halt with failure.
2) For t(t,, . . . , t,) = s(sI,. . . , sn), replace the equation by t = s, t, = sl,. . . , t, = s,.
3) For f = g, delete the equation if f and g are identical parameter symbols in

~7’; otherwise, halt with failure.
4) For X =X, where X is a variable, delete the equation.
5) For t =X, where t is not a variable and X is a variable, replace the equation

by X=t.
6) For X = t, where X is a variable and t is a term different from X, if X

appears in t, then halt with failure; otherwise, replace X by t wherever it
occurs in the equations.

The algorithm terminates when no further transformation can be applied or when
failure is reported.

Theorem 6.2 (Unification Theorem). The unification algorithm applied to a finite set of
equations E returns a finite set E* of equations in solved form if and only if E is
solvable. It returns failure otherwise. The returned equation set E* viewed as a
substitution is a most general solution of E if E is solvable.

PROOF. It is easy to see that for any pair of HiLog terms, s and r, they are
unifiable if and only if so are encode,(s) and encode,(r), if and only if encode,(s)
and encode,(r) are unifiable. It is also easy to see that the encoding of HiLog in
PC transforms the above unification algorithm for HiLog into the corresponding
algorithm for PC, described in [39]. The theorem now follows from these two facts.
A direct proof can be also obtained as a simple adaptation of the proof in [39]. q

According to the above theorem, HiLog unification is decidable. The reader may
wonder about the result reported in [21], where it is shown that unification
becomes undecidable once variables are allowed in places where normally only
function symbols are permitted to appear. There is no contradiction, however, with
our result, for the following reasons. Informally, for a sufficiently rich logic with a

224 WEIDONG CHEN ET AL.

higher-order syntax to have a decidable unification problem, two conditions are
sufficient. First, the semantics of the logic should be first-order. That is, predicate
and function variables should not range over relations or functions. Instead, they
must range over intensions or names of predicates and functions. Second, the logic
should not have an undecidable built-in equality theory over names of predicates
and functions. HiLog satisfies both conditions by separating intensions from
extensions (thereby avoiding extensional unification) and by embodying only a
trivial equality theory of intensions. In contrast, Goldfarb [21] essentially works
with second-order h-terms that embody an undecidable equality theory, and this is
what makes unification undecidable in this case.

6.4. Refutation

Definition 6.5. If two or more literals of the same polarity (i.e., both positive or
both negative) in a clause C have a most general unifier (+, then Ca is called a
factor of C.

Definition 6.6. Let C, = L[t] V C;, and C, = (r = s) V C; be two clauses with no
variables in common, where Z[t] is a literal with an occurrence of the term t
(including the case when L[t] = t). If t and r have a most general unifier u,
then

s a binary paramodulant of C, and C,. In this paramodulant, La[su] denotes
the result of replacing one single occurrence of tu in Lu by su.

It is important to realize that since L[t] in the above definition may be the same
as t, in HiLog one needs to paramodulate not only on the terms occurring strictly
inside atomic formulas, as is the case in predicate calculus, but also on atomic
formulas themselves. This is an interesting distinction with respect to PC which
stems from the fact that HiLog is a higher-order language in which atomic
formulas are not distinguished from terms. An example when atomic formulas
must be paramodulated upon is presented below.

Definition 6.7. Let C, = L, V C; and C, = -JL, v C; be a pair of clauses with no
variables in common. If L, and L, have a most general unifier u, then the
clause

c;u v c;a

is called a binary resolvent of C, and C,.

A deduction of a clause C from a set of clauses S is a finite sequence of clauses
D 1,. . . , D, such that D, = C, and for 1 I k 5 n each D, is either a member of S, a
factor of Di (i <k), a paramodulant of some Di and Dj (i,j <k), or a binary
resolvent of Di and Dj (i, j < k). A deduction ending wrth the empty clause is
called a refutation. If C is deducible from S, we write S + C.

One way to prove the completeness theorem is to adapt the corresponding proof

HILOG 225

for PC [6]. A shorter proof, however, results from the use of Theorem 3.3:

Theorem 6.3 (Soundness and Completeness of Resolution). A set S of clauses is
E-unsatisfiable if and only if there exists a refutation of S U {X = X).

