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Patients affected by diabetes show an increased risk of developing Alzheimer disease (AD). Similarly,
patients with AD show impaired insulin function and glucose metabolism. However, the underlying mo-
lecular mechanisms connecting these two disorders are still not well understood. Herein, we investigated
the microtubule-associated protein tau as a new link between AD and diabetes. To determine whether
diabetes causes cognitive decline by a tau-dependentmechanism,we treatednon-transgenic (Ntg) and tau-
knockout mice with streptozotocin, causing type 1 diabetes-like disease (T1D). Interestingly, although
induction of T1D in Ntg mice led to cellular and behavioral deficits, it did not do so in tau-knockout mice.
Thus, data suggest that tau is a fundamentalmediator of the induction of cognitive impairments in T1D. Tau
dysregulation, which causes a reduction in synaptic protein levels, may be responsible for the cognitive
decline observed in Ntg streptozotocin-treatedmice. Concomitantly, we demonstrate the novel finding that
depletion of endogenous tau mitigates behavioral impairment and synaptic deficits induced in T1D-like
mice. Overall, our data reveal that tau is a key molecular factor responsible for the induction of cognitive
deficits observed in T1D and represents a potential therapeutic target for diabetes and patients with AD.
(Am J Pathol 2014, 184: 819e826; http://dx.doi.org/10.1016/j.ajpath.2013.11.021)
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The incidence and prevalence of age-related neurodegen-
erative and metabolic disorders are growing because of the
increasing life expectancy of the human population in
industrialized countries. Diabetes, the most common meta-
bolic disorder, is largely characterized by hyperglycemia,
but it is also associated with vascular disorders and cogni-
tive impairments.1e8 More than 176 million people are
affected by diabetes in the world, and it is estimated to reach
366 million in 2030.9 There are two clinical forms of dia-
betes: type 1 diabetes (insulin-dependent diabetes) and type
2 diabetes (noneinsulin-dependent diabetes).

Epidemiological studies show that diabetic patients have
a significantly increased risk of developing Alzheimer
stigative Pathology.

.

disease (AD) versus healthy individuals.1,2,10e14 AD is a
neurodegenerative disorder characterized by progressive
loss of memory and cognitive skills. Neuropathologically,
AD is characterized by the presence of senile plaques of
b-amyloid (Ab) and neurofibrillary tangles composed
by hyperphosphorylated forms of tau protein and neuronal
and synaptic loss.15,16 Both AD and diabetes share several
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Table 1 Significant Hyperglycemia Levels in Ntg and tauKO Mice
3 Days and 4 Weeks after Streptozotocin Injection

Genotype N

Blood glucose
3 days after
STZ injection
(mg/dL)

Final blood
glucose
40 days
after STZ
injection
(mg/dL)

Insulin levels
40 days after
STZ injection
(ng/mL)

Ntg 13 114 � 7 136 � 6 0.65 � 0.19
Ntg-STZ 13 292 � 28* 316 � 24* 0.15 � 0.05**
tauKO 10 134 � 10 152 � 5 0.45 � 0.12
tauKO-STZ 10 242 � 21* 305 � 33* 0.12 � 0.08**

The values represent the means � SEM. Two-way analysis of variances at
3 days: genotype [F(1,42) Z 0.52], treatment [F(1,42) Z 53.30,
P < 0.0001], and interaction [F(1,42) Z 3.09, P Z 0.08]; and 4 weeks:
genotype [F(1,42)Z 0.01], treatment [F(1,42)Z 66.09, P < 0.0001], and
interaction [F(1,42) Z 0.41]; and insulin levels: genotype
[F(1,16) Z 0.69], treatment [F(1,16) Z 8.93, P < 0.01], and interaction
[F(1,16) Z 0.40]. Bonferroni’s pairwise comparisons were performed.
*P � 0.001, **P � 0.05.
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pathobiochemical features, such as oxidative stress, forma-
tion of advanced glycation end products, dysregulated
glucose metabolism, and altered insulin signaling.17

Notably, recent evidence using animal models shows that
diabetes can promote aberrant tau modifications.18e24

