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Abstract

Maximal abelian subalgebras (MASAS) of one of the classical real inhomogencous
Lic algebras are constructed, namely those of the pscudoeuclidean Lic algebra e{p. ¢).
Use is made of the semidirect sum structure of e(p, ¢) with the translations 7(p + ¢) as
an abelian ideal. We first construct splitting MASASs that are themselves direct sums of
abeliun subalgebras of o(p, ¢) and of subalgebras of T'(p -+ ¢). The splitting subalgebras
arc used to construct the complementary nonsplitting ones. Here the results are less
complete than in the splitting case. We present general decomposition thecorems and
construct indecomposable MASAs for all algebras e(p.¢), p =2 ¢ 2 0. Thecascof g =0
and 1 were treated earlier in a physical context. The casz ¢ = 2 is analyzed here in
detail as an llustration of the general results. © 1999 Elsevier Science Inc. All rights
reserved.

Résumé

Les sous-algebres maximales abéliennes (SAMAs) d'une algebre réelle classique non-
homogéne sont construites, en particulier, celles d'algtbre de Lic pseudo-cuclidiennce
e(p,q). On utilise la struciure de la somme semi-dirccte de e(p, ¢) avec les translations
T(p + q) qui représente un idéal abélien. Nous avons construit, en premier, les SAMAs
“splitting”, qui sont des sommes directes des sous-algtbres abéliennes de o(p,¢) et de
sous-algebres de T(p -+ ¢). Les sous-algebres “splitting” sont utilisées pour construire les
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sous-algebres compl:mentaire - “nonsplitting™, Les résultais ne sont pas explicites
comme dans le cas des SAMAS “sphitting™. Nous présentons les théoremes généraux de
décomposition ¢t nous construisons les SAMAs indécomposables pour {outes les
algebres e(p.g). piz g =0. Les cas de g =0 et | sont d¢ja traités dans un context
physique. Le cas ¢ = 2 ¢st analysé ict en détail comme une illustration des résultats
généraux. © 1999 Elsevier Science Inc. Al righis reserved.

1. Introduction

The purpos: of this paper 15 to present a classification of the maximal
abehan subalgebras (MASAS) of the pscudoeuclidean Lic algebra e(p. ¢). Since
this Lic algebra can be represented by a specific type of real matrices of di-
mension (p+q -+ 1) x (p+ ¢ + 1), the subject of this paper is placed squarely
within a classical problem of lincar algebra, the construction of sets of com-
muting matr.ces.

Most of the early papers in this direction [1-3] as well as more recent ones
[4-8] were devoted to commuting matrices within the set of all matrices of a
given dimension. In other words. they studicd abelian subalgebras of the Lie
algebras gl(n. C) and gl(n. R). For a historical review with many references sec
the book by Suprunenko and Tyshkevich [9].

Maltsev constructed all maximal abelian subalgebras of maximal dimenston
for all complex finite-dimensional simple Lie algebras [10]. An important
subclass of MASAs are Cartan subalgebras, i.c. self-normalizing MASAs [11].
The simple complex Lie algebras, as well as the compact ones, have just one
conjugacy class of Cartan subalgebras. The real noncompact forms of the
simple Lie algebras can have several conjugacy classes of them. They have been
classified by Kostant [12] and Sugiura [13].

This paper is part of a series, the aim of which is to construct all MASAs of
the classical Lie algebras. Earlier papers were devoted to the classical simple
Lie algebras such as sp(2n, R) and sp(2n. C) [14]. su(p.q) [15], o(n.C) {16} and
o(p.q) 117]. General results for MASAs of classical simple Lie algebras are
presentad in Ref. {18). More recently MASAS of some inhomogeneous classical
Lie algzbras were studied, namely those of ¢(n,C) [19], e(p.0) and e(p. 1) [20].
Here we consider o(p,¢q) for all p =2 ¢ 2 0. The two speciai cases, ¢ =0 and
g = 1. treated earlier are of particular importance in physics and are also much
simpler than the general case.

The motivation for a study ci MASAs was discussed in previous papers
[14-20]. As a mathematical problem the classification of MASAs 1s an ex-
tension of the classification of individual elements of Lie algebras into con-
jugacy classes [21-23]. A classification of MASAs of classical Lie algebras is
an important ingredient in the classification of all subalgebras of these al-
gebras.
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In applications in the theory of partial differential cquations, MASAs pro-
vide coordinate systems in which invariant equations allow the separation of
variables. More specifically, they provide “ignorable variables™ not figuring in
the corresponding metric tensors, when considering Laplace-Belirami or
Hamilton- Jucobi equations. In quantum physics they provide complete sets of
commuting operators. In classical physics they provide integrals of motion in
involution,

The classification problem is formulated in Section 2, where we also present
some necessary definitions and explain the classification strategy. Section 3
contains o brief summary of the known results on MASAs ol o(p. ) [17]. They
are needed in the rest of this paper and we reproduce them in a condensed form
to make the paper self~ceutained. Section 4 is devoted to «nlitting subalgebras
of e(p.q). i.c. subalgebras that are direct sums of subiv ts of the algeora
o(p.q) and those of the translation algebra T(p + ¢). The complementary case
of nonsplitting MASAs of ¢(p.¢) is the subject of Section 5. The results on
MASAs of e(p.¢) obtained in Sections 4 and 5 are reformulated in terms of a
decomposition of the underlying lincar space S(p.¢g) in Section 6. Indecom-
posablc MASAs of ¢(p.¢) are described in the same section. Section 7 is de-
voted to a special case in which all results are enurely explicit. namely MASAs
of e(p.2).

