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Background: Arterial spin labeling (ASL) perfusion-weighted imaging (PWI) by magnetic resonance imaging
(MRI) has been shown to be useful for identifying asphyxiated newborns at risk of developing brain injury,
whether or not therapeutic hypothermia was administered. However, this technique has been only rarely used
in newborns until now, because of the challenges to obtain sufficient signal-to-noise ratio (SNR) and spatial
resolution in newborns.
Objective: To compare twomethods of ASL-PWI (i.e., single inversion-time pulsed arterial spin labeling [single TI
PASL], and pseudo-continuous arterial spin labeling [pCASL]) to assess brain perfusion in asphyxiated newborns
treated with therapeutic hypothermia and in healthy newborns.
Design/methods:Weconducted a prospective cohort study of term asphyxiated newbornsmeeting the criteria for
therapeutic hypothermia; four additional healthy term newborns were also included as controls. Each of the
enrolled newbornswas scanned at least once during the first month of life. EachMRI scan included conventional

anatomical imaging, as well as PASL and pCASL PWI-MRI. Control and labeled images were registered separately
to reduce the effect of motion artifacts. For each scan, the axial slice at the level of the basal ganglia was used for
comparisons. Each scan was scored for its image quality. Quantification of whole-slice cerebral blood flow (CBF)
was done afterwards using previously described formulas.
Results: A total number of 61 concomitant PASL and pCASL scans were obtained in nineteen asphyxiated new-
borns treated with therapeutic hypothermia and four healthy newborns. After discarding the scans with very
poor image quality, 75% (46/61) remained for comparison between the twoASLmethods. pCASL images present-
ed a significantly superior image quality score compared to PASL images (p b 0.0001). Strong correlation was
found between the CBF measured by PASL and pCASL (r = 0.61, p b 0.0001).
Conclusion: This study demonstrates that both ASL methods are feasible to assess brain perfusion in healthy and
sick newborns. However, pCASLmight be a better choice over PASL in newborns, as pCASL perfusionmaps had a
superior image quality that allowed a more detailed identification of the different brain structures.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
L, pulsed arterial spin labeling;
fusion-weighted imaging; SNR,
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C H3H 1P3, Canada.
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1. Introduction

Hypoxic–ischemic encephalopathy is the most common cause of
brain injury in term newborns. Therapeutic hypothermia is currently
the only existing treatment tominimize brain injury in these newborns,
with decreased death and disability rates at 12–18 months and beyond
(Azzopardi et al., 2009; Eicher et al., 2005a, b; Gluckman et al., 2005;
Jacobs et al., 2007; Shankaran et al., 2005; Shankaran et al., 2012). How-
ever, some newborns still develop brain injury despite this treatment
(Barks, 2008; Higgins et al., 2006; Higgins and Shankaran, 2009).
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Measuring brain perfusion has been shown to be useful for identifying
asphyxiated newborns at risk of developing brain injury, whether or
not therapeutic hypothermia was administered (Massaro et al., 2013;
Pienaar et al., 2012; Wintermark et al., 2011). In contrast to other ap-
proaches previously used in newborns to measure brain perfusion
(Levene et al., 1989; Minhas et al., 2003), arterial spin labeling (ASL)
perfusion-weighted imaging (PWI) by magnetic resonance imaging
(MRI) is the only method allowing direct measurements of brain perfu-
sion in specific brain regions (Biagi et al., 2007; Huisman and Sorensen,
2004; Miranda et al., 2006; Wang and Licht, 2006a; Wang et al., 2006b;
Wintermark et al., 2011) and does not require the use of contrast agent,
radiotracer or radiation, as it relies upon themagnetic labeling of incom-
ing blood flow to provide a change in contrast that is proportional to the
amount of perfusion present. However, this technique has been only
rarely used in newborns until now (De Vis et al., 2013; Massaro et al.,
2013; Pienaar et al., 2012;Wintermark et al., 2011), because of the chal-
lenges to obtain sufficient signal-to-noise ratio (SNR) and spatial resolu-
tion to differentiate the cortical gray matter, white matter and basal
ganglia in newborns.

