Multiple eigenvalues

Joseph B. Keller
Departments of Mathematics and Mechanical Engineering, Stanford University, Stanford, CA 94305-2125, United States
Received 14 February 2008; accepted 16 June 2008
Available online 8 August 2008
Submitted by B.N. Parlett

Abstract

The dimensions of sets of matrices of various types, with specified eigenvalue multiplicities, are determined. The dimensions of the sets of matrices with given Jordan form and with given singular value multiplicities are also found. Each corresponding codimension is the number of conditions which a matrix of the given type must satisfy in order to have the specified multiplicities.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Multiple eigenvalues; Dimensions of sets of matrices; Jordan form; Singular value decomposition; Conditions on matrices

1. Introduction

We shall determine the dimensions of the sets of diagonalizable, normal, Hermitian, unitary, and real symmetric matrices having one eigenvalue of multiplicity k_{1}, another of multiplicity k_{2}, etc. We shall also find the dimensions of the set of square matrices having a specified Jordan form, and of the set of real rectangular matrices having largest singular value of multiplicity k_{1}, next largest of multiplicity k_{2}, etc. In each case the codimension of the specified set gives the number of conditions which the elements of the matrix must satisfy in order to be in that set. For example, the elements of a real symmetric matrix must satisfy two conditions in order to have a double eigenvalue, which is a result of von Neuman and Wigner [1].

To determine these dimensions, we first find the set of all matrices which transform a given matrix into its specified diagonal form, Jordan canonical form, or singular value form. Then we

[^0]calculate the dimensions of these sets of transforming matrices, and use them to obtain the desired results.

Our main results are listed in Table 2. The dimensions of some common sets of matrices are given in Table 1.

This work was stimulated by a lecture of Beresford Parlett, based upon [2], which is related to the work of Lax [3]. Overton and Womersley [4] obtained results like some of those in the present paper.

2. Diagonalizable matrices in $C^{n n}$

Let $C^{n n}$ be the set of complex square matrices of order n. In $C^{n n}$ a matrix A is similar to J if and only if there is an invertible T such that $A=T J T^{-1}$. If in addition $A=T_{1} J T_{1}^{-1}$ then $T J T^{-1}=T_{1} J T_{1}^{-1}$, so $T_{1}^{-1} T J=J T_{1}^{-1} T$. Thus $S=T_{1}^{-1} T$ commutes with J :

Table 1
Complex and real dimensions of various sets of matrices

	Set of matrices in $C^{n n}$	Complex dimension	Real dimension
1.	All	n^{2}	$2 n^{2}$
2.	Invertible	n^{2}	$2 n^{2}$
3.	Singular	$n^{2}-1$	$2\left(n^{2}-1\right)$
4.	Diagonalizable	n^{2}	$2 n^{2}$
5.	Normal	$n(n+1) / 2$	$n(n+1)$
6.	Hermitian	-	n^{2}
7.	Unitary	-	n^{2}
8.	Symmetric	$n(n+1) / 2$	$n(n+1)$
9.	Real symmetric	-	$n(n+1) / 2$
10.	Antisymmetric	$n(n-1) / 2$	$n(n-1)$
11.	Real antisymmetric	-	$n(n-1) / 2$
12.	Orthogonal	-	$n(n-1) / 2$
13.	Matrices in $C^{n m}$	$(m+n-r) r$	$2(m+n-r) r$
	With rank $r \leqslant \min (n, m)$		$2(n)$

Table 2
Dimensions of various sets of matrices with specified eigenvalue multiplicities

Set of matrices in $C^{n n}$ mult k_{1}, \ldots, k_{I}		Complex dimension	Real dimension
1.	Diagonalizable	$n^{2}-\sum_{i=1}^{I}\left(k_{i}^{2}-1\right)$	$2\left[n^{2}-\sum_{i=1}^{l}\left(k_{i}^{2}-1\right)\right]$
2.	Normal	-	$n^{2}+I-\sum_{i=1}^{I}\left(k_{i}^{2}-1\right)$
3.	Hermitian	-	$n^{2}-\sum_{i=1}^{l}\left(k_{i}^{2}-1\right)$
4.	Unitary	-	$n^{2}-\sum_{i=1}^{l}\left(k_{i}^{2}-1\right)$
5.	Real symmetric	-	$\frac{n(n-1)}{2}+I-\frac{1}{2} \sum_{i=1}^{I} k_{i}\left(k_{i}-1\right)$
6.	Matrices in $R^{n m}$ with multiplicities k_{1}, \ldots, k_{I} and $\sum_{i=1}^{I} k_{i}=r$	-	$(n+m-r) r-r+I-\frac{1}{2} \sum_{i=1}^{l} k_{i}\left(k_{i}-1\right)$
7.	With normal form J (Theorem 7)	-	$n^{2}-\sum_{j=1}^{N^{*}}(2 j-1) \sum_{a=1}^{p} k_{a j}+p$
8.	$A \in R^{n m}$ with singular value multiplicities k_{1}, \ldots, k_{J} (Corollary 9.1)	-	$(n+m-r) r-r-\frac{1}{2} \sum_{j=1}^{J} k_{j}\left(k_{j}-1\right)+J$

$$
\begin{equation*}
S J=J S \tag{2.1}
\end{equation*}
$$

Since $T_{1}=T S^{-1}$, we have the following result:
Lemma 1. If $A=T J T^{-1}$ then $A=T_{1} J T_{1}^{-1}$ if and only if $T_{1}=T S^{-1}$, where S is invertible and satisfies (2.1).