Microtubule-associated protein tau is a cytoskeleton pro-
tein that regulates neuronal development and promotes as-
sembly and stability of microtubules, which are critical for
vesicle transport.16 In the central nervous system, almost
20% of tau is phosphorylated under physiological conditions;
however, in pathological conditions, such as AD, tau is
hyperphosphorylated. This hyperphosphorylation causes a
loss of affinity for the microtubules, altering intracellular traf-
ficking and consequently leading to synapse dysfunction,
neuronal degeneration, and cognitive decline.15,25e28 Tau
can be phosphorylated by several serine/threonine kinases,
including glycogen synthase kinase 3b (GSK3b).29e31 More
important, insulin has a key role in metabolic signaling and
regulates the activity of some kinases that are responsible for tau
phosphorylation.32,33 Recent evidence using animal models of
diabetes suggests that impaired insulin signaling causes tau
hyperphosphorylation through GSK3b activation.18e24,28

Herein, we investigated tau as a key molecular factor in
type 1 diabetes-like disease (T1D) to induce cognitive
impairment. We evaluated the effect of insulin deficiency and
hyperglycemia in non-transgenic (Ntg) and tau-knockout
(tauKO) mice using streptozotocin (STZ). Our results indi-
cate that STZ treatment causes hyperphosphorylation of tau
in Ntg mice through activation of GSK3b. These increments
on hyperphosphorylated tau correlate with spatial cognitive
dysfunction and changes in synaptic proteins. Notably,
tauKO mice treated with STZ show no cognitive or synaptic
deficits. Overall, our data indicate that T1D impairs cognition
via tau-dependent mechanisms, and removal of tau prevents
cognitive deficits.

Materials and Methods

Animals

Four-month-old Ntg and tauKO mice were used (n Z 10 to
13 males per group). All animal procedures were performed
in accordance with NIH and University of California
guidelines and Use Committee at the University of Cali-
fornia, Irvine.

Diabetes Induction and Blood Glucose and Insulin
Measurements

Diabetes was induced as described previously.9,24,34,35 Briefly,
Ntg and tauKO mice received a single injection of STZ (150
mg/kg, i.p.) diluted in 0.1 mol/L citrate buffer (pH 4.5). STZ, a
glucosamine-nitrosourea compound, is toxic to the insulin-
producing b-cells of the pancreas, and i.p. administration of
STZ induces hyperglycemia and insulin deficiency, rendering
it a valuable model to study T1D.27 The onset of diabetes was
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confirmed by assessing glucose levels (NiproDiagnostics, Fort
Lauderdale, FL) in blood samples collected from the tail vein, 3
days after STZ treatment. Only animals with blood glucose
levels �200 mg/dL, 3 days after STZ treatment, were used in
the experiments.36 In total, the determination of blood glucose
levels (andbodyweight)wasmeasured3 and40days after STZ
injection. In addition, insulin levels were measured 40 days
after STZ administration (Millipore, Billerica, MA). STZ-
treated mice showed reduced insulin and increased glucose
levels. No differences in these measurements were found be-
tween Ntg and tauKO mice (Table 1).

Behavioral Test

Hidden Morris water maze (MWM) tests were conducted as
described previously.37 Mice were trained to swim to a 14-
cmediameter circular Plexiglas platform submerged 1.5 cm
beneath the surface of the water and invisible to the mice
while swimming. The platform was located in a fixed po-
sition, equidistant from the center and the wall of the tank.
Mice were subjected to four training trials per day. During
each trial, mice were placed into the tank at one of four
designated start points per day in a pseudorandom order.
Mice were trained for as many days as needed to reach the
training criterion of 25 seconds (escape latency). If the mice
failed to find the platform within 60 seconds, they were
manually guided to the platform and allowed to remain there
for 5 seconds. The probe trial was assessed 24 hours after
the last training session and consisted of a 60-second free
swim in the pool without the platform. Performance was
monitored with the EthoVision XT video tracking system
(Noldus Information Technology, Leesburg, VA).