Different ASL methods have now been developed in the adult litera-
ture, to try to improve this MR technique and obtain better contrast.
These methods differ mostly by the extent and the duration of themag-
netic labeling of the inflowing blood. Up to now, studies comparing
these different ASL methods and determining which one provides the
most accurate results are available in the adult literature (Gevers et al.,
2011), but not in the newborn literature. However, as previously men-
tioned, the problem of obtaining sufficient SNR and spatial resolution
in this population is more complicated than in adults, as newborns
have smaller brain and lower brain perfusion compared to older chil-
dren and adults. The objective of this study is to compare two methods
of ASL-PWI, i.e., single inversion-time pulsed arterial spin labeling
(PASL) and pseudo-continuous arterial spin labeling (pCASL) to assess
brain perfusion in healthy newborns and in asphyxiated newborns
treated with therapeutic hypothermia.

2. Material and methods

2.1. Patients

We conducted a prospective cohort study of 19 term newbornswith
hypoxic–ischemic encephalopathy admitted at the neonatal intensive
care unit within the first 6 h of life, whomet the criteria for therapeutic
hypothermia (Miller et al., 2005; Rutherford et al., 2004; Wintermark
et al., 2008): (1) gestational age ≥ 36 weeks and birth weight ≥
1800 g; (2) evidence of fetal distress, e.g., history of acute perinatal
event, or cord pH ≤ 7.0; (3) evidence of neonatal distress, such as
Apgar score ≤ 5 at 10 min, postnatal blood gas pH obtained within the
first hour of life ≤7.0, or need for ventilation initiated at birth and con-
tinued for at least 10min; and (4) evidence of neonatal encephalopathy
by physical examination and by abnormal amplitude-integrated elec-
troencephalogram background pattern. Newborns who met the above
criteria received whole-body cooling to an esophageal temperature at
33.5 °C, initiated by 6 h of life, and continued for 72 h. Four additional
healthy term newborns were also enrolled as controls. This study was
approved by the institutional review board, and parental consent was
obtained.

2.2. MRI scans

All of the newborns were scanned at least once during the first
month of life. If possible, one or two MRI scans were obtained within
the first 72 h after birth, i.e., during hypothermia treatment, on day 1
of life (i.e., within 24 h of life) and/or on days 2–3 of life (i.e., 24–72 h
after birth). Only asphyxiated newborns, who were hemodynamically
stable, underwent the MRI scans during hypothermia treatment. Pa-
tients continued to receive hypothermia treatment during the MR
imaging without any adverse events (Wintermark et al., 2010). Any
ventilation, pressor support, or sedation was maintained during the
MRI scanning process; additional sedation was avoided. One or two
MRI scans were then obtained after 1 week of life, around day 10 of
life and/or around 1month of life. Excessivemovements during imaging
were minimized by wrapping the newborns in an MRI-compatible vac-
uum cushion.

MRI scans were acquired with a 3 T Philips MR Systems Achieva X
(Philips Medical Systems, Best, The Netherlands) using a 32-channel
head coil (Philips). Conventional anatomic sequences included a
3D T1-weighted gradient-echo (TR/TE, 24/4.6 ms; flip angle, 30°;
slice thickness, 1 mm; voxel size, 1 × 1 mm; 110 slices; FOV, 180 ×
140 mm) and an axial high resolution T2-weighted turbo spin-echo
(TR/TE, 5000/90 ms; TSE factor, 15; flip angle, 90°; slice thickness,
3 mm; voxel size, 0.5 × 0.5 mm; 24 slices; FOV, 150 × 120 mm). In ad-
dition, two different arterial spin labeling (ASL) sequences were used.
The first was a pulsed arterial spin labeling with a single TI (single
TIPASL) sequence, consisting of amulti-slice single-shot echo planar im-
aging (EPI) sequence with signal targeting and alternating radiofre-
quency (EPISTAR) for labeling in combination with parallel imaging
(SENSE) (Golay et al., 2005) (TR/TE, 2400/15 ms; flip angle, 40°; matrix
size, 64× 64; FOV, 220× 220mm; slice thickness, 6mm; 8–11 axial sec-
tions; 69 label/control pairs; total scan time, 5.75min); the labeling slab
had a thickness of 50 mm with a gap of 20 mm; the label delay was
1800 ms. The second perfusion acquisition was a pseudo-continuous
arterial spin labeling (pCASL) sequence, consisting of a multi-slice
single-shot EPI sequence in combination with parallel imaging (SENSE)
(van Osch et al., 2009) (TR/TE, 3749 ms/15 ms; flip angle, 40°; matrix
size, 64 × 64; FOV, 220 × 220 mm; slice thickness, 6 mm; 11 axial sec-
tions; 45 label/control pairs; total scan time, 5.88 min); the label gap
was 20 mm, the label duration was 1650 ms and the post-label delay
was 1800 ms. The imaging plane for both ASL sequences was oriented
along the corpus callosum and positioned to cover the area from the
basal ganglia to the top of the head. The labeling slab for both ASL se-
quences was oriented parallel to the imaging plane, and had to be
above the heart and the aortic arch. To allow quantification with both
ASL techniques, a separate equilibrium magnetization map (M0 scan)
was also obtained for each technique, with the same parameters for
each sequence respectively, except a TR of 10,000 ms was used to allow
for complete relaxation of the magnetization. Typically, the PASL se-
quence was run first followed by the pCASL sequence; if gross motion
was too evident at the time of scan, these sequences were repeated if
time allowed it.

