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TRPA1 channel activation induces cholecystokinin release
via extracellular calcium
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Abstract TRPA1 channels are non-selective cation channels
activated by plant derived pungent products including allyl isothi-
ocyanate (AITC) from mustard. Therefore, possible intestinal
secretory functions of these channels were investigated. We
detected TRPA1 mRNA in mouse and human duodenal mucosa
and in intestinal mouse neuroendocrine STC-1 cells. Stimulation
of STC-1 cells with AITC increased intracellular calcium
([Ca2+]i) and significantly stimulated cholecystokinin secretion
by 6.7-fold. AITC induced cholecystokinin release was com-
pletely blocked by TRPA1 antagonist ruthenium red and deple-
tion of extracellular calcium and reduced by 36% by nimodipine
and nifedipine. This suggests that spices in our daily food might
stimulate digestive functions.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Transient receptor potential ankyrin 1 (TRPA1) channels,

members of transient receptor potential (TRP) superfamily,

are calcium permeable non-selective cation channels originally

reported to sense noxious cold temperatures [1]. Since their dis-

covery TRPA1 channels have also been implicated in a number

of sensory functions including the mediation of nociceptive

and inflammatory signals in response to pungent ingredients

[2–5], involvement in the development of cold hyperalgesia fol-

lowing inflammation and nerve injury [6], as well as a role in

mechanosensation [7,8].

Several plant derived structurally diverse compounds can

activate TRPA1 channels, including isothiocyanates (allyl iso-

thiocyanate, AITC) from mustard, a,b-unsaturated aldehydes

(cinnamaldehyde) from cinnamon, thiosulfinates (allicin) from
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garlic and cannabinoids (D9-tetrahydrocannabinol) [2,3]. As

many of the activators are pungent by their nature and TRPA1

channels are known to be expressed in sensory nociceptive neu-

rons, these channels have been implicated as sensors of pain in-

duced by spicy foods.

TRPA1 channels are expressed in subsets of nociceptive neu-

rons of dorsal root, trigeminal and nodose ganglia, in other

sensory neurons and in the stereocilia of hair cells of the inner

ear and mechanosensory neurons in mice [9]. In addition,

TRPA1 are present in sensory terminals of nociceptive fibers

in their target organs like trigone of the bladder and the cornea

[9,10]. Interestingly, TRPA1 channels are expressed on the

protein level in several non-neuronal human tissues including

gastrointestinal mucosa of small intestine and colon [11]. How-

ever, the physiological role of TRPA1 in these tissues is un-

known. In this study, we show that TRPA1 channel is

expressed in the human and mouse duodenum. In order to

investigate the possible function we used mouse intestinal neu-

roendocrine cell line STC-1 as a well-established model for

intestinal hormone release (CCK, GLP-1, GIP) [12–15] and

show that activation of TRPA1 channels with mustard oil

derived AITC elevates the intracellular Ca2+ levels and stimu-

lates cholecystokinin release.
2. Materials and methods

2.1. Materials
Nifedipine, nimodipine, ruthenium red and AITC were from Sigma

(Sigma–Aldrich, St. Louis, MO, USA).

2.2. Cell culture
STC-1 cells are derived from an intestinal endocrine tumor in a dou-

ble-transgenic mouse [16]. Cells (passages 32–50) were cultured as de-
scribed previously [17].

2.3. Animals
CD2 male mice were sacrificed by cervical dislocation, proximal

5 cm of duodenum dissected and mucosa scraped. The sample was
snap frozen in liquid nitrogen and stored �70 �C until mRNA extrac-
tion.

2.4. Human duodenal mucosa samples
Duodenal mucosa was obtained from intestinal endoscopy biopsies

from patients without intestinal disease. Samples were snap frozen in
liquid nitrogen. The study was approved by the Ethics Committees
blished by Elsevier B.V. All rights reserved.
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of the University of Kiel, Germany. Total RNA was extracted using
RNeasy Kit (Qiagen, Hilden, Germany). Genomic DNA was digested
by deoxyribonuclease I (Qiagen). Reverse transcription of RNA was
performed using the You-prime First-strand cDNA synthesis kit
(Amersham Biosciences).
2.5. RT-PCR analysis of TRPA1 mRNA
mRNA from mouse duodenal mucosa and from STC-1 cells was iso-

lated and DNAase treated as described above. First-strand cDNA was
synthesized from 1 lg of mRNA by using TaqMan Reverse Transcrip-
tase reagents (Applied Biosystems, Warrington, United Kingdom).
PCR cocktail consisted of 2.5 ll 10· PCR-buffer, 1.5 mM MgCl2,
250 lM dNTPs (each), 2 U Dynazyme II polymerase (Finnzymes, Fin-
land), 0.5 lM sense and antisense primers and 5 ll of the above de-
scribed first-strand cDNA.