Tissue Preparation

After deep anesthesia with sodium pentobarbital (60 mg/kg,
i.p.), Ntg and tauKO mice were perfused transcardially with
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Tau Ablation Mitigates T1D Deficits
0.1 mol/L PBS, pH 7.4. Protein extracts were prepared by
homogenizing whole brain hemisphere samples in T-per
extraction buffer (Thermo Fisher Scientific, Rockford, IL)
complemented with complete miniprotease inhibitor tablets
(Roche Diagnostics GmbH, Mannheim, Germany) and
phosphatases inhibitors (5 mmol/L; Sigma-Aldrich, St.
Louis, MO), followed by centrifugation at 100,000 � g for
1 hour. Protein concentration in the supernatant was deter-
mined using the Bradford assay.
Immunoblotting

Equal amounts of protein (20 mg) were separated on 4% to
12%Bis-Tris gel (Invitrogen, Carlsbad, CA) and transferred to
nitrocellulose membranes. Membranes were blocked for 1
hour in 5% (w/v) suspension of nonfat milk in 0.2% Tween 20
Tris-buffered saline (pH 7.5). After blocking, the membranes
were incubated overnight, at 4�C, with one of the following
primary antibodies: anti-postsynaptic density protein 95
(PSD95; 1:1000), anti-cAMP response element binding
(CREB; 1:1000), antiep-CREB (Ser133; 1:1000), antiep-
phosphoinositide 3-kinase (PI3K; p85; 1:1000), anti-PI3K
(1:1000), antiep-AKT (Ser473; 1:1000), anti-AKT (1:1000),
antiep-GSK3b (Ser9; 1:1000), antiep-p38-mitogen-activated
protein kinase (MAPK; 1:1000), antiep38-MAPK (1:1000;
Cell Signaling Technology, Danvers, MA), anti-synaptophysin
(1:5000; Sigma-Aldrich), anti-AT8 (1:1000), anti-AT100
(1:1000), anti-AT180 (1:1000), anti-AT270 (1:1000; Thermo
Fisher Scientific), anti-p-tau paired helical filament (PHF;
1:1000; Dr. Peter Davies, Albert Einstein College of Medicine,
Manhasset, NY), anti-total tau (1:3000;Dako, Carpinteria, CA),
antiep-insulin receptor (IR; Tyr972; 1:1000), anti-IR (1:1000),
anti-GSK3b (1:1000), anti-Cdk5 (1:1000; Millipore), anti-p35/
p25 (1:200), antieextracellular signaleregulated kinase (ERK)
1/2 (1:500), antiep-ERK 1/2 (1:500), or antieglyceraldehyde-
3-phosphate dehydrogenase (GAPDH; 1:5000; Santa Cruz
Biotechnology, Santa Cruz, CA). Themembranes were washed
in 0.2% Tween 20 Tris-buffered saline for 20 minutes and
incubated at 20�C with the specific secondary antibody at a
dilution of 1:10,000 (Thermo Fisher Scientific) for 60 minutes.
The blots were developed using Super Signal (Thermo Fisher
Scientific).
Figure 1 Streptozotocin treatment induces hippocampal cognitive
impairment in Ntg mice through a tau-dependent mechanism. Mice were
trained on the spatial reference version of the MWM (nZ 10 to 12 per group)
at 4 months of age. Acquisition curves (A) are shown for the 5 days of training
on the MWM. *P< 0.05. Mixed analysis of variance: trials [F(4,148)Z 27.75,
P < 0.0001], treatment [F(3,37) Z 8.84, P < 0.001], and interaction
[F(12,148)Z 2.05, P < 0.05]. B and C: Time spent in the platform quadrant
(B) and number of crosses (C) of NTg, NTg-STZ, tauKO, and tauKO-STZ groups.
Time spent in the target zone for NTg-STZ was 58.48% � 5.75%. Two-way
analysis of variance: genotype [F(1,31) Z 3.20], treatment
[F(1,31) Z 3.67, P Z 0.006], and interaction [F(1,31) Z 5.95, P < 0.05].
Number of platform crossings for NTg-STZ was 52.89% � 5.15%. Two-way
analysis of variance: genotype [F(1,28) Z 6.50, P < 0.05], treatment
[F(1,28) Z 1.90], and interaction [F(1,28) Z 3.53, P Z 0.05]. Pairwise
comparisons: **P< 0.01 (B and C). Speed swim (D) and traveled distance (E).
The values represent the means � SEM.
Statistical Analyses

