IN VIVO OPTICAL MOLECULAR - STRUCTURAL IMAGING OF CORONARY ARTERY STENT INFLAMMATION PREDICTS THE SITE-APECIFIC RESTENOSIS RISK

Poster Contributions
Poster Hall B1
Saturday, March 14, 2015, 3:45 p.m.-4:30 p.m.

Session Title: Coronary II
Abstract Category: 38. TCT@ACC-i2: Translation and Pre-clinical Research
Presentation Number: 2101-307

Authors: Eric A. Osborn, Giovanni J. Ughi, Adam Mauskapf, Amr El Maghraby, Joerg Oettgen, Guillermo Tearney, Farouc Jaffer, Massachusetts General Hospital, Boston, MA, USA, Beth Israel Deaconess Medical Center, Boston, MA, USA

Background: Restenosis after coronary stent placement leads to repeat procedures and adverse outcomes. While inflammation tracks with neointimal smooth muscle cell ingrowth, a detailed in vivo understanding of local inflammation on stent restenosis is unknown. Using intravascular optical molecular-structural near-infrared fluorescence (NIRF)-optical coherence tomography (OCT), we quantified the evolution of in vivo inflammation during coronary artery stent healing, and assessed if early stent inflammatory protease activity predicts site-specific late neointimal hyperplasia.

Methods: Clinical cobalt chromium bare-metal stents (3.5x12mm; N=12) were implanted in the aorta of healthy rabbits. At 2 and 6 weeks, intravascular NIRF-OCT was performed 24 hours following ProSense VM110 administration (4mg/kg IV; ex/em 750/780 nm) to enable molecular NIRF imaging of inflammatory cathepsin protease activity. Co-registered structural OCT stent neointimal formation was simultaneously assessed every 400 μm throughout the stent. Stents then underwent ex vivo fluorescence imaging, histopathology, and mRNA analysis.

Results: At 2 weeks, NIRF protease inflammation was significantly enhanced at the stent edges compared to the mid stent zone and unstented aorta, respectively (32.6±7.3 vs. 20.1±2.6 vs. 7.6±0.7 nM; p<0.0001). Stent NIRF inflammatory activity uniformly diminished between 2 and 6 weeks (delta NIRF -0.39±0.06). Serial OCT from 2 to 6 weeks demonstrated greater neointimal formation at the stent edges (delta OCT neointimal area 0.61±0.25 stent edge vs. 0.33±0.13 mm2 stent middle; p<0.01). Stent NIRF inflammation at week 2 strongly predicted site-specific delta OCT neointimal formation (R=0.72; p=0.001). Ex vivo analyses revealed enhanced cathepsin expression at neointimal smooth muscle cells exhibiting high NIRF inflammation.

Conclusion: We demonstrate a new approach to quantitatively evaluate coronary stent inflammation using molecular-structural intravascular NIRF-OFDI. Inflammation predominates at stent edges and predicts restenosis measured by serial OCT. This translatable approach offers the opportunity to identify subjects at elevated risk of restenosis.