2. General formulation

2.1. Some definitions

The pseudocuchidean Lie algebra e(p.g) is the semidirect sum of the pseu-
doorthogonal Lic algebra o(p.¢) and an abelian algebra 7'(n) of translations

cyng) =0P.q)PT(n). n=p+y. (2.1)

We will make use of the following matrix representation of the Lic algebra
e(p.¢) and the corresponding Lic group £(p.¢). We introduce ain “extended
metric”’

K 0
K, = ( ) (2.2}
0 0
where K satisfies
K=K"eR"". n=p+yq. detk #£0, (2.3)

sgn K = (pog). p=zqg=0. (2.4)
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Here sgn K denotes the signature of A, where p and ¢ arce the numbers of
positive and negative eigenvailues, respectively. ‘Then X, € e(p.4) and H €
E(p.q) arc represented as

X o'
AX.20)=X = CoXeRT xo R 2.5
(X. ) ( o ) t 25)
G dt
H = (Ul (; )‘ G e [Rnru‘ ac “‘EI fn. (2())
XK+ KT =0, GKG' =K., XK. +KX'=0. (2.7)

The vector x € B' " represents the transkations. We say that the transiations
are posiiive, negative or zero (isotropic) length if
k2! >0, ko' <0, aKa' =0, (2.8)
respectively.
We will be classifying maximal abelian subalgebras ol the pseudocuclidean

Lic algebra ¢(p.¢q) into conjugacy classes under the action of the pseudoeu-
clidean Lic group E(p,q). Let us define some basic concepts.

Definition 2.1. The centralizer cent(Ly. L) of a Lic algebra Ly C L is the sub-
algebra of L consisting of all elements in L, commuting elementwise with Ly

CCH[(L!;.L) = {(” € L l [(.’._ L“] = O} (29)

Definition 2.2, A maximal abelian subalgebra Ly (MASA) of L is an abelian
subalgebra, equal to its centralizer

[L(),Ln] = (), CCI“(L[),L) = Ly. (210)

Definition 2.3. A normalizer group Nor(/y, G) in the group G of the subalgebra
Lu _(; Lis

NOI’(L(), G) = {g G I g'L"g"l Q L()}. (21 I)

Definition 2.4. A splitting subalgebra L, of the semidirect sum
L=FDN, [F,FICF, [F,N;CN, [N,NJCN (2.12)
is itself a semidirect sum of a subalgebra of F and a subalgebra of N,
Lo=FRDNy, FKRCF, NyCN. (2.13)

All other subalgebras of L = F®N are called nonsplitting subalgebras.
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An abelian splitting subalgebra of 1. = DN 1s a direct sum

Ly=FoN, KCF, NCN, (2-14)

Definition 2.5. A maximal abelian nilpotent subalgebra (MANS) M of a Lie
algebra L is a MASA, consisting entirely of nilpotent elements, i.c. it satisfies

MM =0, [[[L.MM]...] =0 (2.15)

i

for some finite number m (we commute A with L m-times). A MANS is rep-
resented by nilpotent matrices in any finite dimenstonal representation,

2.2. Classification strategy

The classification of MASAs of ¢(p, ¢) is based on the fact that ¢(p, g) is the
semidirect sum of the Lic algebra o(p,¢) and an abelian ideal 7(n) (the
translations). We use here a procedure related to one used earlier [19] for
e(n, C) and [20] for e(p, 1). It proceeds in five steps.

1. Classify subalgebras T(k,,k_, k) of T(n). They arc characterized by a triplet
(k. k-, ko), where &k, k_ and &, are the num! er of positive length, negative
length and isctropic vecters, respectively.

Find the centralizer C(k,,&_,ky) of T(k,.k_, ky) in o{p,q)

Clh, Kk k) = {X € o(p.q) | X, Tk, k_, ky)] = 0}. (2.16)

3. Construct all MASAs M(k,,k_, ky) of C(k,,k_,ky} and classify them under
the action of the normalizer Nor[T'(k, .k k), G| of T(k ,k k) in the
group G ~ E(p, q).

4, Obtain a representative list of all splitting MASASs of e(p, ¢) as direct sums

Mk, k. ko) @ Tk, ke, ky) (2.17)

!‘\.)

and keep only those amongst them that are indeed maximal (and mutually

inequivalent).
5. Construct all nonsplitting MASASs from splitting ones as described below in

Section 3.1.

3. Results on MASAs of o(p, q)
3.1. General results

Let us briefly sum up some known [17] results on MASAs of o(p, ) that we
shall need below. We shall represent these MASAs by matrix sets {X,K} with

notations as in Eqs. (2.3)-(2.7).
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Definition 3.1. A MASA of v(p, ¢) is called orthogonally decomposable (OD) if
all matrices in the set {X, K} can be simultancously represented by block di-
agonal matrices with the same decomposition pattern. It is called orthogonally
indecomposable (OID) otherwise.

Proposition 3.1. Every OD MASA of o(p.q) can be represented by a matrix set

X - dii‘g(A,] QA’DQ ) ("A )\ I\’ j— dii‘g(K’Pl-‘“ “ KP:-‘I‘_ ------ KVJ(-’“ )q
o » T S o VR ERTORN'TY
XK, + l\p,-w“_f = 0. X *A:w, S
- R . - __
A)".r-‘h - Ap,.q,' sgn Al’t"h - (pf (I_I}‘ (3'1)
deth,, £0. 1<j<k 2<h< |0 rq+1)/2)
k k
P i =D Zf!;' =4 mrqzmptepz o 2ptazl
il il
where:

(1) For each j, the mairix set {X;, K, , } represents an OID MASA of o(p;, q;);

let us call it M, ,, .

(1)) At most one of the MASAs M, is a maximal abelian nilpotent subalgebra

(MANS) of o(p;,q,). In particular only one pair (p;,q;) can satisfy p; + g, = 1.

The corresponding pair {X, K} is (0. 1) and vepresents a MANS of o(1,0) or

o(0.1),

To obtain representatives of all O{p. q) classes of OD MASAs of o(p, q) we let
M, Jor all j, run independently through all repeesentatives of O(py,q;) con-
jugacy classes of OID MASAs of o(p q;)s subject to the restriction (i), Con-
versely, each such matrix set represents a conjugacy class of OD MASAs of

o(p,q).