All immunoblot data were quantitatively analyzed using
ImageJ software, version 1.4 (NIH, Bethesda, MD). The
data were subsequently analyzed by Student’s t-test com-
parison or two-way analysis of variance (treatment versus
genotype), followed by Bonferroni’s comparisons using
Graphpad Prism software version 4.0c (Graphpad Prism
Inc., San Diego, CA) and Statview software, version 4.57
(Abacus Concepts, Baltimore, MD). The significance was
set at 95% of confidence. All values are presented as
means � SEM.
The American Journal of Pathology - ajp.amjpathol.org
Results

T1D Causes Hippocampal Cognitive Deficit by
Tau-Dependent Mechanisms

To assess the relevance of tau on diabetes-induced cognitive
dysfunction, vehicle and STZ-diabetic Ntg and tauKO mice
were tested on the hippocampal-dependent behavior test, the
MWM. Ntg-STZetreated mice showed significant impair-
ment in learning during MWM acquisition compared with
Ntg-vehicle mice (Figure 1A). Interestingly, no differences in
learning were detected between tauKO-vehicle and tauKO-
STZ mice. Moreover, Ntg-vehicle mice reached criterion in
3 days, tauKO-vehicle and tauKO-STZ mice required 4 days,
and Ntg-STZ mice did not reach the criterion after 5 days of
821
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Figure 2 Streptozotocin treatment impairs memory-related intracellular
signaling and levels of synaptic-related proteins. A: Immunoblot analyses of
PSD-95, synaptophysin, p-CREB, and CREB of protein extracts from whole-brain
homogenates of Ntg, Ntg-STZ, tauKO, and tauKO-STZ at 5 months of age are
shown in alternating lanes. B: Quantification normalized to GAPDH and
expressed as percentage of control. Pairwise comparisons: *P < 0.05,
**P < 0.001 for PSD-95 (29.3% � 7.4%), genotype [F(1,11) Z 1.85], treat-
ment [F(1,11) Z 6.53, P < 0.05], interaction [F(1,11) Z 5.53, P < 0.05];
synaptophysin (26.4% � 8.9%), genotype [F(1,11) Z 0.51], treatment
[F(1,11)Z 1.98], interaction [F(1,11)Z 7.21, P< 0.05]; and phosphorylated
CREB expression (24.9% � 3.5%), genotype [F(1,20) Z 3.61], treatment
[F(1,20) Z 11.62, P < 0.01], interaction [F(1,20) Z 8.09, P < 0.05]. The
values represent the means� SEM. MW, molecular weight.

Abbondante et al
training. Together, these data indicate that STZ treatment
impaired spatial learning only in Ntg mice and removal of tau
prevents learning deficits (Figure 1A).

In addition, mice were tested 24 hours after the last training
trial to determine any impairment on memory. The results
show that Ntg-STZ mice displayed significant impairment on
long-term memory compared with Ntg-vehicle, as determined
by a significant decrease in the time spent in the platform
quadrant and reduced number of crosses (Figure 1, B and C).
Interestingly, the genetic deletion of tau prevents memory
deficits, because no differences were observed between
tauKO-vehicle and tauKO-STZ mice in these two memory
tasks. Moreover, the cognitive impairment observed in mice
treated with STZ was not attributed to motor deficits, because
no statistical differences were noted among groups for swim
speed and traveled distance (Figure 1, D and E). Taken
together, these data indicate that T1D induced severe hippo-
campal learning and memory deficits through tau-dependent
mechanisms, and tau ablation mitigates these cognitive
impairments.

T1D Causes Synaptic Deficits and CREB Dysregulation

To understand the molecular mechanisms by which T1D
causes cognitive decline, the levels of memory-related tran-
scriptional factors, CREB, and synaptic proteins (eg, PSD-95
and synaptophysin) were analyzed by Western blot analysis.
Changes in these neural networks have been associated with
memory impairments in several neurodegenerative disor-
ders.38,39 Our study revealed a significant decrease in the
steady-state levels of the synaptic proteins, PSD95 and syn-
aptophysin, in the Ntg-STZetreated compared with Ntg-
vehicle mice. Interestingly, no differences were observed
between both tauKO-vehiclee and tauKO-STZetreated
mice (Figure 2).

In addition, important reductions were observed in the
steady-state levels of the phosphorylated form of CREB in
Ntg-STZ compared with Ntg-vehicle mice (Figure 2).
Furthermore, no differences were detected in tauKO-vehi-
clee compared with tauKO-STZetreated mice (Figure 2).
These results indicate that memory and learning impairments
observed in the MWM test in Ntg-STZetreated mice are
likely due to alterations in synaptic proteins and memory-
related transcriptional factors. In addition, our data suggest
that tau has an important role mediating these synaptic defi-
cits induced by T1D.