By using Lemma 1, we can calculate the dimension of the set of A which are similar to J. This dimension is just the dimension of the set of invertible T minus the dimension of the set of invertible S satisfying (2.1). Thus we have

Lemma 2

$$
\begin{equation*}
\operatorname{dim}\left\{A \mid A=T J T^{-1}\right\}=\operatorname{dim}\left\{T \mid T T^{-1}=I\right\}-\operatorname{dim}\left\{S \mid S S^{-1}=I, S J=J S\right\} . \tag{2.2}
\end{equation*}
$$

The complex dimension of the set of invertible T in $C^{n n}$ is n^{2}, and its real dimension is $2 n^{2}$.
We shall now find the set of S which commute with J when $J=\Lambda$ is diagonal. We assume that Λ in $C^{n n}$ has I distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{I}$ with multiplicities $k_{1}, k_{2}, \ldots, k_{I}$, where $k_{1}+k_{2}+\cdots+k_{I}=n$. We write Λ in block diagonal form

$$
\begin{equation*}
\Lambda=\left(\lambda_{1} I_{1}, \lambda_{2} I_{2}, \ldots, \lambda_{I} I_{I}\right) \tag{2.3}
\end{equation*}
$$

Here I_{i} is the identity matrix of order k_{i}. We partition S into blocks $S_{i j}$, of order k_{i} by k_{j}, so that S is conformable with Λ. By setting $J=\Lambda$, and using (2.3) and this partition of S in (2.1), we get

$$
\begin{equation*}
S_{i j} \lambda_{j}=\lambda_{i} S_{i j} \quad \text { (no summation). } \tag{2.4}
\end{equation*}
$$

Since the λ_{i} are distinct, it follows that $S_{i j}=0$ for $i \neq j$. Thus S is block diagonal with the block $S_{i i}$ square of order k_{i}, and it is unrestricted by (2.4). Therefore, the complex dimension of the set of $S_{i i}$ is k_{i}^{2}, and the complex dimension of the set of S is the sum of the k_{i}^{2}. We summarize this result as follows:

Lemma 3

$$
\begin{equation*}
\text { complex } \operatorname{dim}\left\{S \mid S S^{-1}=I, \quad S \Lambda=\Lambda S, \quad \text { mult } \Lambda=\left(k_{1}, k_{2}, \ldots, k_{I}\right)\right\}=\sum_{i=1}^{I} k_{i}^{2} . \tag{2.5}
\end{equation*}
$$

Now we use (2.5) in (2.2) to get

Theorem 1

$$
\begin{align*}
& \text { rem } 1 \tag{2.6}\\
& \text { complex } \operatorname{dim}\left\{A \mid A=T \Lambda T^{-1}, \quad \text { mult } \Lambda=\left(k_{1}, \ldots, k_{I}\right)\right\}=n^{2}-\sum_{i=1}^{I} k_{i}^{2} .
\end{align*}
$$

This theorem gives the dimension of the set of diagonalizable A with specified eigenvalues and eigenvalue multiplicities. To obtain the dimension of the set of diagonalizable A with specified multiplicities, we add to the right side of (2.6) the dimension I of the set of eigenvalues:

Corollary 1.1

complex $\operatorname{dim}\left\{A \mid A\right.$ diagonalizable, $\left.\quad \operatorname{mult}\left(k_{1}, \ldots, k_{I}\right)\right\}=n^{2}-\sum_{i=1}^{I} k_{i}^{2}+I$

$$
\begin{equation*}
=n^{2}-\sum_{i=1}^{I}\left(k_{i}^{2}-1\right) \tag{2.7}
\end{equation*}
$$

The complex codimension of the set of diagonalizable A with the specified eigenvalue multiplicities is just n^{2}, the dimension of $C^{n n}$, minus the dimension given in (2.7):

Corollary 1.2

$$
\begin{equation*}
\text { complex codim }\left\{A \mid A \text { diagonalizable, } \quad \operatorname{mult}\left(k_{1}, \ldots, k_{I}\right)\right\}=\sum_{i=1}^{I}\left(k_{i}^{2}-1\right) . \tag{2.8}
\end{equation*}
$$

As an application of Corollary 1.2, we consider diagonalizable A with one k-fold eigenvalue and all others simple. Then $I=n-k+1, k_{1}=k, k_{2}=\cdots=k_{n-k+1}=1$ and (2.8) yields
complex $\operatorname{codim}\{A \mid A$ diagonalizable, \quad mult $=(k, 1, \ldots, 1)\}=k^{2}-1$.