PROOF. Under the encoding of Section 3, given a set of HiLog clauses S, any
application of the factorization, paramodulation, or the resolution rules to clauses
in S corresponds to an application of the respective rule to encode@), and vice
versa. ” Thus it follows from the analogous result in predicate calculus [6] that the
combination bf resolution, factorization, and paramodulation is a complete set of
inference rules for refuting E-unsatisfiable sets of HiLog clauses. Note that, unlike
[6], we do not include functional reflexivity axioms f(xl,. . . , x,> = f(xl,. . .,x,1 in
the formulation of Theorem 6.3. This is possible due to a result in [48] that shows
that these axioms are not needed for completeness of paramodulation.13

We also note that if S contains no equality atoms, then “E-unsatisfiability” can
be replaced by “unsatisfiability” and the axiom X =X would not be needed. 0

Consider an example. Recall from Section 3 that the formula

(s(a) =r(b,c)) 1 (s(a) - r(b,c))

is valid in HiLog. Therefore, its negation
of the above formula can be transformed

1) s(a) = db, c).
2) s(a) v r(b,c).
3) 7s(a) v Tr(b,c).

should be E-unsatisfiable. The negation
into the following three clauses:

By paramodulation, we can derive from 2) and 1)

4) r(b, c).

and from 3) and 1)

5) T r(b, cd.

Then, by resolution, we can derive the empty clause from 4) and 51, which

completes the refutation.

7. HILOG IMPLEMENTATION ISSUES

A straightforward implementation of a Horn clause logic programming language
based on HiLog is possible using the encoding of HiLog into PC, described in
Section 3. Since this encoding preserves Horn clauses, we could simply use a
standard Prolog compiler to execute the result of such encoding. While this is
theoretically sound and may even be practical for prototype programs, for large
programs there are some efficiency issues that deserve further consideration. These
have to do with fast access to the appropriate clauses at predicate invocation, and
efficient representation of data structures. Also, built-in nonlogical predicates,

“It is noted that the special treatment of “ = ” in the definition of encode in Section 3.3 was
essential to ensure the above correspondence in case of the paramodulation rule.

13This result was pointed out to us by Leo Bachmair.

226 WEIDONG CHEN ET AL.

dynamic changes to the database, and control constructs, such as the “cut,” lead to
new issues in the HiLog framework.

Consider a simple HiLog Horn clause:

P(X,Y) +s(XJ),p(Z,Y).

this clause also happens to be a predicate logic Horn clause. Its encoding in
predicate logic is

oall(apply(p,X,Y)) + oall(apply(q,X,Z)), call(wply(p,ZY)).

With every clause encoded in this way, each HiLog program, no matter how large,
defines exactly one Prolog predicate, call/ 1. For Prolog-like efficiency, each predi-
cate invocation must quickly locate the clauses whose heads might possibly unify.
In Prolog systems, this is achieved first by branching directly to clauses with the
same predicate, and then using indexing, normally on the main functor symbol of
the first argument, to further refine the search. Notice that for the encoding of a
HiLog program, these two ways of refining the search are not very effective: Prolog
sees only one predicate, call/l, and the main functors of all those heads are
apply/n. Thus, the only filtering would come from the arity of “apply.” One
approach would be to use partial evaluation techniques to optimize the direct
translation [22]. A problem with this approach is how to treat nonlogical constructs,
such as “assert.” Another way to improve clause access would be to improve the
indexing strategy used by the underlying Prolog system, perhaps as proposed in
[51]. An alternative is to constrain the HiLog programs in such a way as to allow
simple compile-time optimizations. One way we are exploring is to restrict the
clauses to those whose heads have a nonvariable symbol in the leftmost position,
that is, clauses whose heads are rigid terms. In this case, all rigid calls in the bodies
of clauses can be compiled to branch directly to the appropriate clauses.

Another issue is the representation of HiLog terms. In Prolog, complex terms
are normally represented as linked record structures. An n-ary term is represented
using n + 1 consecutive words; the first word indicates the functor symbol and the
arity, n, and the following IZ words represent the II arguments. To represent a
HiLog term, another arity is required. The most natural way uses 12 + 2 words: one
for the arity, one for (a pointer to) the functor term, and n for the argument terms.
While this might seem somewhat wasteful of space, using an entire word for a
relatively small arity, we suspect that this will turn out to be the most efficient
representation. It is actually a regularization of Prolog’s representation, and will
make for slightly simpler traversal algorithms.

A realistic logic programming system must support built-ins, which have nonlogi-
cal behavior. A decision must be made as to whether these built-ins can be
accessed by a most general call. For example, should the query + X(Y) be able to
call the read/l predicate? The most reasonable choice seems to be to exclude this
possibility. A desired separation of built-in predicates from the rest can be
achieved by introducing sorts into HiLog [91, that is, by splitting 9 and y into
disjoint subsets and then proceeding to define HiLog terms of different sorts. In
this way, “normal” variables will not be instantiable by the symbols that represent
built-in predicates. If the user wishes to manipulate such symbols, he would have to
use variables of an appropriate sort explicitly.