T1D Induces Tau Hyperphosphorylation

The microtubule-associated protein tau is a cytoskeleton
protein that contributes to microtubule stability. The capacity
of tau to bind to the microtubules is regulated by its phos-
phorylated state. Thus, hyperphosphorylated tau lacks the
affinity for the microtubules and promotes their destabiliza-
tion.15,16 In addition, a recent study indicates that hyper-
phosphorylated tau is localized in the dendrites affecting the
822
postsynaptic compartment.27,40 Together, these studies
indicate that tau hyperphosphorylation is involved in several
pathological mechanisms leading to synaptic dysfunction
and cognitive impairment.
5herefore, we investigate the effect of STZ treatment on

tau phosphorylation to determine whether an increase of
hyperphosphorylated state can contribute to the cognitive
deficits observed under the T1D. The results showed signif-
icant increases in tau phosphorylation levels at residues
Ser202/Thr205 (recognized by the AT8 antibody) and Thr
231 (recognized by the AT180 antibody) in the Ntg-
STZetreated compared with Ntg mice (Figure 3). In addi-
tion, we observed considerable, but not statistically signifi-
cant, increases in tau phosphorylation at residues Ser212/
Thr214 (recognized by the AT100 antibody), Thr181
(recognized by the AT270 antibody), and Ser396/404
(recognized by the PHF-1 antibody), in Ntg-STZetreated
compared with Ntg mice (Figure 3). TauKO mice did not
exhibit any tau hyperphosphorylation because the endogenous
tau gene was deleted (data not shown). Thus, the results
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Streptozotocin treatment alters the IR/PI3K/AKT pathway in
Ntg and tauKO mice. A: Immunoblot analyses of pIR, IR, pPI3k(p85), PI3k,
pAKT(Ser473), AKT, GSK3b (Ser9), and GSK3b of protein extracts fromwhole-
brain homogenates of Ntg, Ntg-STZ, tauKO, and tauKO-STZ mice at 5 months
of age are shown on alternating lanes. B: Quantification normalized to
GAPDH and expressed as percentage of control. Pairwise comparisons:
*P < 0.05, **P < 0.01 for phosphorylated IR (Ntg-STZ, 31.8% � 5.1%;
tauKO-STZ, 20.2% � 7.2%; two-way analysis of variance: genotype
[F(1,10) Z 2.23], treatment [F(1,10) Z 20.03, P < 0.01], interaction
[F(1,10) Z 0.43]) and phosphorylated PI3K (Ntg-STZ, 14.3% � 8.0%;
tauKO-STZ, 18.9% � 3.0%). Two-way analysis of variance: genotype
[F(1,11) Z 0.11], treatment [F(1,11) Z 9.93, P < 0.01], interaction
[F(1,10) Z 0.45]. Phosphorylated AKT at residue Ser473 (Ntg-STZ,
26.3% � 6.0%; tauKO-STZ, 13.5% � 4.5%; two-way analysis of variance:
genotype [F(1,10) Z 2.78], treatment [F(1,10) Z 17.12, P < 0.01],
interaction [F(1,10) Z 0.42]) and GSK3b-Ser9 (NTg-STZ, 30.4% � 6.0%;
tauKO-STZ, 24.7% � 5.0%; two-way analysis of variance: genotype
[F(1,12) Z 0.53], treatment [F(1,12) Z 27.83, P < 0.001], interaction
[F(1,12) Z 0.10]). The values represent the means � SEM. MW, molecular
weight.

Figure 3 Streptozotocin treatment leads to tau hyperphosphorylation
in Ntg mice. A: Immunoblot analyses of phospho-tau epitopes, including
pSer199/202 tau (AT8), pSer212/Thr214 (AT100), pThr231 (AT180),
pThr181 (AT270), and pSer396/404 (PHF-1) of protein extracts from whole-
brain homogenates of Ntg and Ntg-STZ mice at 5 months of age, are shown
in alternating lanes. B: Quantification normalized to GAPDH and expressed
as percentage of control. A significant increase was observed in p-tau
epitopes at pSer199/202 [47.02% � 11.97%, *P < 0.05, unpaired t-test
(17) Z 2.53] and Thr231 [53.37% � 11.24%, **P < 0.01, unpaired t-test
(20) Z 3.03] in Ntg-STZ compared with Ntg-vehicle mice. Furthermore,
increases of tau phosphorylation at residues Ser212/Thr214, Thr181, and
Ser396/404 were found in Ntg-STZ compared with Ntg-vehicle mice,
although they were not statistically significant. The values represent the
means � SEM. MW, molecular weight.