3. Normal matrices in $C^{n n}$

A matrix A in $C^{n n}$ is normal if it commutes with its adjoint $A^{*}: A A^{*}=A^{*} A$. Every normal matrix is similar to a diagonal matrix $\Lambda, A=U \Lambda U^{*}$, where U is unitary $\left(U^{-1}=U^{*}\right)$. Therefore A is diagonalizable, so Lemmas 1 and 2 apply with the additional condition that S is unitary. This condition follows from the definition $S=T_{1}^{-1} T=U_{1}^{-1} U$, since both $T=U$ and $T_{1}=U_{1}$ are unitary. Eq. (2.4) and the consequence that S is block diagonal still apply, but now the block $S_{i i}$ must be unitary. The real dimension of the set of unitary matrices of order k_{i} is k_{i}^{2} so the real dimension of the set of unitary S that commute with Λ is the sum of the k_{i}^{2}. Thus instead of Lemma 3 we have

Lemma 4

$$
\begin{equation*}
\text { real } \operatorname{dim}\left\{S \mid S S^{*}=I, S \Lambda=\Lambda S, \quad \text { mult } \Lambda=\left(k_{1}, k_{2}, \ldots, k_{I}\right)\right\}=\sum_{i=1}^{I} k_{i}^{2} \tag{3.1}
\end{equation*}
$$

We now use in (2.2) both (3.1) and the fact that $T=U$ is unitary. Since the real dimension of the set of U is n^{2}, we obtain

Theorem 2

$$
\begin{equation*}
\text { real } \operatorname{dim}\left\{A \mid A=U \Lambda U^{*}, \quad \operatorname{mult} \Lambda=\left(k_{1}, \ldots, k_{I}\right)\right\}=n^{2}-\sum_{i=1}^{I} k_{i}^{2} \tag{3.2}
\end{equation*}
$$

Upon adding to (3.2) the real dimension of the set of Λ, which is $2 I$, we get the dimension of the set of normal A in $C^{n n}$ with specified multiplicities:

Corollary 2.1

$$
\begin{equation*}
\text { real } \operatorname{dim}\left\{A \mid A \text { normal, } \quad \operatorname{mult}\left(k_{1}, \ldots, k_{I}\right)\right\}=n^{2}-\sum_{i=1}^{I} k_{i}^{2}+2 I . \tag{3.3}
\end{equation*}
$$

The dimension of the set of normal matrices is the maximum value of the right side of (3.3). This is achieved when $I=n$ and each $k_{i}=1$, which gives

$$
\begin{equation*}
\text { real } \operatorname{dim}\{A \mid A \text { normal }\}=n^{2}+n \tag{3.4}
\end{equation*}
$$

Upon subtracting the dimension in (3.3) from the real dimension (3.4) of the set of normal matrices, we get

Corollary 2.2

$$
\text { real codim }\left\{A \mid A \text { normal, } \quad \begin{array}{rl}
\left.\operatorname{mult}\left(k_{1}, \ldots, k_{I}\right)\right\} & =n+\sum_{i=1}^{I} k_{i}^{2}-2 I \\
& =\sum_{i=1}^{I}\left(k_{i}-1\right)\left(k_{i}+2\right) . \tag{3.5}
\end{array}\right.
$$

When A is normal, with one k-fold eigenvalue and all the others simple, (3.5) yields

$$
\begin{equation*}
\text { real } \operatorname{codim}\{A \mid A \text { normal, } \quad \text { mult }(k, 1, \ldots, 1)\}=(k-1)(k+2) \tag{3.6}
\end{equation*}
$$

4. Hermitian matrices

A matrix A in $C^{n n}$ is Hermitian if it equals its adjoint, $A=A^{*}$, so A is also normal. Therefore the results of section 3 up to and including Theorem 2 apply to Hermitian matrices. The eigenvalues of an Hermitian matrix are real, so the dimension of the set of λ_{i} is I. Upon adding I to (3.2) we get the dimension of the set of Hermitian A with multiplicities k_{1}, \ldots, k_{I} :

Corollary 2.3

$$
\text { real } \begin{align*}
\operatorname{dim}\left\{A \mid A \text { Hermitian, } \quad \operatorname{mult}\left(k_{1}, k_{2}, \ldots, k_{I}\right)\right\} & =n^{2}-\sum_{i=1}^{I} k_{i}^{2}+I \\
& =n^{2}-\sum_{i=1}^{I}\left(k_{i}^{2}-1\right) \tag{4.1}
\end{align*}
$$

This result was given by von Neuman and Wigner [1].
Upon subtracting the dimension (4.1) from n^{2}, the dimension of the set of Hermitian matrices of order n, we get

Theorem 3. In the set of Hermitian matrices of order n, the real codimension of the subset of those having I distinct eigenvalues with multiplicities k_{1}, \ldots, k_{I}, where $k_{1}+\cdots+k_{I}=n$, is

$$
\begin{equation*}
\text { real codim }\left\{A \mid A=A^{*}, \quad \operatorname{mult}\left(k_{1}, \ldots, k_{I}\right)\right\}=\sum_{i=1}^{I}\left(k_{i}^{2}-1\right) \tag{4.2}
\end{equation*}
$$

When $k_{1}=k$ and the right side of (4.2) is minimized over the other k_{i}, the result is $k^{2}-1$. This is the number of real conditions on the elements of an Hermitian matrix for it to have a k-fold eigenvalue:

Corollary 3.1

real codim $\{A \mid A$ Hermitian, \quad mult $(k, 1, \ldots, 1)\}=k^{2}-1$.
A matrix A in $C^{n n}$ is skew-Hermitian if $A=-A^{*}$. Then $i A$ is Hermitian, so the results of this section yield corresponding results for skew-Hermitian matrices.