The problem of classifying MASAs of o(p. q) is thus reduced to the classi-
fication of OID MASAs. Under the field oxtension from R to C an OID MASA
can remain OID, or become orthogonally decomposable. In the first case we
call it absolutely orthogonally decomposahle (AOID) in the second nonabsolu-
tely orthogonally indecomposable (NAQOILD). The following types of orthogo-
nally indecomposable MASASs of o(p, ¢) exist:

I. Maximal abelian nilpotent subalgebras (MANSs). They exist for all values
of (p.q), min(p,q) = 1. They are discussed below in Section 3.2, They are
AOID MASA:s,

2. MASAs that are decomposable but not orthogonally decompusable (AGID
but D). They stay OID when considered over C. They exist for all values of
p =gq = 1. Their canonical form is
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1 A
M= {,\f,,,,, = (” _A_,.). K= (1 ’)} (3.2)
P

where 4 = R/, 5 MANS of s/{p, R).

3. MASAs that are indecomposable over R but become orthogonally decom-
posable after ficld extension to C (NAOID, ID but NAID). They exist for
p =2k, g =21 min(k.7) = 1. Their canonical form is

I,
M = RO MANSs of su(k, ). K = ( * ] )
—4Y

AL =Ty 0 l
O = diag(Fr.... . /) e RN E o (“l 0). (3.3)

4. MASAs that are indecomposable over R and decomposable over C (but not
orthogonally decomposable even over C) (OID, AOID but NAID). They
exist for p = ¢ = 2k, k > 1. Their canonical form 1s

M = RQ + OID but D MASAs of su(k, k)

with @ as in Eq. (3.3). An exception is the case of o(2), iiself abelian. Thus,
forp=2,g=0o0rp=0,¢4=2 002)is AOID but NAID.

5. Decomposable MASAs that become orthogonally decomposable over C
(NAOID and D). They occur only for p =g = 2k, k > 1. Their canonical
form is

A . I
M:{X:( —A’f)"‘*(lu )} 3

where

A = RQ» & MANSs of sl(24, C).

3.2. MANSs of o(p.q)

A MANS M of a classical Lie algebra is characterized by its Kravchuk
signature, which we will denote KS [3,9,17,18). It is a triplet of integers

(A1 r), 04+ =n, (=0, | <2<g<p, (3.5)

where 4 is the dimension of the kernel of M, equal to the codimension of the
image of M. A MANS can be transformed into the Kravchuk normal form
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0 A Y l;
N=[0 § —-KA"T |, K= K ,
0 0 0 I;
AeR™, ¥=-YTecR", SK+KS'=0, (3.6)

SR, K=K R sk =(p-iq-2)

and § nilpotent.

There are two types of MANS of o(p, g):

(1) Free-rowed MANS. The first row of 4 has u free real entries. All other
entries in A and S depend linearly on those p {ree entrics.

(i1) Non-free-rowed MANS. Any combination of tows of 4 contains less
than y free real entries.

The resulis on frec-rowed MANS of o(p, ) [17] are stated in the followimg

proposition.

Proposition 3.2. A representative fist of O(p, q) conjugacy clusses of free-rowed
MANSs of o(p,q) with Kravchuk signature (2 j 2) is given by the matrix sets

0 A Y I;
N=|0 0 -KAT|, K= K , 3.7)
0 0 0 I;
(“Ql \
(- .
A= |, aeR"™  y=-¥TeR"™, (3.8)

\ 0le). )

Q,’ € Rur,u’ Q‘K = kQ,l’ [Qr’&Qf] = O’ (39)
Ql:]: TI‘Q,-:O, 2»{!%/’.

The entries in o and 'Y are firee. The matrices Q; are fixed and form an abelian
subalgebra of the Jordan algebra jo(p ~ 2,q — A). In the case A = 2 we must have
(h # 0. There exists a 4y € Z,1 < Ay < 4 such that Qy,...,Q;, are linearly in-
dependent and Q, =0, 2, + 1 <v< A

Proofs of Propositions 3.1 and 3.2 and details about MASAs of o(p, q) are
given in Ref. [17]. The results on non-free-rowed MANS of o(p,q) are less
complete and we shall not reproduce them here [17].
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4. Splitting MASAs of ¢(p,q)
4.1. General comments on MASAs of e(p,q)

A MASA of ¢(p,q) will be represented by a matrix set {X,, K.}

(¥ <)

XM-‘M (sll
)(( - "\’I’:-‘h ()l ’ (41)
0;“ \1
0 »
\ 01 /
(K() \
Kﬂl W
K. = Ky , (4.2)
I,
-1
\ 0, )
i /
P=n +k0+zpi+k+» ‘]=fI0+/fu+qu'+k--, (4.3)
i1 i-1

where M, , = {X, 4, K0} i =1,...,j, is an OID MASA of o(p;,q;), that is
not a MANS. The vector ¢ has the following form:

2T

E=| BT |, zyeRVN, e R iw (4.4)
y!
and N is a MANS of o(py + ko, g0 + ko) with Kravchuk signature (ky po + o ko)
and is given by
O‘m A Y /0 0 ]kﬂ
N = 0 § -Kﬂu,fi'nAT ) 0 Kﬂu o ) (45)
0 0 0 I,
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’ T T
y o= ~yT. .%mw+&w§ ~0
A E HA“ U dqy) Hlp” A lgm} Y C [W"” (4.6)

- - T
Ko = [\p”_[{“' sgn Koy g = (M qo)-

The cotries in z. x and v aic frec and represeni the positive. negative and zero
length translations contained in T'(k. .k .ky). The entrics in .5 and §; are
linearly dependent on the free entrics in 4. Y and X, . If they are nonzero and
cannot be annulled by an E(p.gq) transformation), we have a nonsplitting
MASA. This casc will be discussed in Section 5.

4.2. Basic results on splitting MASAs

In this section we shall construct ull splitting MASAs of ¢(p. ¢).