Tau Ablation Mitigates T1D Deficits
indicate that STZ treatment led to tau hyperphosphorylation at
several epitopes, and these increases in tau phosphorylation
presumably contribute to cognitive impairment observed in
T1D-like Ntg mice.

T1D Impairs IR/PI3K/AKT Pathway, and Increases
GSK3b Activity

Deficiency on insulin signaling has been related to increases
in tau hyperphosphorylation.41 Our study shows that STZ
induces insulin deficiency (Table 1) and then might
contribute to tau hyperphosphorylation. To further investi-
gate the molecular mechanism underlying this effect, we
analyzed specific downstream molecules implicated in the
insulin pathway.

The IR is the first step in the activation of the insulin
pathway. The binding of insulin with the receptor induces
the dimerization and autophosphorylation of the IR-b sub-
unit. Therefore, total levels of IR and its phosphorylated
The American Journal of Pathology - ajp.amjpathol.org
form were investigated by Western blot analysis. The results
show a severe decrease of steady-state level of phosphory-
lated IR in both Ntg-STZ and tauKO-STZ mice, compared
with respective control mice (Figure 4). In addition, no
differences were observed in total IR levels, indicating that
the significant decrease of phosphorylated IR induced by
STZ treatment is not associated with a change in expression
of the IR. Next, we investigated the activities of major
downstream kinases involved in the insulin pathway,
including PI3K, Akt, GSK3b, and MAPK pathways, by
823
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measuring their site-specific phosphorylation, which is
known to determine their activation.18,42 In this regard, we
first analyzed PI3K and the regulatory subunit p85. The
steady-state level analysis showed a significant reduction of
the regulatory subunit p85 in both Ntg-STZ and tauKO-STZ
mice compared with respective control mice. In addition, no
changes were observed in total PI3K level (Figure 4). In
correlation with PI3K data, similar significant decreases in
the steady-state level of AKT phosphorylated at residue
Ser473 were detected in Ntg and tauKO STZ-treated
compared with vehicle mice. Furthermore, these data were
correlated with reduction of the phosphorylated form of
GSK3b at residue Ser9 in Ntg and tauKO mice STZ treated
compared with respective controls. Moreover, no changes
were observed in total AKT and GSK3b levels (Figure 4).
In addition, no statistical differences were observed in
CDK5, ERK, and p38 kinase levels, or their respective
phosphorylated forms, in mice treated with STZ compared
with respective controls (Figure 5). Together, our data
indicate that the T1D-like state down-regulates key enzymes
in the insulin signaling pathway in both Ntg and tauKO
mice, and tau hyperphosphorylation, observed in Ntg-STZ
Figure 5 Streptozotocin treatment does not alter Cdk5, ERK, and p38-
MAPK kinases. A: Immunoblot analyses of cdk5, p25/p35, ERK 1/2, phos-
phorylated ERK 1/2, p38-MAPK, and phosphorylated p38-MAPK of protein
extracts from whole-brain homogenates of Ntg, Ntg-STZ, tauKO, and tauKO-
STZ mice at 5 months of age are shown in alternating lanes. B: Quantifi-
cation normalized to GAPDH and expressed as percentage of control. The
values represent the means � SEM. MW, molecular weight.