5. Unitary matrices

A matrix A in $C^{n n}$ is unitary if $A A^{*}=I$, so A is also normal. Therefore, the results of Section 3 through Theorem 2 apply to unitary matrices. Since the eigenvalues of a unitary matrix have absolute value one, the dimension of the set of λ_{i} is I. This is the same as the dimension of the set of λ_{i} for Hermitian matrices, so the dimension of the set of unitary A with multiplicities k_{1}, \ldots, k_{I} is also given by the right side of (4.1):

Corollary 2.4

$$
\begin{equation*}
\text { real } \operatorname{dim}\left\{A \mid A \text { unitary, } \quad \operatorname{mult}\left(k_{1}, \ldots, k_{I}\right)\right\}=n^{2}-\sum_{i=1}^{I}\left(k_{i}^{2}-1\right) . \tag{5.1}
\end{equation*}
$$

When all $k_{i}=1$, (5.1) yields n^{2}, which is the dimension of the set of unitary matrices. Therefore, the results for unitary matrices, analogous to (4.2) and (4.3), are

Theorem 4. In the set of unitary matrices of order n, the real codimension of the subset of those having I distinct eigenvalues with multiplicities k_{1}, \ldots, k_{I}, where $k_{1}+\cdots+k_{I}=n$, is

$$
\begin{equation*}
\text { real codim }\left\{A \mid A \text { unitary, } \quad \operatorname{mult}\left(k_{1}, \ldots, k_{I}\right)\right\}=\sum_{i=1}^{I}\left(k_{i}^{2}-1\right) . \tag{5.2}
\end{equation*}
$$

The number of conditions on the elements of a unitary matrix for it to have a k-fold eigenvalue, with all other eigenvalues simple, is given by

Corollary 4.1

real $\operatorname{codim}\{A \mid A$ unitary, \quad mult $(k, 1, \ldots, 1)\}=k^{2}-1$.

6. Real symmetric matrices

A matrix A is real symmetric if A is real and $A=A^{\mathrm{T}}$, where A^{T} is the transpose of A. Therefore, it is Hermitian, normal, and diagonalizable. Every real symmetric A is similar to a real diagonal matrix $\Lambda, A=O \Lambda O^{\mathrm{T}}$, where O is orthogonal, i.e., $O^{-1}=O^{\mathrm{T}}$. Consequently, Lemmas 1 and 2 apply with $T=O$ and $S=O_{1}^{-1} O$ both orthogonal. Eq. (2.4) holds so S is block diagonal with blocks $S_{i i}$ which are orthogonal and of order k_{i}.

The dimension of the set of orthogonal matrices of order k_{i} is $k_{i}\left(k_{i}-1\right) / 2$. Thus the dimension of the set of orthogonal S that commute with Λ, when the multiplicity of Λ is $\left(k_{1}, k_{2}, \ldots, k_{I}\right)$, is

Lemma 5

$$
\begin{equation*}
\text { real } \operatorname{dim}\left\{S \mid S S^{\mathrm{T}}=I, S \Lambda=\Lambda S, \quad \text { mult } \Lambda=\left(k_{1}, k_{2}, \ldots, k_{I}\right)\right\}=\sum_{i=1}^{I} k_{i}\left(k_{i}-1\right) / 2 \tag{6.1}
\end{equation*}
$$

By using (6.1) in the result (2.2), we have

Theorem 5

$$
\begin{align*}
& \text { real } \operatorname{dim}\left\{A \mid A=O \Lambda O^{\mathrm{T}}, \quad \text { mult } \Lambda=\left(k_{1}, k_{2}, \ldots, k_{I}\right)\right\} \\
& \quad=n(n-1) / 2-\sum_{i=1}^{I} k_{i}\left(k_{i}-1\right) / 2 \tag{6.2}
\end{align*}
$$

Furthermore, the number of distinct eigenvalues in Λ is I. Therefore by adding I to the dimension in (6.2), we get the real dimension of the set of real symmetric A with multiplicities $k_{1}, k_{2}, \ldots, k_{I}$:

Corollary 5.1

real $\operatorname{dim}\left\{A \mid A\right.$ real symm, mult $\left.\left(k_{1}, k_{2}, \ldots, k_{I}\right)\right\}$

$$
\begin{equation*}
=n(n-1) / 2+I-\sum_{i=1}^{I} k_{i}\left(k_{i}-1\right) / 2 \tag{6.3}
\end{equation*}
$$

Next we subtract the dimension given in (6.3) from the dimension of the space of real symmetric matrices of order n, which is $n(n+1) / 2$, and we state the result as

Corollary 5.2. In the space of real symmetric matrices A of order n, the real codimension of the set of matrices having eigenvalue multiplicities $k_{1}, k_{2}, \ldots, k_{I}$ with $k_{1}+k_{2}+\cdots+k_{I}=n$, is
real codim $\left\{A \mid A\right.$ real symm, mult $\left.\left(k_{1}, k_{2}, \ldots, k_{I}\right)\right\}$

$$
\begin{equation*}
=\frac{n(n+1)}{2}-\left[\frac{n(n-1)}{2}+I-\sum_{i=1}^{I} \frac{k_{i}\left(k_{i}-1\right)}{2}\right]=\frac{1}{2} \sum_{i=1}^{I}\left(k_{i}+2\right)\left(k_{i}-1\right) . \tag{6.4}
\end{equation*}
$$

This is the number of conditions which must be satisfied by the elements of a real symmetric nth order matrix in order for it to have eigenvalues with the specified multiplicities.