The issue of the “cut” is also complicated. In Prolog, a cut eliminates the
alternative clauses remaining for the current predicate. Since in HiLog, different

HILOG 227

calls can access various subsets of clauses, the notion of “predicate” is not so
well-defined. These and other issues are explored in more detail in [19].

8. CONCLUSION: DO WE NEED YET ANOTHER LOGIC?

Whenever a new logic is proposed, the question is (and should be) raised as to
whether yet another logic is needed. Why not just stay with the logics we know and
understand? This is an especially cogent point when the new logic has a simple and
reasonably direct translation into the granddaddy of all logics, first-order predicate
calculus, as, in our case, HiLog does. We believe, however, that in the case of
HiLog, there are at least three reasons why we should seriously entertain the idea
of this new logic as a basis for logic programming.

Firstly, programming in HiLog makes more logic programs logical. We all
admonish Prolog programmers to make their programs as pure as possible and to
eschew the evils of Prolog’s nonlogical constructs. In Prolog, the intermixing of
predicate and function symbols, in particular in the predicate, call/ 1, is nonlogical,
whereas in HiLog, it is completely logical and is a first-class citizen. So in HiLog,
programmers need not avoid using call/l, and thus have more flexibility in their
task of writing pure logic programs.

Secondly, even though one might say that HiLog is simply a syntactic variant of
Prolog, syntax is important when one is doing meta-programming. Since in meta-
programming the syntax determines the data structures to be manipulated, a
simpler syntax means that meta-programs can be much simpler. We saw this in the
example of translating DCGs to HiLog, to the extent that a meta-program already
written (the DCG translator) would automatically work in a more complicated
situation, and so did not need to be changed at all.

Thirdly, and perhaps most importantly, a different logic encourages in the
programmer a different way of thinking. Certainly, the translation of any HiLog
program could be programmed directly in Prolog, but would it be? The DCG
example, we believe, shows not. Not only is there an issue of efficiency in that the
translation might not execute as efficiently as the programmer desires, but also that
the programmer would not even think of that Prolog program. HiLog encour-
ages the programmer to think about and use parameterized predicates; Prolog does
not. HiLog programmers would be more likely than Prolog programmers to
modularize their programs along the lines suggested in Section 4.2 above. The
language influences the way programmers think, and the programs they write.

Finally, we would like to point out that HiLog is not the only logic which can be
encoded in predicate calculus. The classic first-order modal logics provide a rich
source of examples when a different syntax (motivated by a different philosophy
of logic) inspired important and useful studies both in Logic and Artificial
Intelligence.

In summary, we believe that HiLog offers significant advantages over Prolog,
and deserves serious consideration as the basis for a new logic programming
language.

We are grateful to Leo Bachmair, Thorn Fruehwirth, Sanjay Manchanda, Shuky Sagiv, Rodney Topor,
and James Wu for their comments on the contents of this paper. We especially thank James Wu for
suggesting the encoding described in Section 3. Suggestions of the referees are also appreciated. This

228 WEIDONG CHEN ET AL.

paper is an expanded version of the work previously reported in [lo, 111. The work of M. Kifer was
supported in part by NSF Grant IRI-8903507.

REFERENCES

1. Abiteboul, S. and Grumbach, S., COL: A Logic-Based Language for Complex Objects,
in: Proc. Workshop on Database Programming Languages, Roscoff, France, Sept. 1987, pp.
253-276.

2. Abramson, H., Metarules and an Approach to Conjunction in Definite Clause Transla-
tion Grammars: Some Aspects of Grammatical Metaprogramming, in: Proceedings of the
5th International Conference and Symposium on Logic Programming, R. A. Kowalski and
K. A. Bowen (eds.), Seattle, WA, Aug. 1988, pp. 233-248.

3. Apt, K. R., Blair, H., and Walker, A., Towards a Theory of Declarative .Knowledge, in:
Foundations of Deductive Databases and Logic Programming, J. Minker (ed.1, Morgan
Kaufmann, Los Altos, CA, 1988, pp. 89-148.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.
15.

16.
17.

18.

19.

20.