TRPA1 mRNA was amplified with the following primers: 5 0-agtgg-
caatgtggagcaa-3 0 and 5 0-tctgatccactttgcgta-3 0. PCR profile (35 cycles):
5 min at 95 �C, 30 s at 48 �C, 30 s at 72 �C, 30 s at 94 �C, final exten-
sion 5 min at 72�C. PCR products were separated on 2% agarose
gel, purified (Qiagen) and sequenced.
Fig. 1. (A) Expression of TRPA1 mRNA in STC-1 cells and in mouse
duodenal mucosa. PCR product was confirmed with sequencing. On
the left PCR product of STC-1 cells; marker; on the right PCR product
from mouse duodenal mucosa. (B) Expression of TRPA1 mRNA in
human duodenum. Lanes from the left: negative control, human
duodenum; molecular weight marker; STC-1 cells.
2.6. Quantitative fluorescence imaging
Coverslips with STC-1 cells were loaded with 4 lM fura-2-acetoxy-

methyl ester (fura-2-AM) in a buffer (in mM: 137NaCl, 5KCl, 1MgCl2,
1CaCl2, 10 glucose and 20 HEPES, pH 7.4) for 60 min in room temper-
ature. Cells were rinsed with fura-2-AM free medium, placed on the
bottom of an RC24-fast exchange chamber (Warner Instruments
Inc.) and positioned on top of the microscope. For fura-2 excitation,
cells were illuminated with two alternating wavelengths 340 and
380 nm through a dichroic mirror (DM430, Nikon) using a Poly-
chrome IV monochromator (TILL Photonics GmbH, Gräfelfing, Ger-
many). The emission was guided through a 510 nm cut-off filter then
captured by a cooled 12-bit IMAGO CCD camera and digitized by
a computer running the TILLvisION Multi-Color Ratio Imaging Sys-
tem (TILL Photonics GmbH, Gräfelfing, Germany). Ratio images
were collected and saved for later analysis. Fluorescence from 340
and 380 nm exposures were imported into Microcal Software (North-
ampton, MA), and given as absolute calcium levels [Ca2+]i or as
changes in [Ca2+]i levels (D[Ca2+]i).
2.7. CCK secretion
STC-1 cells were plated on 6-well plates and cultured for 4–5 days.

Cells were washed once with oxygenated HR-buffer (in mM: 130NaCl,
5KCl, 1.2CaCl2, 1NaH2PO4, 1.2MgSO4, 10 HEPES, 6.7 glucose, 0.4%
bovine serum albumin, pH 7.4) and incubated for 20 min with buffer
containing stimulants (1 ml/well). Supernatants were collected, spinned
to remove cell debris and stored at �20 �C until analyzed with CCK-
RIA (Euro-Diagnostica, Malmö, Sweden). Blockers (nifedipine
10 lM, nimodipine 5 lM and ruthenium red 10 lM) were preincu-
bated for 30 min before stimulation of the cells. Nifedipine was diluted
in DMSO and the final concentration of 0.1% DMSO was also applied
to the control cells. For chelating extracellular calcium, 2 mM EGTA
was added to the buffer, cells were washed once and stimulated as de-
scribed above [18].
2.8. Statistical analysis
Data are presented as means ± S.E.M. unless otherwise stated. Sta-

tistical comparisons between groups were performed using One Way
ANOVA with Tukey�s Multiple Comparison Test (GraphPad Software
Inc., San Diego, USA).
Fig. 2. (A) TRPA1 agonist AITC evoked a rise in [Ca2+]i in STC-1
cells (153 ± 14 nM, n = 75). Trace represents the averaged ± S.D. of six
cells. (B) In the left panel, averaged ± S.D. calcium traces of 18 cells
showing ruthenium red�s effect on TRPA1 evoked [Ca2+]i response.
Where indicated the cells were challenged with 100 lM AITC and
1 lM ruthenium red (RR). In the right panel, the average S.E.M. of
three experiments measured under similar conditions as in left panel.
3. Results

3.1. TRPA1 channels are expressed in mouse and human

duodenal mucosa and in STC-1 cells

TRPA1 channels have originally been described in sensory

neurons. We detected TRPA1 mRNA in mouse duodenal

mucosa, STC-1 cells (Fig. 1A) and in human duodenum

(Fig. 1B). PCR product (509 bp) was confirmed by sequencing.
3.2. AITC increases intracellular calcium in STC-1 cells

As TRPA1 are known to be calcium permeable non-selective

cation channels we monitored the effect of AITC on the intra-

cellular free calcium concentration ([Ca2+]i) in STC-1 cells

using fura-2-AM. AITC (100 lM) caused an increase in

[Ca2+]i indicating the presence of functional TRPA1 channels

in STC-1 cells (Fig. 2A). The rise in [Ca2+]i was significantly



Fig. 3. AITC (100 lM) stimulates CCK release from STC-1 cells and
the stimulation is blocked by 10 lM ruthenium red (RR) or by EGTA.
***P < 0.001 basal vs. AITC; §§§P < 0.001 AITC vs. AITC + RR or
AITC + EGTA. Values are expressed as percentage of basal secretion.
Each experiment was repeated at least twice, n = 8–16 per treatment.
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blocked by 1 lM TRPA1 antagonist ruthenium red (RR)

(Fig. 2B).