2.3. Image analysis

Control and tagged images were processed separately. They were
registered to the first one of the series using Statistical Parametric Map-
ping 8 (SPM8). If motion exceeding 1° in angulation or 1mm in position
was detected, the image and its pair were discarded; in general, approx-
imately 0–5 pairs were discarded in each infant. For each scan, the axial
slice at the level of the basal gangliawasused for comparisons. An image
quality score was developed for this study by one investigator, who
reviewed and scored all the images, but was not blinded to the type of
ASL images. The image quality score was the sum of two subscores,
i.e., a subscore for the difficulty to identify the different brain structures
(basal ganglia, white matter, and cortical gray matter) and a subscore
for artifacts. In more details, the subscore for the complexity to identify
the different brain structureswas from 0 to 2, with 0 corresponding to a
great difficulty to distinguish the different structures, 1 corresponding
to some difficulty to distinguish the different structures, and 2 corre-
sponding to the different structures being easily recognizable. The
subscore for artifacts was from 0 to 2, with 0 corresponding to the pres-
ence of a major artifact throughout all the images, 1 corresponding to
the presence of a minor artifact, and 2 corresponding to the absence of
any artifact. The image quality score summed up these two subscores,
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and was thus from 0 corresponding to a very poor image quality to 4
corresponding to an excellent image quality. Another investigator,
who was blinded to the clinical conditions of the newborns, reviewed
all the PASL and pCASL perfusion-weighted images, and scored them
for image quality separately and blindly from each other (i.e., at the
time of scoring, the investigator did not know if he was scoring PASL
or pCASL images). Agreement between the two investigators was
good (Kappa 0.79). Only the scoring done by the investigator, who
was completely blinded, was presented in the Results section. Scans
with an image quality score of 0were discarded and deemed not appro-
priate to measure cerebral blood flow.

2.4. Quantification of cerebral blood flow

Quantification of cerebral blood flowwas performed using the sepa-
rate M0a scan and previously described formulas (Gevers et al., 2011).

Quantitative regional CBF requires an estimation of the equilibrium
magnetization of the arterial blood as previously described (Gevers
et al., 2011):

M0a ¼
Scs fλa

1−expð− TR
T1cs f

Þ
¼ 0:93Scs f

with M0a, the equilibrium magnetization of the arterial blood; Scsf, the
signal intensity of cerebrospinal fluid in a manually defined ventricular
region;λa, the quantity (mL) of water per quantity of blood (mL) (0.87)
(Herscovitch and Raichle, 1985); TR, the repetition time of the sequence
(10 s); and T1csf, the longitudinal relaxation time of the cerebrospinal
fluid (3.7 s) (Clare and Jezzard, 2001; Hopkins et al., 1986).