Apt, K. R. and Van Emden, M. H.; Contributions to the Theory of Logic Programming,
JACM 29:841-862 (1982).
Beeri, C., Naqvi, S., Shmueli, O., and Tsur, S., Sets and Negations in a Logic Database
Language (LDL), MCC Technical Report, 1987.
Chang, C. L. and Lee, R. C. T., Symbolic Logic and Mechanical Theorem Proving, New
York, Academic, 1973.
Chen, W., A Theory of Modules Based on Second-Order Logic, in: Proceedings of ZEEE
1987 Symposium on Logic Programming, San Francisco, CA, Sept. 1987, pp. 24-33.
Chen, W., Modules for Logic Programming, Research Report. Dept. of Computer
Science, SUNY at Stony Brook, 1989.
Chen, W. and Kifer, M., Sorts, Types and Polymorphism in Higher-Order Logic
Programming, Technical Report 92-CSE-7, Dept. of Computer Science and Engineering,
Southern Methodist University, Dallas, TX, Mar. 1992.
Chen, W., Kifer, M., and Warren, D. S., HiLog as a Platform for Database Language (or
Why Predicate Calculus is not Enough), in: 2nd Intl. Workshop on Database Programming
Languages, Oregon Coast, OR, June 1989, pp. 315-329.
Chen, W., Kifer, M., and Warren, D. S., HiLog: A First-Order Semantics of Higher-Order
Logic Programming Constructs, in: Proceedings of North American Conf On Logic
Programming, 1989, pp. 1090-1114.
Chen, W. and Warren, D. S., C-logic for Complex Objects, in: Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Mar. 1989,
pp. 369-378.
Church, A., A Formulation of the Simple Theory of Types, Journal of Symbolic Logic
5:56-68 (1940).
Clocksin, W. F. and Mellish, C. S., Programming in Prolog, Springer Verlag, 1981.
Dershowitz, N. and Manna, Z., Proving Termination with Multiset Orderings CACM
22(8) (1979).
Enderton, H. B., A Mathematical Introduction to Logic, Academic, New York, 1972.
Fruehwirth, T., Type Inference by Program Transformation and Partial Evaluation, in:
IEEE Intl. Conf on Computer Languages, Miami Beach, FL, 1988, pp. 347-355.
Fruehwirth, T., Polymorphic Type Checking for Prolog in HiLog, in: 6th Israel Confer-
ence on Artificial Intelligence and Computer Vision, Tel Aviv, Dec. 1989.
Fruehwirth, T. and Warren, D. S., Putting HiLog to Work, manuscript, SUNY Stony
Brook, 1990.
Gelfond, M. and Lifschitz, V., The Stable Model Semantics for Logic Programming, in:
Logic Programming: Proceedings of the 5th Conference and Symposium, MIT Press, 1988,
pp. 1070-1080.

HILOG 229

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

Goldfarb, W. D., The Undecidability of the Second-Order Unification Problem, Theoret-
ical Computer Science 13:225-230 (1981).

Smith, D. A. and Hickey, T., private communication, 1990.
Henkin, L., Completeness in the Theory of Types, Journal of Symbolic Logic 15:81-91
(19501.

Kifer, M. and Lausen, G., F-Logic: A Higher-Order Language for Reasoning about
Objects, Inheritance, and Scheme, in: ACM SIGMOD Con& on Management of Data,
May 1989, pp. 134-146.
Kifer, M., Lausen, G., and Wu, J., Logical Foundations of Object-Oriented and Frame-
Based Languages, Technical Report 90/14, Dept. of Computer Science, SUNY at Stony
Brook, July 1990; to appear in J. ACM.
Kifer, M. and Lozinskii, E. L., A Logic for Reasoning with Inconsistency, Journal of
Automated Reasoning vol. 9, no. 2, 1992.
Kifer, M. and Subrahmanian, V. S., On the Expressive Power of Annotated Logic
Programs, in: North American Conference on Logic Programming, 1989, pp. 1069-1089.

Kifer, M. and Wu, J., A Logic for Object-Oriented Logic Programming (Maier’s O-logic
Revisited), in: Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Mar. 1989, pp. 379-393.
Krishnamurthy, R. and Naqvi, S., Towards a Real Horn Clause Language, MCC Report
ACA-ST-077-88, Austin, TX, 1988.
Kuper, G,, Logic Programming with Sets, in: Proc, 6th ACM Conf on PODS, San Diego,
CA, 1987, pp. 11-20.
Kuper, G., An Extension of LPS to Arbitrary Sets, IBM Research Report, 1987.