From (6.4) we can calculate the number of conditions which A must satisfy to have one eigenvalue of multiplicity k. We set $k_{1}=k$ and minimize (6.4) with respect to the other k_{i}, which requires $k_{2}=\cdots=k_{I}=1$. Thus we get

Corollary 5.3

real codim $\{A \mid A$ real symm, mult $(k, 1, \ldots, 1)\}=(k+2)(k-1) / 2$.
This codimension is independent of n. When $k=2$ it yields the value 2, obtained by von Neuman and Wigner [1].

7. Jordan canonical form

We shall now use Lemma 2 to determine the dimension of the set of A in $C^{n n}$ which have the Jordan canonical form J. To find the set of S which satisfy (2.1), we let J have the block diagonal form

$$
\begin{align*}
& J=\left(J^{1}, J^{2}, \ldots, J^{K}\right), \quad J^{i}=\lambda_{i} I^{i}+H^{i}, \\
& I^{i}=\left(\begin{array}{lll}
1 & & 0 \\
& \ddots & \\
0 & & 1
\end{array}\right), \quad H^{i}=\left(\begin{array}{cccc}
0 & 1 & & 0 \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
0 & & & 0
\end{array}\right) . \tag{7.1}
\end{align*}
$$

Here J^{i}, I^{i} and H^{i} are square matrices of order k_{i}. We write $S=\left(S^{i j}\right)$ where the block $S^{i j}$ is k_{i} by k_{j}. Then $(S J)^{i j}=S^{i j} J^{j}$ and $(J S)^{i j}=J^{i} S^{i j}$, so (2.1) becomes

$$
\begin{equation*}
S^{i j} J^{j}=J^{i} S^{i j} \tag{7.2}
\end{equation*}
$$

Upon using the definition (7.1) of J^{i} in (7.2) we get

$$
\begin{equation*}
S^{i j} \lambda_{j}+S^{i j} H^{j}=\lambda_{i} S^{i j}+H^{i} S^{i j} \tag{7.3}
\end{equation*}
$$

Next we use the definition of H^{i} in (7.3), and we write the st element of $S^{i j}$ as $S_{s t}^{i j}$. In this way we obtain

$$
\begin{align*}
S_{s t}^{i j}\left(\lambda_{j}-\lambda_{i}\right) & =-\sum_{q} S_{s q}^{i j} H_{q t}^{j}+\sum_{r} H_{s r}^{i} S_{r t}^{i j}=-\sum_{q} S_{s q}^{i j} \delta_{q, t-1}+\sum_{r} \delta_{s, r-1} S_{r t}^{i j} \\
& =-S_{s, t-1}^{i j}+S_{s+1, t}^{i j} . \tag{7.4}
\end{align*}
$$

For $\lambda_{i} \neq \lambda_{j}$, (7.4) determines $S_{s t}^{i j}$ in terms of $S_{s, t-1}^{i j}$ and $S_{s+1, t}^{i j}$. Repeated use of (7.4) leads either to $t-1=0$ or to $s+1=k_{i}+1$. But $S_{s 0}^{i j}=0$ and $S_{k_{i}+1, t}^{i j}=0$ so

$$
\begin{equation*}
S_{s t}^{i j}=0 \quad \text { for } \lambda_{i} \neq \lambda_{j} \tag{7.5}
\end{equation*}
$$

If $\lambda_{i}=\lambda_{j}$ then (7.4) yields $S_{s, t-1}^{i j}=S_{s+1, t}^{i j}$, so $S^{i j}$ is a Toeplitz matrix, i.e., it is constant on lines parallel to the main diagonal. The entries are zero where $t<s+\left[k_{j}-k_{i}\right]_{+}$:

$$
\begin{equation*}
S_{s t}^{i j}=0 \quad \text { if } t<s+\left[k_{j}-k_{i}\right]_{+} \quad \text { when } \lambda^{i}=\lambda^{j} . \tag{7.6}
\end{equation*}
$$

Thus for $\lambda_{i}=\lambda_{j}, S^{i j}$ has the first form in (7.7) for $k_{i} \leqslant k_{j}$ and the second form in (7.7) for $k_{i} \geqslant k_{j}$:

This form of the $S^{i j}$ was found by Gantmacher [5, p. 221].
The complex dimension of the set of $S^{i j}$ satisfying (7.6) is

$$
\begin{align*}
& \text { complex } \operatorname{dim}\left\{S^{i j} \text { satisfying (7.6) }\right\} \\
& \qquad=\left\{\begin{array}{ll}
k_{j}-\left[k_{j}-k_{i}\right]_{+}=k_{i} & \text { if } k_{i} \leqslant k_{j} \\
k_{j}-0=k_{j} & \text { if } k_{i}>k_{j}
\end{array}\right\}=\min \left(k_{i}, k_{j}\right) \tag{7.8}
\end{align*}
$$

Thus the dimension of the set of all S satisfying (2.1) is

$$
\begin{equation*}
\text { complex } \operatorname{dim}\{S \mid S J=J S\}=\sum_{i, j} \operatorname{dim}\left\{S^{i j}\right\}=\sum_{\substack{i, j \\ \lambda_{i} \neq \lambda_{j}}} 0+\sum_{\substack{i, j \\ \lambda_{i}=\lambda_{j}}} \min \left(k_{i}, k_{j}\right) \tag{7.9}
\end{equation*}
$$

We can write the sum in (7.9) more explicitly by specifying that there are p distinct eigenvalues λ_{a}, and that λ_{a} occurs in N_{a} blocks. We write their orders $k_{a 1} \geqslant k_{a 2} \geqslant \cdots \geqslant k_{a N_{a}}$, and set $k_{a j}=0$ for $j>N_{a}$. Then $k_{a 1}+\cdots+k_{a N_{a}}=n_{a}$, where n_{a} is the multiplicity of λ_{a}. Now we set $\lambda_{1}=\lambda_{j}=\lambda_{a}$ in (7.9), replace k_{i} and k_{j} by $k_{a i}$ and $k_{a j}$, and sum over a. Thus we get

$$
\begin{align*}
\text { complex } \operatorname{dim}\{S \mid S J=J S\} & =\sum_{\substack{i, j \\
\lambda_{i}=\lambda_{j}}} \min \left(k_{i}, k_{j}\right) \\
& =\sum_{a=1}^{p} \sum_{i=1}^{N a} \sum_{j=1}^{N a} \min \left(k_{a i}, k_{a j}\right)=\sum_{a=1}^{p} \sum_{j=1}^{N a}(2 j-1) k_{a j} \\
& =\sum_{j=1}^{N^{*}}(2 j-1) \sum_{a=1}^{p} k_{a j} \tag{7.10}
\end{align*}
$$

Here $N^{*}=\max _{a} N_{a}$ is the maximum number of blocks with a given eigenvalue. The final interchange of the order of summation is valid because $k_{a j}=0$ for $j>N_{a}$.

The sum of the $k_{a j}$ in (7.10) is just the degree m_{j} of the j th invariant polynomial of J, and therefore also of any A which is similar to J. Therefore, (7.10) can be rewritten in the following form [5, p. 222, Theorem 2]:

$$
\begin{equation*}
\text { complex } \operatorname{dim}\{S \mid S J=J S\}=\sum_{j=1}^{N^{*}}(2 j-1) m_{j} . \tag{7.11}
\end{equation*}
$$

Upon using (7.10) and (7.11) in (2.2), and recalling that complexdim $\{T\}=n^{2}$, we have
Theorem 6. The complex dimension of the set of $A \in C^{n n}$ with the Jordan form J is

$$
\begin{equation*}
\text { complex } \operatorname{dim}\left\{A \mid A=T J T^{-1}\right\}=n^{2}-\sum_{j=1}^{N^{*}}(2 j-1) \sum_{a=1}^{p} k_{a j}=n^{2}-\sum_{j=1}^{N^{*}}(2 j-1) m_{j} . \tag{7.12}
\end{equation*}
$$

The complex dimension of the set of p distinct eigenvalues is p. Upon adding p to (7.12) we get the complex dimension of the set of A with the structure of J, but with any p distinct eigenvalues. We can state this result as follows:

Theorem 7. Let $A \in C^{n n}$ have p distinct eigenvalues λ_{a} with multiplicities $n_{a}, a=1, \ldots, p$ such that $n_{1}+n_{2}+\cdots+n_{p}=n$. Suppose that λ_{a} occurs in N_{a} blocks of the Jordan canonical form of A, with the blocks of orders $k_{a 1} \geqslant k_{a 2} \geqslant \cdots \geqslant k_{a N_{a}}$, with $k_{a 1}+k_{a 2}+\cdots+k_{a N_{a}}=n_{a}$. The complex dimension of the set of A with these properties, and any values of the λ_{a}, is

$$
\begin{align*}
\operatorname{complex} \operatorname{dim}\left\{A \mid n_{a}, N_{a}, k_{a j}\right\} & =n^{2}-\sum_{j=1}^{N^{*}}(2 j-1) \sum_{a=1}^{p} k_{a j}+p \\
& =n^{2}-\sum_{j=1}^{N^{*}}(2 j-1) m_{j}+p . \tag{7.13}
\end{align*}
$$

When all the eigenvalues of A are simple, then $p=n, n_{a}=N_{a}=N^{*}=k_{a j}=1$ and (7.13) yields complex $\operatorname{dim}\{A\}=n^{2}$. When A has one n-fold eigenvalue and just one block in its Jordan form, then $p=1, n_{1}=n, N^{*}=N_{1}=1, k_{11}=n$ and (7.13) yields

$$
\begin{equation*}
\text { complex } \operatorname{dim}\left\{A \mid p=1, n_{1}=n, N_{1}=1, k_{11}=n\right\}=n^{2}-n+1 \tag{7.14}
\end{equation*}
$$