Theorem 4.1, Every splitting MASA of e(p.q) is characterized by a partition
I i
/)"’Pll‘* A ”f“/l(l 4- L__‘]), C[-_—"([n ’{'A 4- /\'u 'i*Z(],‘. (4 7)
il ‘
ko+k +k. #p {~q-l 0<ky <y

A representative list of E(p.q) conjugacy clusses of MASAs of e(p.q) is given by
the matrix sets {X,.K.} of £qs. (4.1) and (4.2) with

5, =0, i=1.....j &= 0). (4.8)

If ko = 0 then the MANS N is absent. M, , is an orthogonally indecomposable
MASA of o(p. q;) which is not a MANS. Running through all possible partitions,
all MANSs {N, Ko} and all MASAs M, , we obtain a representative list of all
splitting MASAs of ¢(p.q).

Proof. We start by choosing a subalgebra 7(k,.k_. k). Calculating the cen-
tralizer of T(k,,k .ky) in o(p,q) gives us

M K
CU\, .kv...,\'(}) = 0‘ \ K = [A., y (49)
senK = (p—k,,qg—-k_).

M is a subalgebra of o(p ~ k,,q — k..) which commutes with the translations
corresponding to & = (z,0), &€ RP*Weh-4 ) - e g and with no other
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translations. To obtain a MASA of ¢(p.¢) we must complement T{k, , k_, k)
by a MASA F(k. .k .ky) of the centralizer Clh, k. ko). F(k, k., ky) must not
commute with any further translations, henee F(k, & . ky) 1s either a MANS
of o(p—k..q—k ) with KS k. p—k, —hko+q—k — k. ky) or an orthog-
onally decomposiable MASA containing &« MANS N with KS (k) nt k). For
ko = 0 the MANS N 15 absent. This leads 1o Eq. (4.8) and eack M, , =
{Xp 4Ky o b 15 an OID MASA of o(p.q,) of the type 2, 3, 4. or &, listed in
Section 3.1. [0

5. Nonsplitting MASAs of ¢(p.¢)
5.1. General comments

First we describe the general procedure for finding nonsplitting MASAs of

e(pog).
Every nonsplitting MASA M(k. .k k) of e(p.¢) is obtained from a split-

ting one by the following procedure:

1. Choose a basts for F(k & k) and T(k. .k k) eg. Flk, k Jky) ~
{B] ..... BJ}.. T(!\l ,k-_./\'n) - {A’l ..... /Yj‘}.

2. Complement the basis ol 7{k,, & .ky) to a basis of T'(n).
T(n)/T(k. .k ky)={N..... YV} L+N=n.
3. Form the clements
N
Bo=B,+) 3,Y. a=1.... (5.1)
o

where the constants &, arc such that B, form an abelian Lic algebra
[B.. By} = 0. This provides a set of linear equations for the coeflicients 4.
Solutions &, arc called I-cocycles and they provide abelian subalgebras
Mk, k_ ky) ~ {B.,, Xs} Cep.g).

4. Classify the subalgebras M(k. .k ,ky) into conjugacy classes under the ac-
tion of the group £(p,¢). This can be done in two steps.
(i) Generate trivial cocycles t,;, called coboundaries, using the translation

group T(n)
"B = B, + 0[P, B, =B, | Z ;P (5.2)
J

coboundaries should be removed from the set of the cocycles. If we have ,; =
t,; for all (a, j) the algebra is splitting (i.e. equivalent to a splitting one).
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(i)Use the normalizer of the original splitting subalgebra in the group
O(p,q) to further simplify and classify the nontrivial cocycles.

The general form of a nonsplitting MASA of e(p.q) is M, = {X,,K,} given
by Egs. (4.1) and (4.2). Requiring commutativity [X,, X’] = 0 leads to

A,f'.--ff'i (S:T = /‘{I:M(l (Sll' Néfr == N,‘fT' (5'3)

From [gs. (5.3) we see that the entries in §; depend lincarly only on X, ,,, i.e.
only on the MASA M, .. of o(pi.q,).

Each M, ,, belongs to one of the four types of OID MASASs of o(p;. ¢;) which
were listed in Section 3.1 - AOID but D MASAs, AOID but NAID MASAs,

NAOID ID but NAID MASAs or NAOID but D MASAs.
We will make use of the following result.

Lemma 5.1, If M is « MASA of o(p, q) when considered over R, then it will also
be a MASA of o(n,C), n = p+ q. when considered over C.

If any of the vectors §; were nonzero then after field extension we would
nbtain a nonsplitting MASA of ¢(n, C) of a type that does not exist {19]. This
implics that all of the #/'s are zero.

Any furtiter study of nonsplitting MASAs of e(p. ¢q) is reduced to studying
the matrices

& 3

M."I ]| 0

JY- -
‘ M!’r‘h 0
0. 0
0, 0

\ 0,/

with ¢ and N as in Egs. (4.4) and (4.5), respectively. Further, we can sce from
Egs. (5.3) and (5.4} that the study of nonsplitting MASASs is in fact reduced to
the study of nonsplitting MASAs of e(p + ko, g0 + ko) for which the projection
onto the subalgebra o(py + ky. go -- ko) 1s & MANS with Kravchuk signature
(ko tthy), 1t=pm+ qy. Further classification is performed under the group
E(pa + koo qgo + ko).

The MASASs of ¢(py + ky. g0 + ko) to be considered will thus be represented
by the matrix sets {X,,K,}
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Ok" A Y ZT \
. -r h
X _ () S _'KMMIIIAT /}
¢ - )
0 0 0;,-“ }-‘r
0 0 0 0
Iﬁn
K, 4
Kl. - I‘ FLIRUT : (5.5)
)
0

where ¥ = —Y". and ff € R'"*, v € R"* depend linearly on the free entries in 4
and Y. Using the commutativity [X,,X]] = 0 we obtain

AR+ VT = A YT (5.6)
Sﬁ'T - KNMMAT;"T = S'/;T - KP{I-‘!UA’T}‘T‘

The translations

% 0 0 0
0 0 0 !