Kuper, G. and Vardi, M. Y., A New Approach to Database Logic, in: Proc. ACM PODS,
1984.
Lassez, J.-L., Maher, M. J., and Marriott, K., Unification Revisited, in: Foundations of
Deductive Databases and Logic Programming, J. Minker (ed.), Morgan Kaufmann, LOS

Altos, CA, 1988, pp. 587-625.
Lifschitz, V., On the Declarative Semantics of Logic Programs with Negation, in:
Foundations of Deductive Databases and Logic Programming, J. Minker ted.), Morgan
Kaufmann, Los Altos, CA, 1988, pp. 177-192.
Lloyd, J. W., Foundations of Logic Programming (2nd edition), Springer Verlag, New
York, 1987.

Maida, A. and Shapiro, S. Intensional Concepts in Propositional Semantic Networks,
Cognitiue Science 6(4):291-330 (1982).

Maida, A., Knowing Intensional Individuals, and Reasoning about Knowing Intensional
Individuals, in: Proc. 8th IJCAI, Germany, 1983, pp. 382-384.

Maier, D., A Logic for Objects, in: Preprints of Workshop on Foundations on Deductive
Database and Logic Programming, Minker ted.), Washington, DC, Aug. 1986.

Martelli, A. and Montanari, U., An Efficient Unification Algorithm, ACM Trans. on
Progr. Lang. and Systems 4(2):258-282 (1982).

Meyer, A. R., What is a Model of the Lambda Calculus, Information and Control
52:87-122 (1982).

Motro, A., BAROQUE: A Browser for Relational Databases, ACM Trans. on Office
Information Systems 4(2):164-181 (1986).

Miller, D. A. and Nadathur, G., Higher-Order Logic Programming, in: Proceedings of the
3rd International Conference on Logic Programming, London, England, July 1986, pp.
448-462.

Maier, D. and Warren, D. S., Computing with Logic. Benjamin/Cummings, 1988.

Montague, R., The Proper Treatment of Quantification in English, in: Approaches to
Natural Languages, K. J. J. Hintikka et al. (eds.), Dordrecht, 1973, pp. 221-242.
Nadathur, G., A Higher-Order Logic as the Basis for Logic Programming, Ph.D. disserta-
tion, University of Pennsylvania, Philadelphia, June 1987.

230 WEIDONG CHEN ET AL.

46.

47.

Naqvi, S. and Tsur, S., A Logical Language for Data and Knowledge Bases, Computer
Science Press, Rockville, MD, 1989.

48.

49.

Pereira, F. C. N. and Warren, D. H. D., Definite Clause Grammars for Language
Analysis: A Survey of the Formalism and a Comparison with Augmented Transition
Networks. Artijicial Intelligence 13:231-278 (1980).
Peterson, G. E., A Technique for Establishing Completeness Results in Theorem
Proving with Equality, SLAM Journal of Computing 12(1):82-100 (Feb. 19831.
Przymusinski, T. C., On the Semantics of Stratified Deductive Databases, in: Founda-
tions of Deductive Databases and Logic Programming, J. Minker (ed.), Morgan Kaufmann,
Los Altos, CA, 1988, pp. 193-216.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Przymusinski, T. C., Every Logic Program has a Natural Stratification and an Iterated
Least Fixed Point Model, in: Proc. ACM PODS, 1989.
Ramesh, R., Ramakrishnan, I. V., and Warren, D. S., Automata-Driven Indexing of
Prolog Clauses, in: Proceedings of POPL, Jan. 1990.
Ross, A., A Procedural Semantics for Well Founded Negation in Logic Programs, in:
Proc. ACM PODS, 1989.
Ross, A., On Negation in HiLog, in: Proc. ACM PODS, Denver, CO, May 1991, pp.
206-215.
Van Emden, M. H. and Kowalski, R. A., The Semantics of Predicate Logic as a
Programming Language JACM 23:733-742 (1976).
Van Gelder, A., The Alternating Fixpoint of Logic Programs with Negation, in: Proc.
ACM PODS, 1989, pp. l-10.
Van Gelder, A., Ross, K., and Schlipf, J. S., Unfounded Sets and Well-Founded
Semantics for General Logic Programs, in: Proc. ACM PODS, 1988, pp. 221-230.
Warren, D. H. D., Higher-Order Extensions to Prolog: Are They Needed? Machine
Intelligence 10:441-454 (1982).
Warren, D. H. D., An Abstract Prolog Instruction Set, Report 309, AI Center, SRI
International, Menlo Park, CA, Oct. 1983.
Wu, J., private communication, 1989.