When A has one n-fold eigenvalue and n blocks in its Jordan form, then $p=1, n_{1}=n, N^{*}=$ $N_{1}=n, k_{11}=1$ and (7.13) yields

$$
\begin{equation*}
\text { complex } \operatorname{dim}\left\{A \mid p=1, n_{1}=n, N_{1}=n, k_{11}=1\right\}=1 \tag{7.15}
\end{equation*}
$$

8. Singular value decomposition

Every $A \in R^{n m}$, the space of real n by m matrices, has a singular value decomposition

$$
\begin{equation*}
A=U \Sigma V^{\mathrm{T}} \tag{8.1}
\end{equation*}
$$

Here $U \in R^{n n}$ and $V \in R^{m m}$ are orthogonal. $\Sigma \in R^{n m}$ is diagonal with $r \leqslant \min (n, m)$ nonzero elements, on the main diagonal, starting at the upper left corner. They are all positive, and are called singular values of A. We seek the real dimension of the set of A with $J \leqslant r$ distinct singular values $\sigma_{1}>\sigma_{2}>\cdots>\sigma_{J}>0$, with respective multiplicities $k_{1}, k_{2}, \ldots, k_{J}$. Then $r=k_{1}+k_{2}+\cdots+k_{J}$.

Suppose that in addition to (8.1), A can be written as $A=U_{1} \Sigma V_{1}^{\mathrm{T}}$ where U_{1} and V_{1} are also orthogonal. Then we equate these two expressions for A to get $U \Sigma V^{\mathrm{T}}=U_{1} \Sigma V_{1}^{\mathrm{T}}$. From this we conclude that $U_{1}^{\mathrm{T}} U \Sigma=\Sigma V_{1}^{\mathrm{T}} V$, which we rewrite as

$$
\begin{equation*}
Q \Sigma=\Sigma P \tag{8.2}
\end{equation*}
$$

Here $Q=U_{1}^{\mathrm{T}} U \in R^{n n}$ and $P=V_{1}^{\mathrm{T}} V \in R^{m m}$ are both orthogonal, being products of orthogonal factors. Then $U_{1}=U Q^{\mathrm{T}}$ and $V_{1}=V P^{\mathrm{T}}$ give the same A as do U and V when used in (8.1).

From (8.1) and this conclusion we obtain the following lemma:
Lemma 6. The real dimension of the set of $A \in R^{n m}$ with the singular value matrix Σ is

$$
\begin{align*}
& \operatorname{dim}\left\{A \mid A \in R^{n m}, \quad A=U \Sigma V^{\mathrm{T}}\right\} \\
& \quad=\operatorname{dim}\left\{U \mid U \in R^{n n}, \quad U U^{\mathrm{T}}=I\right\}+\operatorname{dim}\left\{V \mid V \in R^{m m}, \quad V V^{\mathrm{T}}=I\right\} \\
& \quad-\operatorname{dim}\left\{Q, P \mid Q \in R^{n n}, \quad Q Q^{\mathrm{T}}=I, \quad P \in R^{m m}, \quad P P^{\mathrm{T}}=I, \quad Q \Sigma=\Sigma P\right\} . \tag{8.3}
\end{align*}
$$

The real dimensions of the sets of orthogonal U and V are $n(n-1) / 2$ and $m(m-1) / 2$ respectively. Therefore to use the lemma we shall determine the set of pairs Q, P and its dimension.

We begin by writing the elements $\Sigma_{i j}$ of Σ in the form

$$
\Sigma_{i i}=\sigma_{i}^{\prime}, \quad i=1, \ldots, r ; \quad \Sigma_{i j}=0 \quad \text { if } i \neq j \quad \text { or } \quad \text { if } i=j>r .
$$

Here the first k_{1} of the σ_{i}^{\prime} are equal to σ_{1}, the next k_{2} of the σ_{i}^{\prime} equal σ_{2}, etc. Then we find that

$$
\begin{align*}
& (Q \Sigma)_{i k}= \begin{cases}Q_{i k} \sigma_{k}^{\prime}, & k \leqslant r \\
0, & k>r\end{cases} \tag{8.4}\\
& (\Sigma P)_{i k}= \begin{cases}\sigma_{i}^{\prime} P_{i k}, & i \leqslant r \\
0, & i>r .\end{cases} \tag{8.5}
\end{align*}
$$

Now we use (8.4) and (8.5) in (8.2) to find

$$
\begin{align*}
& Q_{i k} \sigma_{k}^{\prime}=\sigma_{i}^{\prime} P_{i k}, \quad i \leqslant r, \quad k \leqslant r \tag{8.6a}\\
& Q_{i k} \sigma_{k}^{\prime}=0, \quad i>r, \quad k \leqslant r \tag{8.6b}\\
& 0=\sigma_{i}^{\prime} P_{i k}, \quad i \leqslant r, \quad k>r . \tag{8.6c}
\end{align*}
$$