For quantification of cerebral blood flow using PASL, we used the
following model (Gevers et al., 2011):

f ¼ CBF ¼ 6000
ΔM expð w

T1a
Þ exp ð TE

T2a
�Þ

M0a 2 ατ

with f, the cerebral blood flow (CBF) in mL per 100 g/min; ΔM, the
difference between the control and labeled image intensities; w, the
post-labeling delay (1.8 s); T1a, the longitudinal relaxation time of arte-
rial blood (1.8 s) (Varela et al., 2011); TE, the echo time of the sequence;
T2a *, the transverse relaxation time of arterial blood (50 ms) (Gevers
et al., 2011); M0a, the equilibrium magnetization of the arterial blood;
α, the labeling efficiency (0.95) (Gevers et al., 2011); and τ, the tempo-
ral bolus width (assumed to be 1.2 s).

For quantification of cerebral blood flow using pCASL, we used the
following model (Gevers et al., 2011):

f ¼ CBF ¼ 6000
ΔM exp ð w

T1a
Þ exp ð TE

T2a
�Þ

ρM0a 2α T1a

with f, the cerebral blood flow (CBF) in mL per 100 g/min; ΔM, the dif-
ference between the control and labeled image intensities; w, the label
delay (1.8 s); T1a, the longitudinal relaxation time of arterial blood
(1.8 s) (Varela et al., 2011); TE, the echo time of the sequence; T2a *,
the transverse relaxation time of arterial blood (50 ms) (Gevers et al.,
2011; Spees et al., 2001); ρ, the density of brain tissue (1.05 g/mL)
(Delpy et al., 1987); M0a, the equilibrium magnetization of the arterial
blood; and α, the labeling efficiency (0.85) (Gevers et al., 2011).

One investigator then drew a whole-slice region of interest (ROI)
(including only the brain without the skull) on the selected axial slice
at the level of the basal ganglia of each PASL or pCASL scan to determine
ΔM; the measurement was repeated twice and the mean of the two
measurements was used for the abovementioned calculations. Scsf was
obtained by measuring the signal intensity in a manually drawn ROI in
the cerebrospinal fluid, on a slice usually located one or two slices
below the axial slice used to measure ΔM, and was used to calculated
M0a. Each measurement was repeated twice and the mean was used
for the abovementioned calculations.

2.5. Statistical analysis

For each scan, the image quality score and the whole-slice cerebral
blood flowwas calculated on the axial slice at the level of the basal gan-
glia for both PASL and pCASL scans. In a first analysis, we compared the
image quality score and the cerebral blood flow values measured by
PASL or bypCASL using theWilcoxon signed rank tests. In a secondanal-
ysis, the association between cerebral blood flow measured by PASL or
measured by pCASL for each scan and each patient was explored using
Spearman correlations. In a third analysis, we used the different
abovementioned tests to explore the relationship between image qual-
ity score and CBFmeasured by PASL or by pCASL, based on the presence
or not of brain injury or the day of life at the time of the scan. Analysis
was performed using GraphPad Prism version 5.00 (GraphPad Software
Inc) and R package (R Core Team, 2013).

3. Results

A total number of 61 concomitant PASL and pCASL scans were ob-
tained; 75% were performed in 19 asphyxiated newborns, and 25% in
four healthy newborns. Forty-two percent of the asphyxiated newborns
developed brain hypoxic–ischemic (HI) injury despite hypothermia;
and 58% did not. The brain MRIs of the healthy term newborns did not
reveal any abnormality.

25% of scans had to be discarded because of very poor image quality
(image quality score = 0) on PASL images (6 scans), pCASL images
(7 scans) or both (2 scans). In more details, 22 concomitant scans
were obtained in the asphyxiated newborns developing brain HI injury;
18% had to be discarded, including three performed during the first
3 days of life (two because of pCASL images and one because of both
PASL and pCASL images) and one performed after the first week of life
(because of PASL images). Twenty-four concomitant scanswere obtain-
ed in the asphyxiated newborns not developing injury; 21% of themhad
to be discarded, all of the discarded ones were performed after the first
week of life (two because of PASL images and three because of pCASL
images). Fifteen concomitant scans were obtained in the healthy term
newborns; 24% of them had to be discarded, including four performed
during the first 3 days of life (one because of PASL images, two because
of pCASL images and one because of both) and two performed after the
first week of life (two because of PASL images).