3.3. AITC stimulates CCK release from STC-1 cells

STC-1 cells were stimulated with 100 lM AITC for 20 min

and CCK release measured with CCK-RIA. As shown in

Fig. 3, AITC significantly stimulated CCK secretion 6.7-fold

compared to basal levels. This stimulation was completely

blocked by the TRPA1 channel blocker ruthenium red

(10 lM). To evaluate the contribution of extracellular calcium

in AITC stimulated CCK release, we chelated extracellular cal-

cium by 2 mM EGTA. In the presence of EGTA, AITC did

not stimulate CCK release indicating that AITC induced

CCK release is dependent on the influx of extracellular calcium

(Fig. 3).

3.4. Blockade of L-type voltage-gated calcium channels

Previously, activation of L-type calcium channels by depo-

larization of the membrane potential has been shown to be in-
Fig. 4. Blocking L-type VGCCs with nifedipine (10 lM) or with
nimodipine (5 lM) reduced the AITC-induced CCK secretion by 36%.
Data from experiments with nifedipine and nimodipine are combined;
n = 12 per treatment (***P < 0.001 AITC vs. AITC + Ni).
volved in CCK release from STC-1 cells [19]. STC-1 cells were

stimulated with 100 lM AITC in the presence of L-type volt-

age-gated calcium channel blocker 10 lM nifedipine and

5 lM nimodipine. AITC stimulated CCK release was reduced

by 36% in the presence of the nifedipine or nimodipine

(P < 0,001) (Fig. 4) suggesting that the primary calcium influx

and CCK release in response to AITC is mediated via TRPA1

channels.
4. Discussion

We demonstrate in the present study that TRPA1 channels

are expressed in the human and mouse duodenal mucosa

and in the mouse intestinal neuroendocrine STC-1 cell line

indicating that these channels might accomplish so far un-

known responses in our body. Just recently, Stokes et al. found

TRPA1 protein by immunostaining in human intestinal muco-

sa [11] yet no physiological function of TRPA1 in small intes-

tine has been described to date.

AITC present in mustard oils as well as in wasabi (a japanese

horseradish), is a membrane permeable electrophilic com-

pound which activates TRPA1 [20,21]. Stimulation of STC-1

cells with AITC lead to a robust increase in intracellular cal-

cium levels and stimulation of CCK release. CCK secretion

from STC-1 cells and from native intestinal endocrine I-cells

is tightly coupled to increased intracellular calcium levels since

food derived secretagogues and luminal CCK releasing pep-

tides stimulate CCK secretion via influx of calcium. AITC

stimulated CCK release was dependent on extracellular cal-

cium since the response was completely blocked with EGTA

and ruthenium red [3]. Similarly, also AITC induced contrac-

tion of rat urinary bladder is dependent on extracellular cal-

cium since the response was totally abolished in the absence

of calcium and presence of EGTA [10].

In STC-1 cells typical stimuli causing depolarization or in-

crease in cAMP levels activate voltage-gated calcium channels

leading to calcium influx and CCK secretion [22]. The L-type

voltage-gated calcium channel blockers nimodipine and nifed-

ipine have been previously shown to totally block the L-type

voltage-gated channels activated by various stimuli in STC-1

cells in the same or even lower concentrations that used in this

study [18,19,23,24]. Blocking the L-type voltage-gated calcium

channels only partially (by 36%) reduced the AITC induced

CCK release suggesting that voltage-gated calcium channels

contribute to some extent to the calcium influx in response

to AITC stimulation, yet the major proportion of the increased

calcium levels is due to calcium influx via TRPA1.

CCK is released from enteroendocrine I-cells in the mucosa

of duodenum and proximal jejunum in the intestinal phase of

digestion in response to fatty acids and proteins in the intesti-

nal lumen [25] and other duodenal peptides [26]. CCK acti-

vates the CCK1 receptors in the afferent fibers of the vagus

nerve which in addition to the elevated plasma CCK levels

mediates the digestive effects of CCK by stimulating exocrine

pancreatic secretion and gallbladder contraction. CCK pro-

longs gastric emptying time and has an inhibitory effect on

food intake. Our findings showing the mucosal expression of

TRPA1 channels and CCK release upon activation with mus-

tard oil derived AITC tempt to speculate that spices in our dai-

ly food could stimulate digestive actions. Recently, functional

TRPA1 expression was demonstrated in native mouse
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jejunum, ileum and colon and AITC stimulated contraction of

isolated proximal and distal colon and to a lesser extent also

jejunum and ileum [27]. Consumption of spicy food has been

shown to increase thermogenesis via activation of sympathetic

nervous system and some indications of increased satiety in

humans are also reported [28].

In conclusion, we show that TRPA1 channels are expressed

in human and mouse duodenal mucosa and that activation of

TRPA1 stimulates CCK release in intestinal neuroendocrine

STC-1 cells. Our study suggests that ingestion of TRPA1 acti-

vators as part of our daily meal (e.g. in the form of wasabi or

garlic) may stimulate CCK secretion from the intestine and

thus improve the digestive functions.
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