824
mice, is related to increases in the active form of GSK3b,
as evidenced by reduction in phosphorylation at residue
Ser9, which inhibits GSK3b activity.
Discussion

Epidemiological and clinical evidence suggests that diabetes
is a risk factor that contributes to AD pathological pro-
gression.10e14 AD and diabetes share several clinical and
biochemical features, suggesting a common molecular
pathway underlying these two diseases17; however, such a
mechanism is not well known. In the present study, we
provide functional and molecular evidence that tau is a
critical molecular factor for T1D to mediate cognitive
impairment. Notably, genetic deletion of endogenous tau
gene prevents the synaptic degeneration and cognitive
impairment. Hence, our results indicate that tau is a critical
factor mediating cognitive impairment induced by T1D.
Tau is a cytoskeleton protein that has a key role in the

assembly and stability of microtubules. In pathological
conditions, hyperphosphorylation of tau causes disruption of
the microtubules, alters the postsynaptic physiological fea-
tures, and leads to synaptic dysfunction with consequent
cognitive deficits.15,16,40 Recent findings in humans and an-
imal models show that diabetes promotes aberrant tau mod-
ifications through insulin signaling.18e24,43 In addition,
insulin knockout mice showed cellular ultrastructural alter-
ations induced by hyperphosphorylation in tau and neuro-
filaments.44 Although these studies suggest that tau is
involved in diabetes pathological features, the impact of tau
hyperphosphorylation on the disease progression is still un-
known. In our study, we demonstrated the novel finding that
T1D promotes impairment in spatial learning and memory, as
determined by MWM in NTg mice, whereas tauKO mice
show no deficit. These data suggest that tau deletion prevents
the cognitive impairment, and tau hyperphosphorylation is
fundamental to induce cognitive decline. In parallel with our
data, several important studies in AD models showed that
reducing tau levels ameliorates neuronal dysfunction and
axonal transport defects.33,45 In addition, a recent study
suggests that tau depletion prevents neuronal loss by over-
activation of GSK3b.46 Consistent with these data, we
observed that tauKO mice prevent the reduction of synaptic
markers, such as synaptophysin and PSD-95, and the
decrease of phosphorylated-CREB protein in Ntg-STZ mice.
Hence, our findings indicate that tau reduction prevents
cognitive impairments and synaptic deficits induced by T1D.
Interestingly, despite tauKO mice being null for the tau

gene, these mice did not show behavioral and synaptic
deficits compared with the Ntg mice in our study. These
results are in agreement with previous findings: they showed
that several tauKO mouse lines did not exhibit altered
phenotypes or malformations.47 These studies reveal that the
lack of tau was associated with a significant increase in the
microtubule-associated protein 1A (MAP1A) and that it
ajp.amjpathol.org - The American Journal of Pathology
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might compensate the loss of tau by MAP1A up-regula-
tion.47 However, only in aged mice (approximately 12
months of age), in which MAP1A is not increased, tauKO
mice develop behavioral impairments and motor deficits.
Therefore, our young tauKO mice did not show synaptic
and cognitive deficits as the result of a possible increase in
the level of MAP1A that compensates for the lack of tau.

Impaired insulin signaling has a robust impact on the
central nervous system and is associated with impaired
learning, memory, and mental flexibility.2,48,49 The IRs are
widely expressed in the brain of rodents and humans.50When
stimulated by insulin, IRs trigger several signaling pathways,
including MAPK and PI3K pathways.20,51,52 Our results
showed that a significant reduction in the activation of IRs
due to insulin deficiency correlates with a decrease in the
activation of downstream kinases. In particular, we found in
both Ntg and tauKO mice, significant decreases in p-PI3K
and p-AKT, and consequently activation on GSK3b, as
evidenced by the reduction in phosphorylation at residue
Ser9.18,42 Thus, these results together indicate that T1D alters
the insulin pathway, leading the activation of GSK3b. Ulti-
mately, this increase on GSK3b contributes to the hyper-
phosphorylation of tau observed in our mice. Notably,
although it is well known that insulin signaling plays a key
role in cognitive processes and synaptic plasticity, our results
clearly reveal that, despite similar alterations of insulin
signaling in both genotypes after T1D induction, only the
Ntg-STZ group, not tauKO-STZ mice, exhibited cognitive
impairments. Hence, these data indicate, for the first time to
our knowledge, that tau proteins are crucial downstream
targets of the insulin pathway and mediator of cognitive
deficits in a condition of insulin deficiency.

Overall, our results show the novel finding that inducing
T1D impairs cognition via a tau-dependent mechanism and
removing tau prevents the cognitive deficits. Therefore, our
results provide new insights into the mechanisms underlying
the interaction of these two diseases, indicating that tau is a
key molecular target for the development of future drugs for
treating and/or preventing AD in patients with diabetes.
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