After discarding the scanswith very poor image quality, 75% of scans
(46 scans) remained for comparison between the two ASL methods.
Among these scans, pCASL images presented a significantly better
image quality score compared to PASL images (i.e., score of 1.87 for
PASL images vs score of 2.67 for pCASL images, p b 0.0001) (Figs. 1
and 2). TheWilcoxon signed rank test showed that there was no signif-
icant difference in whole-slice CBF (mean ± standard-deviation)
measured by the two ASL methods, i.e., 29.52 ± 12.44 mL/100 g/min
when measured by PASL and 27.57 ± 11.63 mL/100 g/min when mea-
sured by pCASL (p=0.16) (Figs. 3 and 4). In addition, strong correlation
was found between the CBF measured by PASL and pCASL (r = 0.61;
p b 0.0001) (Fig. 5).

When further comparing according to the presence or not of brain
injury, 18 scans were obtained in asphyxiated newborns developing
brain HI injury, 19 in asphyxiated newborns not developing brain HI in-
jury, and 9 in healthy newborns. Among the asphyxiated newborns de-
veloping brain HI injury, the image quality score was 2.00 for the PASL
images and 2.83 for the pCASL images (p = 0.0005); the whole-slice
CBF was 33.51 ± 16.73 mL/100 g/min when measured by PASL and
32.41 ± 14.43 mL/100 g/min when measured by pCASL (p = 0.73)
(Fig. 3A); and correlation between both techniques was strong (r =



Fig. 1. Example of axial cerebral blood flow (CBF) (mL/100 g/min)maps obtained at the level of the basal gangliawith PASL and pCASL. (A–B) CBFmaps in a healthy newborn, (A) obtained
by PASL, and (B) obtained by pCASL. (C–D) CBF maps in an asphyxiated newborn developing brain HI injury (in the basal ganglia) despite hypothermia treatment, (C) obtained by PASL,
and (D) obtained by pCASL. Perfusion was higher in the graymatter and in the basal ganglia compared to the white matter in the healthy newborns. Perfusion was increased in the basal
ganglia of the asphyxiated newborn developing brain HI injury in the basal ganglia. In both patients, the pCASL perfusionmaps presented a qualitatively superior image quality, compared
to the PASL perfusion maps.

Fig. 2. Comparison betweenquality score of PASL images and pCASL images in asphyxiated newborns treatedwith hypothermia and in healthy newborns. Left panel: Box andwhisker plot
for raw quality scores of PASL and pCASL images; right panel: strip chart for the difference between quality score of PASL image and corresponding pCASL image with median and 95%
confidence interval for the mean difference of quality score.
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Fig. 3. Cerebral blood flow (CBF) (mL/100 g/min) measured by PASL and pCASL in asphyxiated newborns treated with hypothermia and in healthy newborns. Box and whisker plot
(median, minimum, and maximum, in [mL/100 g/min]) representation. All data are first represented, then compared according to the presence or not of brain injury (A) or according
to the day of life at the time of the scan (B). Brain perfusion and variations in CBF values between the newborns (i.e., mean and standard-deviations of the different measurements)
were the highest on day 2 of life and in the asphyxiated newborns developing brain HI injury.
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0.73; p = 0.0006). Among the asphyxiated newborns not developing
brain HI injury, the image quality score was 1.95 for the PASL images
and 2.58 for the pCASL images (p = 0.03); the whole-slice CBF was
27.48 ± 8.21 mL/100 g/min when measured by PASL and 24.65 ±
8.82 mL/100 g/min when measured by pCASL (p = 0.17) (Fig. 3A);
and correlation between both techniques was strong (r = 0.60; p =
0.007). Among the healthy newborns, the image quality score was
1.44 for the PASL images and 2.56 for the pCASL images (p = 0.04);
the whole-slice CBF was 27.22 ± 8.23 mL/100 g/min when measured
by PASL and 24.27 ± 5.83 mL/100 g/min when measured by pCASL
(p = 0.30) (Fig. 3A); and correlation between both techniques was
moderate (r = 0.42; p = 0.27).