1= o . re R, (eRM™ 5.7)
o 0 o0 O s (5.7,
6 0 0 0

will be used to remove coboundaries from S and y and the remaining cocycles
will be classified under the action of the normalizer of the MANS N in the
group 0(])() + Ko, qo + f\'{;).

The situation will be very different for frec-rowed and non-free-rowed
MANS of o(py + ko, gy + ko). The two cases will be treated separately.

5.2. Nonsplitting MASAs of e(py + ko, go -+ ko) related to tree-rowed MANSs

Let N be a free-rowed MANS of o(py + ko, ¢y + ko). The corresponding
nonsplitting MASAs of e(py + ko, qo + Ao) can be represented as follows.

Theorem 5.1. 4 nonsplitting MASA of e(p,q) must contain a MANS of o(py +
ko.go + ko) with 1 < ky < q, min{py + ko, qo + ko) = 1. All nonsplitting MASAs of
e(py + ko, qo + ko) for wi:ich the projection onto o(py + ky, qo + ko) is a free rowed
MANS N with Kravehi': s gnature (ky k), 1t = po + go can be represented by
the marix sets {X,, K.} of Eq. (5.5) with S =0 and A and Y ai in Eq. (3.8).
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1. For ky = 3 we huave

fi = aA, 1 =0 (5.8)

A € B satisfies the following conditions:

A=A", Q4K = AK O (5.9)
2. ky =2, u = 2. A satisfies Eq. (8.9) for j =2 and
0 .
f = aA + yp. V= ( 'r)* g (1.0,...,0) (5.10)
a2

Jor the following Q:

0 1
P .
= . ¥ Kﬁ'r‘f{n = l U ' (5'1 l)
\ 0/
For ¢t the other Q

peaa 5= (o) (5.12)

3. k():.?.,ﬂ:l

0
B=yp, = ( ) (5.13)

ap -+ pry

AI’U“ Lego-1

where (p,pa) is (1,0), (0. 1), or (1. 1).
4. ky, =" u=0, there is no f and we have

"= () (5.14)
\ 0
5. k=102

f=aa, A=A, =0 (5.15)
6. ky=1, =1
i =0, V= d. (5.16)

The case ko =1, = 0 is not allowed. Two free-rowed nonsplitting MASAs of

e(po + ko, go + ko) M(po, qo, ko, A and M'(py, qo, ko, 1), are E(po + ko, g0 + ko)
conjugated (for cases 1 and 5) if the matrices A, A' characterizing them satisfy
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Ao
A :--G( ym()m,,“,m) (5.17)

Jor some gy.g; € R, 0, € R, Ga € o(p, qo) such that

!
Q= ":_lgiGEQiGj]- (5.18)

Proof. 1. ky = 3. We startl from a f{ree-rowed MANS in Eq. (5.5). Requiring
commutativity [X.. X'] = 0 leads to the following equations:

GOV v = O Ve () = (0 )y (5.19)
The entries in f§, 5 are lincarly dependent on those 1n Y and 2, i.c.

ﬂ = qA + Z Yik fhe A€ R P, € Rlxﬂ,
1 ik Ay (520)

=gl Y wPi WERTY, PeRUY.
P lick '

N
!

We substitute ff and y into Eq. (5.19) and compare cocflicients of a0, for i and
Jj fixed. First consider the case j = 1. We obtain that

A=A": Pia=0, 2<i<k, 1<a Piko = Praks
pp=0. 2<i<k;  Wy=p, a>2, (5.21)
04K, = AK- Q.

ol .
For j = 2 we obtain

s W gl (5:22)
And f(.:;r Jj =3 we get

W =0, pu =0, Pi =0 for ky=3. (5.23)
Using the translations we obtain the coboundaries 0

Mze " =7 0z, P, (5.24)

This leads to replacing A4 by

ko

A=A~ LUI‘Q" Pty ¢ (525)
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All 0; are frce and can be used to remove all coboundaries. In particular, if
Ky, 15 chosen to satisfy TrK, . #- 0 we can use ) to make A tracciess. Eq.
(5.17) corresponds to transformatior:s of A using the normalizer of N in E(p. ¢).

2. 7y =2, ;1 = 2. Here there is only one matrix Q = (05, the veclor 7 is 7 =
(71.7;) and

( 0 ‘v )
Y = :
._.-‘v 0

We have

f=ad+yp, peRVH (£.26)
" = aw'lr P = OMy A b, Wy, M € R4 pameR. (5.27)

From [X,.X!] = 0 we obtain that

— T _ -1 P4 ,.:
A=A", QAAH = AK O, (5.23)
B=ad+yp, = (_“Q” ) (5.29)

a4
Eq. (5.19) for j = 2 leads to
[@T (2T — o) + («Ta — 2T Q0" = 0. (5.30)
Writing Eq. (5.30)  ~mponents and choosing o and o' such that o, = 1,0, = |
and all other ~..0,; i« vanish, we obtain
f
( )mph \Q it (bh‘JQuA ()-mQhk)PA» =0 Viya,h- (53])
Y
This provides us with -nes of relations
Quity, — Pnip, = #i, b#i (5.32)
- Qu'pu + Qm'pi + - gu.’.pl; = 0- a 7/-_ I. (5.33)
ko |

The matrix Q is biock diagonal,
Q = diag(J,,J»,...,J,). dim J; == p,
?:? (5.34)
dimJ, 2 dimJ, > --- > dimJ, 2 1,
where each .J; is an indecomposable element of a Jordan algebra jo(p;, q:), pi +

g; = dim J; {(see e.g Ref. [23]). The matrix K, ,, has the same block structure.
Possible forms of elementary blocks in Q are
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/q,- ] \

¢, |
Ji{qi) = .
o
\ 4/
(oo 10 ) (5.35)
-5, 0
Ji(ri 4 5) = | 0
0 1
Y 3y
\ ~5 1)

After complexification the sccond type of block reduces to the first one, so it
actually suffices to consider the first type of block only (see Lemma 5.1).