Since the $\sigma_{i}^{\prime} \neq 0$, we obtain from (8.6)

$$
\begin{align*}
& Q_{i k}=\frac{\sigma_{i}^{\prime}}{\sigma_{k}^{\prime}} P_{i k}, \quad i, k \leqslant r \tag{8.7a}\\
& Q_{i k}=0, \quad i>r, \quad k \leqslant r \tag{8.7b}\\
& P_{i k}=0, \quad i \leqslant r, \quad k>r . \tag{8.7c}
\end{align*}
$$

From (8.7) and the orthogonality of Q and P, one can prove
Theorem 8. The orthogonal matrices Q and P satisfying (8.2) are block diagonal, each with $J+$ 1 square blocks Q_{1}, \ldots, Q_{J+1} and P_{1}, \ldots, P_{J+1}. Each block is an orthogonal matrix. For $j=$ $1, \cdots, J$ the blocks Q_{j} and P_{j} are of order k_{j} and they are equal: $Q_{j}=P_{j}, j=1, \ldots, J . Q_{J+1}$ is of order $n-r$ and P_{J+1} is of order $m-r$.

This theorem is given by Horn and Johnson [6, p. 147, (3.1.1 $)$].
From Theorem 8 we obtain

Corollary 8.1

$$
\begin{gather*}
\operatorname{dim}\left\{Q, P \mid Q \in R^{n n}, \quad Q Q^{\mathrm{T}}=I, \quad P \in R^{m m}, \quad P P^{\mathrm{T}}=I, \quad Q \Sigma=\Sigma P\right\} \\
=\sum_{j=1}^{J} \frac{k_{j}\left(k_{j}-1\right)}{2}+\frac{(n-r)(n-r-1)}{2}+\frac{(m-r)(m-r-1)}{2} . \tag{8.8}
\end{gather*}
$$

We now use (8.8) in (8.3), and simplify the result to get
Theorem 9. The real dimension of the set of $A \in R^{n m}$ with the singular values $\sigma_{1}, \ldots, \sigma_{J}$ having multiplicities k_{1}, \ldots, k_{J} is

$$
\begin{align*}
\operatorname{dim} & \left\{A \mid A \in R^{n m}, \quad A=U \Sigma V^{\mathrm{T}}\right\} \\
= & \frac{1}{2} n(n-1)+\frac{1}{2} m(m-1)-\frac{1}{2}(n-r)(n-r-1) \\
& -\frac{1}{2}(m-r)(m-r-1)-\frac{1}{2} \sum_{j=1}^{J} k_{j}\left(k_{j}-1\right) \\
= & (n+m-r) r-r-\frac{1}{2} \sum_{j=1}^{J} k_{j}\left(k_{j}-1\right) . \tag{8.9}
\end{align*}
$$

By adding to (8.9) the dimension J of the set of singular values, we get the dimension of the set of A having singular values with the specified multiplicities k_{1}, \ldots, k_{J} :

Corollary 9.1

$$
\begin{equation*}
\operatorname{dim}\left\{A \mid A \in R^{n m}, \operatorname{mult}\left(k_{1}, \ldots, k_{J}\right)\right\}=(n+m-r) r-r-\frac{1}{2} \sum_{j=1}^{J} k_{j}\left(k_{j}-1\right)+J . \tag{8.10}
\end{equation*}
$$

The codimension in $R^{n m}$ is just $n m$ minus the right side of (8.10).
As an example, if all the σ_{j} are simple then $J=r$ and each $k_{j}=1$, so (8.10) yields

$$
\begin{equation*}
\operatorname{dim}\left\{A \mid A \in R^{n m}, \quad \operatorname{mult}(1, \ldots, 1)\right\}=(n+m-r) r . \tag{8.11}
\end{equation*}
$$

This is just the dimension of the set of $A \in R^{n m}$ of rank r. The codimension of the set of A in Corollary 9.1 with respect to this set of matrices is just the right side of (8.11) minus the right side of (8.10):

$$
\begin{align*}
& \text { codim (with respect to rank } r \text { matrices) }\left\{A \mid A \in R^{n m}, \operatorname{mult}\left(k_{1}, \ldots, k_{J}\right)\right\} \\
& \quad=\frac{1}{2} \sum_{j=1}^{J} k_{j}\left(k_{j}-1\right)+r-J \tag{8.12}
\end{align*}
$$

References

[1] J. Von Neuman, E. Wigner, Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Physik. Zeitschr. XXX (1929) 467-470.
[2] Beresford Parlett, The (matrix) discriminant as a determinant, Linear Algebra Appl. 355 (2002) 85-101.
[3] P.D. Lax, On the discriminant of real symmetric matrices, CPAM LI (1998) 1387-1396.
[4] Michael L. Overton, Robert S. Womersley, On minimizing the spectral radius of a nonsymmetric matrix function: optimality conditions and duality theory, SIAM J. Matrix Anal. Appl. 9 (1988) 473-498.
[5] F.R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
[6] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge, 1991.

[^0]: E-mail address: keller@math.stanford.edu
 0024-3795/\$ - see front matter © 2008 Elsevier Inc. All rights reserved.
 doi:10.1016/j.1aa.2008.06.022