When further comparing according to the day of life at the time of
the scan, 8 concomitant scans were obtained on day 1 of life, 13 on
days 2–3 of life, 16 around day 10 of life (range: days 9–14 of life) and
9 around 1 month of life (range: days 28–38 of life). On day 1 of life,
the image quality score was 1.63 for the PASL images and 2.13 for the
Fig. 4. Comparison between cerebral blood flow (CBF) (mL/100 g/min)measured by PASL and C
newborns. Left panel: Box and whisker plot for raw CBF values by the two ASLmethods; right p
median and 95% confidence interval for the mean difference of CBF values.
pCASL images (p = 0.50); the whole-slice CBF was 27.35 ± 10.58 mL/
100 g/min when measured by PASL and 20.94 ± 10.74 mL/100 g/min
whenmeasured by pCASL (p=0.08) (Fig. 3B); and correlation between
both techniques was very strong (r = 0.83; p = 0.02). On days 2–3 of
life, the image quality score was 1.77 for the PASL images and 2.31 for
the pCASL images (p = 0.20); the whole-slice CBF was 31.53 ±
17.64 mL/100 g/min when measured by PASL and 30.67 ± 13.36 mL/
100 g/min when measured by pCASL (p= 0.68) (Fig. 3B); and correla-
tion between both techniques was moderate (r = 0.59; p = 0.03).
Around day 10 of life, the image quality score was 1.94 for the PASL im-
ages and 2.81 for the pCASL images (p = 0.0005); the whole-slice CBF
was 27.38 ± 10.08 mL/100 g/min when measured by PASL and
26.35 ± 11.95 mL/100 g/min when measured by pCASL (p = 0.60)
(Fig. 3B); and correlation between both techniques was strong (r =
0.62, p = 0.01). Around 1 month of life, the image quality score was
2.11 for the PASL images and 3.44 for the pCASL images (p = 0.008);
the whole-slice CBF was 32.37 ± 9.25 mL/100 g/min when measured
BFmeasured by pCASL in asphyxiated newborns treatedwith hypothermia and in healthy
anel: strip chart for the difference between CBFmeasured by PASL and that by pCASL with
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image of Fig.�4


Fig. 5. Correlation between cerebral blood flow (CBF) (mL/100 g/min) measured by PASL
and pCASL in asphyxiated newborns treated with hypothermia and in healthy newborns.
A strong correlation (r= 0.61, p b 0.0001) was found between CBFmeasured by PASL and
CBF measured by pCASL, when correlating all the measurements.

131E. Boudes et al. / NeuroImage: Clinical 6 (2014) 126–133
by PASL and 31.14 ± 6.86 mL/100 g/min when measured by pCASL
(p = 0.65) (Fig. 3B); and correlation between both techniques was
moderate (r = 0.47, p = 0.21).
4. Discussion

Two different ASL methods were tested in this study. The first one, a
pulsed arterial spin labeling (PASL) sequence, consisted of a multi-slice
single-shot echo planar imaging (EPI) sequence with signal targeting
and alternating radiofrequency (EPISTAR) (Golay et al., 2005). PASL
uses a single short RF pulse (11 ms in our study) to invert a thick slab
of arterial water spins (Edelman and Chen, 1998; Kim, 1995; Wong
et al., 1998). The second one, a pseudo-continuous arterial spin labeling
(pCASL) sequence, consisted of a multi-slice single-shot EPI sequence
(van Osch et al., 2009). pCASL uses as many as 1000 or more RF pulses
applied in rapid succession (in our study, 1 pulse every millisecond for
1650 ms, i.e., 1650 pulses) to achieve the labeling (Dai et al., 2008).
Both techniques were evaluated on a 3-Tesla MRI. Both methods have
been previously used in newborns (De Vis et al., 2013; Massaro et al.,
2013; Miranda et al., 2006; Pienaar et al., 2012; Wintermark et al.,
2011), but never compared to each other in this population.