Let us first assume dim J; > 3. Writing rela**on (5.33) fori=land 2<a <r
we obtain p; =y = --- =p, = 0. Taking ¢ = 1,i = 2 in Eq. (5.32) we then
obtain p, = 0. Takinga = !,b = 2,i = 3 in Eq. (5.33) we obtain p; = 0. Thus,
il the largest block ./,(g) satisfics dim Ji(¢) = 3, we have p = 0.

Now let us assume dim J;(g) = 2 so that all other blocks have dimension 2
or 1. By the same argument we have py = p, = --- = p, = 0 and also p, = 0. if
O has the form (5.11), then all relations (5.32) and (5.33) sre satistied and p,
remains free. If any of the other diagonal elements, say (53 1s not zero, then
relation (5.33) for i = 3,a = 1 implies p, = 0. If we have g # 0 in J(g), then at
least one other diagonal element of Q must satisfy Q.. # 0,a = 3, since we have
Trg=0.

Finally, let Q be diagonal. We have Q # 0, TrQ = 0, hence at least two di-
agonal elements are nonzero. Relations (5.32) and (5.33) then imply
p,=00i=1,... 1

Using the normalizer G = diag(g;, g2, G, g; ', g7') we normalize p, to p, = 1
for p, # 0.

3. ky = 2, p = 1. There is no matrix @ and we have

f = Aa + py, AER (5.36)
7= aw + pry, Yy = aws + py, wi, W2, py, p2 € R
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Condition [A..X!] = 0 implics wy = 0. py =0 and after removing the co-
boundaries we obtain

/] = M., T T 0. Ta=dp - oy (537)

Using the normalizer G = diagig. g2, 1. €425 1), satisfying GK,G" = K. we
can normalize {p.p:) 1o one of the following: (1.0}, (1. 1).(0.1).
4. ky =2, u=10. Using the normalizer & = diag(g,.G>. 1/g:. 1) we cobtain

Eq. (5.14).
Sky=1, =2 Inthiscase Y =0 and 4 = x ¢ R in Eq. (5.5). Then we

have

f=ad, =l feRYM 2R (5.38)

From [X,.X}] = 0 we obtain that

A=At wo= (). (5.39)

Removing the coboundaries leads to replacing A by

.11’ = /1 - ”KHII,’“. (5.40)

where ) can be chosen to annul trace of A (if TrK, , # 0).

6. kg = 1. ;t = |. The proof is trivial and can be found in Ref. [20].

Using the normalizer of the splitting MASA (4.8) in the group E(m +
ky.qu + ky) we can simplify A further. The normalizer 1s represented by block
dizgonai matrices

G = diag(G,.G2. G, . 1), (5.41)

Choosing G, = diag(g,.....g,), G satisfying G:&, ,.G; = K,, ,, leads to Egs.
(5.17) and (5.18).
This completes the proof ¢f the Theorem 5.1. [

5.3. Nonsplitting MASAs of e(py+ ky.gy + ko) ~elated 10 non-free-rowed
MANSs

The general study of non-free rowed MASAs of o(p,q) is lest well devel-
oped. Many different series of MASAs of o(p. ) exist. We will cossider only
two of them, which we denote 4(2k + 1.0} aud 4{2k + 1. 1), by analogy with
serics of non-free-rowed MANSs of o(n, C} [14].
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I. The series A(2k + 1.0) of o(p,¢) is represented by the matrix set
/0 a 0 w0 o 0 \

(.

== : (5.42)

a)

K=fy, = . : (5.43)

~

\« )

where all @,'s are frec. Thus for € = 1 we have
y {o(k+ I.k) fork cven,
o(k,k+ 1) fork odd,

and for e = —~1 we have
> {o(k + 1,k) for k odd,
o{k,k+ 1) forkeven.
The splitting MASA of ¢(p,g) for this series (in accordance with Theorem
4.1) is written as follows:

/O aa 0 a ... a 0 a(\
| ‘ ay 0
X, = a 0 (5.44)
0 O
a| 0
¢ 0
\ 0/
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Theorem 5.2. Every nonsplitting MASA of e(p,q) corresponding to the splitting
MASA (5.44) is E(p.q) conjugate to the following one:

where all entries in X, are free.

(0 a

0 ar

a;

0

{y

0

a-

0

oy

0

A \‘
0

a

0

(5.45)

Proof. We will construct 2 nonsplitting MASA from the splitting one, Eq.

(5.44),

X

(0 a
0

0

a

a

0

(>

ay

fa
fy

/)’ZA' -2
ﬁlk -1

P
/fzk 1l
0

, (5.46)

where s are linearly dependent on a;'s. Before imposing commutation rela-

tions we will remove the cohou.idaries.
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Consider onc clement of the algebra (5.406)

/() 10 0 .. oo 00 \
0 1 0 oo () Ao

0 2,

Al == 0 Ay 2

0 2y

0 20
\ 0

where ayy, /=2,....2x + 1, represent  the translations. We note  that
% 1. .. 8.2 correspond to coboundaries and can be eliminated by conjugation
by the translation group. Thus only 5, is left in 4.

Now consider an 2lement 4; of algebra (5.46), obtained by setting a; = 4,
j=2

(000 1 .. o000
00 0 |1 N

() i

Ar’ = ". | Aiver b (548)
0 o

0 %
0 %000

\ 0

Cop == ti»a 4y with all A;,i=2,...,k, we obtain that o203 = 0tj2%1.
j= 7. ¢ .ndall other o;; have to be zero.
- normalizer G of the form

G=(gh,... .gha &' .8") (5.49)

we can normalize &) %, 10 ;. = I. This leads to the MASA (5.45) and
completes the proof of Theorem 5.2. [
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2. The series A2k + 1. 1) of o{p. ¢) is represented by the following matrix set:

/() ap O a0 w0 h\

. ay, 0
Y= a» 0 . K:(FEMI )‘
. . I
w0 ()
i) 0
0 ()

\ Y

(5.50)
where all ¢;'s and b are free. The corresponding metric is
( c { \
—¢ 0
) : 5
K:( ol l):: o : . (551)
—€ 0
¢ 0
\0 0 ... .0 1)

Thus for ¢ = | we have

{n(k+1.k+l) for k odd.
M C
olk +2.k) for k even,

and for ¢ = =1 we have
{o(k + 1, k+ 1) forkeven,
olk + 2.k) for & odd.