Cerebral blood flow quantification using ASL methods is based on
mathematical models to determine the cerebral blood flow values
from the signal intensity. There are known limitations to the quantifica-
tion formulas used for both the PASL and pCASL methods. In each
formula, several parameters are not defined by the design of the se-
quence and thus may be sources of error in the estimation of the cere-
bral blood flow. We reviewed the literature about ASL quantification
and used the values that were the most appropriate for newborns. Spe-
cifically, the relaxation times of arterial blood (T1a and T2a *) have not
been widely studied in newborns, due to the complexity of these mea-
surements. They both are highly dependent upon field strength (3 Tesla
vs 1.5 Tesla), and they both depend on hematocrit (Zhao et al., 2007).
The asphyxiated newborns treated with hypothermia often are hemo-
dynamically unstable, so their hematocrit is kept around 35% to keep
optimal oxygenation of the body, making it appropriate to assume a
constant T1a and T2a * in these infants. For the longitudinal relaxation
time of arterial blood (T1a), we initially planned to use 1400–1500 ms
like in previous published studies (Cavusoglu et al., 2009; Gevers
et al., 2011; Golay et al., 2005; Massaro et al., 2013; van Osch et al.,
2009; Wintermark et al., 2011) using estimates derived from adult
data rather than actually measured in newborns. However, after further
reading, we decided to use 1800ms, as suggested by Varela et al. (2011)
in their study of eighteen newborns, whose mean longitudinal relaxa-
tion time of arterial blood was 1799 ± 206ms. Some authors even sug-
gest 2000ms for the newborns (Alsop et al., 2014) to give enough time
for the labeled blood to reach the tissue. For the transverse relaxation
time of arterial blood (T2a *), values vary in the literature between
43.6 and 50 ms (Cavusoglu et al., 2009; Gevers et al., 2011), but none
were studied in detail in newborns. The quantity of water per quantity
of blood (λa) depends on the hematocrit and was set at 0.87, as de-
scribed for a hematocrit at 35% (Herscovitch and Raichle, 1985). For
the longitudinal relaxation rate of the CSF (T1csf), values were found
only in adults, and not in newborns; described values were either
3.7 s (Clare and Jezzard, 2001; Hopkins et al., 1986) or 4.2 s
(Cavusoglu et al., 2009; Chalela et al., 2000). We chose 3.7 s over 4.2 s,
due to the difficulty to draw a ROI in a small region at the ventricle
level in newborns, without getting any contamination from surround-
ing tissue; the highest value (4.2 s) is close to the longitudinal relaxation
time of pure water. The density of brain tissue (ρ) was set at 1.05 g/mL,
as described in the neonatal literature (Delpy et al., 1987); for compar-
ison, the value used for adults is 1.03 g/mL (Lescot et al., 2005). The la-
beling efficiency (α) was set at 0.95 for PASL and 0.85 for pCASL (Gevers
et al., 2011). The temporal boluswidth (τ), used for the quantification of
cerebral blood flowby PASL, varies from subject to subject. In this study,
we arbitrarily assumed it to be 1.2 s to test the hypothesis that a single
value of (τ) could be used for this application for all the newborns and
all the time-points to get “pseudo-quantitative” values that match the
pCASL values. In addition, each sequence had a different number of
label/control pairs, which could affect the SNR; however, the total
scan time was comparable, allowing a fair comparison between both
techniques.

Despite the approximation of these different parameters, correlation
of cerebral blood flowmeasurements between the two techniques was
strong. However, pCASL images presented a significantly superior
image quality score compared to PASL images. pCASL images provided
thus better identification of the smaller regions of interest for further
measurements. pCASL should thus be chosen over PASL in newborns
for more detailed assessment of brain perfusion abnormalities. This is
mainly due to the fact that temporal duration of the labeled bolus is lon-
ger in pCASL than PASL and that the labeling slab is more geometrically
defined for pCASL than PASL (Alsop et al., 2014).

Variations in cerebral blood flow between patients were related
mostly to the day of life at the time of the MRI scan and the presence
or not of brain injury. Brain perfusion and variations in cerebral blood
flow values between the newborns were the highest on days 2–3 of
life and in the asphyxiated newborns developing brain HI injury. This
is in accordance with previously described results obtained with
gadolinium-enhanced perfusion MR imaging (Wintermark et al.,
2008) or arterial spin labeling (Massaro et al., 2013; Wintermark et al.,
2011). Hyperperfusion is one of the mechanisms leading to injury in
these newborns despite hypothermia treatment, and hyperperfusion
is usually maximal on days 2–3 of life in these patients (Massaro et al.,
2013; Wintermark et al., 2011). Cerebral blood flow mean values were
the lowest on day 1 of life, probably related to the fact that some as-
phyxiated newborns have decreased brain perfusion on day 1 of life re-
lated to the development of their brain hypoxic–ischemic injury
(Massaro et al., 2013; Wintermark et al., 2011). In addition, the
whole-slice CBF measured by pCASL on day 1 of life tended to be
lower than when measured by PASL; the same trend was not noted
for the other time-points. This trend may be explained by the different
labeling efficiency values between the two techniques, which may be-
comemore evidentwhen the values of brain perfusion are on the lowest
side such as on day 1 of life in asphyxiated newborns. However, varia-
tions of flow velocity in the first days of life may be another factor
influencing the cerebral blood flow (Ilves et al., 2004; Low et al.,
1993). The asphyxiated newborns treated with hypothermia had their
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heart rate and blood pressure followed carefully and kept cautiously
within normal range, especially during MRIs, allowing only minimal
variations of heart rate and blood pressure and thus of flow velocity be-
tween the newborns.

A main limitation of this study is the lack of gold standard of perfu-
sionmeasurements in newborns compared to adults, making it difficult
to assess accuracy. However, our measurements were in accordance
with brain perfusion measurements obtained in newborns by other
methods, i.e., positron emission tomography (Altman et al., 1988; Shi
et al., 2009) and xenon 133 clearance (Pryds et al., 1990). Another lim-
itation of the study is that the commercially available PASL sequence
thatwas used in this study did not employ QUIPSS2/Q2TIPS type satura-
tion to spoil residual label in the tagging slab. In the PASL sequence from
another manufacturer, the addition of QUIPSS2/Q2TIPS minimizes sen-
sitivity of PASL to the variable temporal width of the inversion bolus
and allows quantification at a single delay time.

The slices were covering the entire cerebrum of the newborns. How-
ever, even thoughmultiple slices were acquired, we decided to only an-
alyze one slice centered at the basal ganglia to make sure to always
compare the same part of the brain. Also, since the arterial transit time
will generally increase for slices that are further away from the labeling
slab and given the expected differences in sensitivity to transit time ef-
fects for the PASL and pCASL sequences, this approach was selected to
remove additional confounding effects from our analysis. In addition,
the whole-slice regions of interest (ROIs) were drawnmanually; devel-
oping tools to draw these ROIsmore automatically in scans of newborns
would make future analysis less primitive and permit a wider generali-
zation of those techniques to the newborns.

Motion artifacts and poor image quality remained the other impor-
tant limiting factors in using ASL methods in non-sedated newborns
to measure brain perfusion, as demonstrated by the fact that we had
to discard 25% of the scans obtained for this study because of a very
poor image quality, despite the use of anMRI-compatible vacuum cush-
ion to wrap around the newborns and a registration to reduce motion
artifacts after the scan was acquired. 6 scans were discarded because
of PASL images, 7 scans because of pCASL images, and 2 because of
both, suggesting that PASL and pCASL sequences had similar success
rate. Eighty percent of the scans were discarded in the more active
newborns, i.e., healthy newborns (6 scans) and asphyxiated newborns
after the first week of life when recovering from their encephalopathy
(6 scans). The remaining scans (3 scans) were removed in the first
day of life in the asphyxiated newborns developing brain HI injury
(i.e., when brain perfusion can be very low). Motion artifacts in the
more active newborns also probably explain why the correlation be-
tween both sequences was the lowest in healthy newborns (r = 0.42)
and the asphyxiated newborns after the first week of life (r = 0.47 at
1month of life). More robust prospective and retrospectivemotion cor-
rection processes should thus be developed for newborns to allow the
more generalized use of ASL methods in this population of patients.
Adding a background suppression should help to reduce the motion
sensitivity of the sequence and thus improve image quality (Alsop
et al., 2014). However, optimization of background suppression is diffi-
cult in newborns as a result of the long T1 relaxation constants forwhite
matter and gray matter, especially in the cases of sick newborns with
low brain perfusion.

In conclusion, this study demonstrates that both ASL methods are
feasible methods to assess brain perfusion in healthy newborns and in
asphyxiated newborns. However, the pCASL sequence was found to be
a better choice in this study because pCASL images had superior image
quality that allowed a more detailed identification of the different
brain structures.
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