Theorem 5.3, Every nonsplitting MASA corresponding to the splitting MASA
(5.50) is E(p.q) conjugated to the MASA of the form
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(0 () () “» ... oy () h \
K . E . ay 0 b
( 0 0
X, = Lo w000 (5.52)

() 0 0
i) 0 0
0 0 0
~ch 0 ray 4+ pb

\ 0 0 0 J

with the meiric as in Eq.(5.51). The evtries a; b and x are free, Parameters £ and
jtare one of tic following sets:

(0. 1).
(Z,40) = £ (0.-1), (5:53)
(1.g). e R.

Proof. The proof is similar to that of Theorem 5.2 and we omit it here. O

6. Decomposition properties of MASAS of ¢(p. ¢)

The results of Sections 4 and 5 can be formulated in terms of a decompo-
sition of the underlying pscudocuclidecan space S(p.¢). Both splitting and
nonsplitting MASAs have been represented by matrix sets {X,. K.} as in Egs.
(5.4) and (4.2). We shall call a MASA of e(p, g) decomposable if the metric K, in
Eq. (4.2) consists of two or more blocks. The projection of such a MASA onto
the o(p, ¢) subalgebra is then an orthogor:ally decomposable MASA of o(p, g).
Let M.(p,q) be a decomposable MASA of ¢(p.¢). The space S(p, ¢) then splits
into a direct sum of subspaces

/

{
!
= @ S(pigi). i = P fi = 6.1
S(p.q) = & S gi) ;p P D 4= (6.1)

i |

and each indecomposable component of the decomposable MASA of e(p.q)
acts independently in one of the spaces S(p;,4;). We shall write
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.
MdAp.g) = MAp.q). (6.2)
¢ '

Each individual indecomposable MASA M.(p,.q,) C e(p,.q;) can then be
considered separately.

Consiger the matrix st { X AL} Y. given by Eq. (5.4), A, as in Eq. (4.2).
where cach block 1s indecomposable. The blocks to be considerea consist of a
block on the diagonal in X, plus an entry from the right hand column in A,.

Fhe Yollowing types ol indecomposable MASAs M. (p.q) C 2(py.q,) exist,
o dim § = 1. The MASAs are pure positive or negative length translations.

0 x |0
AML(1.0) = {( ) vel K, = ( )} (6.3)
00 0 0
V(0] U em k(P 6.4)
i ‘-( . ).,- {(” ()). 1 S o ( ” {)) . ().

A MASA MAp.q) of elp.g) contains &, of the first ones and & of the
second.

o dim § = 2. The MASAs are o{2) rotations in a (+4), or (- —) type sub-
space, or o(l. 1) pseudorotziions in a (+-—) spuce:

0 x 0
, L0
AR ={|-x 0 0]. K = . (6.5)
0 0
0 0 0
0 ¥ 0\
., : -1 0 ,
M.(1 0 0. K = . (6.6)
0 0
0.0 0
0 00 01 0
M1, lf-; 0 —« 0. K =1 0 o]}, (6.7)
) 0 0 0

o dim § =k 2> 3. There are two possible types of indecomposable MASAs of

¢(p.g) for p+¢ = 3. Both of them have 4. =& = () (no nonisotropic trans-
lations).
(1} M.(p.q) contains &, isotropic translations with &y > 1. The projection of
M.Ap.q) onto o(p.¢) i1s then @ MANS of o(p.¢) with Kravchuk signature
(kn.p + ¢ - 2k ky). The MANS can be free-rowed or non-free-rcwed. The
MASA of e(p.¢) can be splitting , or nonsplitting. Such MASAs exist for
any p-+q¢g 2 3omin(p.g) = 1. They were treated in Sections 4 and 5.
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(1) M{(p.q) is an orthogonally indecomposable MASA of o(p. ¢) that is not a
MANS. It gives rise to a splitting MASA of ¢(p. ¢) which contains no trans-
lations (ko = 0). As reviewed in Section 3 such MASAy of o(p. ¢) exist only
for p+ ¢ even.

7. A special case: MASAs of ¢(p.2)

The case g = 2. like ¢ = | and ¢ = 0. presented carlier (20} is simpler than
that of ¢ = 3. All MASAs can be presented explicitly. in particular those in-
volving non-free-rowed MANS of o{p.2).

The possible deccomposition patterns, Eq. (6.2), for MASAs of ¢(p. 2) are

MAp. 2y = MAp 2y 0 LMA20) 4 & MALOY,
p=1. or p =2 poA 20k (7.1)
MAp. 2y = M(pr 1) Modpa 1y D AL20) - & AL()90).

DA+ 2k = (7.2
M. 2) = MA0.2) L MA2 0y 0 kMY,
200+ k. =p. (7.3)

The algebras M.(2.0), M.(0.2) and M.(1,0} are already abeliar (and one ul-
mensional) as are M.(0. 1) and M.(1.1). The MASAs M.(p. 1) of e(p.1). 4 > 2
were studied in our carlier paper |20].

Thus, we need to treat only indecomposable MASAs of ¢(p.2). As was
stated in Scction 6 for general ¢(p.g). two cases arise, namely &y = 0 and
| < ko < min(p.q), where &y is the number of linearly independent transfation
generators present.

1. ky = C. M{p.2) is an orthogonally indecomposable MASA of o(p.2) that
is not a MANS. These exist only when p is even (p 2 2).

For p = 2 threc inequivalent O1D MASAs that are not MANS exist and the
corresponding splitting MASAs of ¢(p,2) arc given by the following matrix
sets:

(i) M(2,2)is AOID but D

(a b 0 \

0 « () /5
X, = —a 0 0. K.=115h , (7.4)
b —a 0 0
9,/

—

(i) M(2,2) is AOID, ID but NAID
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(0 @t b0
-a 0 b 0 0
X, = 0 a 0 (7.5)
~a 0 0
\ O/

witl & same as in (1),
(180) AL{2.2) 1s NAOID but D

fa b () \
-h 0
X = —-q 0 - (7.6)
~h —a 0

\ 0, /

with K, same as in (i).

Forp =21 1> 2, we have just one OID MASA of o(p. 2) (NAOIE, ID but
NAID). namely M = RQ > MANS of su(/.1). The corresponding splitting
MASA ol ¢(p.2) is represented as following matrix set:

(0 b ay 0 ... a., 0 () ¢ ()\
- 00 a ... 0 ap.| —¢ () (
0 b ~d| 0 0
-H 0 0 -~y 0
A= :
0 h =i () .
~h 0 0 ~a;.y 0
0 £ ()
-b 0 0

K, = 0 . (7.7)

2. ky = 1. The projection of M,(p.2) onto o(p.2) will be a MANS of o(p, 2)
with Kravchuk signature (1 p1). This MANS can be free-rowed, or non-free-
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rowed, so we obtain two splitting MASA: « - «(p,2) represented, respectively,

by
(1) free-rowed
/0 % ) z
. 00 |1
P L L R PO 7.8)
“Tlo 90 o " " " ’ o
1 0 0

0,

P
«

where K, has signature (p — 1. 1), x ¢ R, 1< p,
(i1) non-frec rowed

/() a o 0 b 0 ::\

00 a«a 0 —b 0
0 0 0 —o
X = 0 -« ¢ 0 |-
() -a 0
0 0
\,\ 0]/ (7.9)
/ 0
1 0 0
K, = Ly 0 0 :
1Y 000
1 00 00 0

aeR™, I<vand v=p - 3.
The MASA (7.8) gives rise to three different nonsplitting MASAs for p 2 2
which can be expressed as

0 o 0 z ( I
0 0 —Kjpa' BKy' K,
X, = e’ 0X K = 0 . (7.10)
0 6 O G 1
0 0 0 ¢ , \ 0,

K, is the same as in Eq. (7.8) and B satisfies the condition BK,, = K B, i.e. B is
an element of the Jordan algebra jo(p — 1.1). A classification of the elements of
Joran algebras was performed in the paper by Djokovic et al. [23] and the
couple {B. Iy} can have one of the threc different following forms (keeping in
mind the signature of Kj):
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(i)
(it)
a [0 1
B=1|1 «a . I\’”:-ll 0 . (7.12)
B, \ /
(ii1)
a 0 0 0 0 1
N N L
By /

where By is a diagonal matrix,
For p = | the nonsplitting MASA corresponding to Eq. (7.15) is

0« 0 - 00 1 0
00 —-a 0 01 00

X, = “ . 1\( . (7.14)
0O 0 0 a 0 00
00 0 0 \o 0 0 0

The MASA (7.9) for v > 2 gives rise to one type of nonsplitting MASA that
can be represented as
[0« »~ 0 b 0 z \
00 + 0 ~p 2T

00 0 —a' apT+ A"

X = 0 —a 0 0 (7.15)
0O -a 0
0 0 0

\ 0y /

with 4 = A'. Using the normalizer G = didg(q,g,, Gy ent/g g 1), G, € R,
g.41.¢8 € R, satisfying G2G] = 1,, g° = g3 = | we can transform 4, p into
I - l

A= -G AGL, p =
g i §183

-Gap. (7.16)

We can use G cither to diagonalize A, or to rotate p into e.g. p = (p,,0,...,0).
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3. ko = 2. The projection of M.(p, 2) onto o(p,2) is a free-rowed MANS with
Kravchuk signature (2 p — 2 2). The corresponding splitiing MASA of e(p, 2)
is given in Theorem 5.1 with g = ky = 2and K,,,,, = /... In this case Q5 can be
chosen as ¢h = diag(l.g2,...,q,), 1 =12 1g2| 2 -+ = |q,| This MASA in

turn gives rise to the following nonsplitting MASAs,

(O 0 a« 0 ¥ of \
0 0 aQ - O b
X o 00 0 - —Qd A (7.17)
000 0 0 0
000 0 0 0
oo o o o /

Here A is a diagonal matrix, TrA4 = 0 and K, 1s same as in Eq. (5.5).

8. Conclusions

The main conclusion is that we have presented guidelines for constructing all
MASAs of ¢lp,q) for any fixed values of p and ¢. Some of the results are
entirely explicit, such as Theorem 4.1 describing ai! splitting MASAs of e(p, q),
and Theorem 5.1 presenting nonsplitting MASAs coniaining a free-rowed
MANS of o(pa + ko, qo ko) C o(p,q). The results on MASAs of ¢(p,q) in-
volving non-frec-rowed MANS of o{p + ko, g9 4 ko) are Jess complate and
amount to specific exampies (see Theorems 5.2 and 5.3). The decomposition
results of Section 6 allow us to restrict all considerations to indecomposable
MASASs of e(p, ¢). both splitting and nonsplitting ones. The results for e(p,2)
presented in Section 7 are complete and explicit, like those given eariier for
e(p,0) and e(p, 1) [20]. In particular we have constructed all MASASs related to
non-{ree-rowed MANSs.

Work concerning the application of MASAs of e(p,q) is in progress. In
particular, we use MASAs of ¢(p,q) to construct the coordinate systems in
which certain partiai differential equations (Laplace-Beltrami, Hamitton~Ja-
cobi) allow the separation of variabus,
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