JOURNAL OF COMBINATORIAL THEORY (B) 22, 299-301 (1977)

Note

An Elementary Proof of Moon's Theorem on Generalized Tournaments

CHANG M. BANG AND HENRY SHARP, JR.

Emory University, Atlanta, Georgia 30322 Communicated by the Managing Editors Received September 16, 1976

Let $X = \{1, 2, ..., n\}$ and let $T = (t_{ij}: i, j \in X)$ denote a generalized tournament on X; i.e., $0 \leq t_{ij} \leq 1$, and $t_{ij} + t_{ji} = 1$ for each $i \neq j$, and $t_{ii} = 0$ for each *i*. A real vector $S = (s_1, s_2, ..., s_n)$, $s_1 \leq s_2 \leq \cdots \leq s_n$, is a score vector if there exists a generalized tournament T on X such that $\sum_{j=1}^n t_{ij} = s_i$, for each *i*.

Extending Landau's well-known theorem, Moon [4] proved the following theorem.

THEOREM. A real vector $S = (s_1, s_2, ..., s_n)$, $s_1 \leq s_2 \leq \cdots \leq s_n$, is a score vector if, and only if,

$$\sum_{k=1}^{m} s_{k} \begin{cases} \geqslant \binom{m}{2} & \text{if } m < n, \\ = \binom{n}{2} & \text{if } m = n. \end{cases}$$

$$(*)$$

Moon's proof is based upon Gale's feasibility theorem, which in turn rests on two major results: the minimum cut theorem of Ford and Fulkerson [2], and Hall's theorem on systems of distinct representatives. In this note Moon's theorem is proved by a direct application of Hall's theorem coupled with the following elementary convergence argument. If S is approximated by a componentwise convergent sequence $Q^{(1)}$, $Q^{(2)}$,... of rational vectors, each $Q^{(k)}$ being the score vector of a generalized tournament T_k , then because tournament entries are bounded there exists a subsequence converging to a tournament T having the desired score vector S. To complete the proof, therefore, we need only bridge two gaps: (1) construct an appropriate sequence $Q^{(1)}$, $Q^{(2)}$,... of rational vectors converging to S componentwise, and (2) prove that each $Q^{(k)}$ is a score vector. Suppose first that $S = (s_1, s_2, ..., s_n)$ is a real nondecreasing vector satisfying (*) and having at least one irrational component. There exists a largest integer m < n such that $s_m < s_{m+1}$. For each positive integer l, choose rational numbers $q_1, q_2, ..., q_m$ such that $q_1 \leq q_2 \leq \cdots \leq q_m$, and for $1 \leq i \leq m$

$$s_i < q_i \leqslant s_i + (s_{m+1} - s_m)/2ml.$$

If we put $q_{m+1} = \cdots = q_n = (\binom{n}{2} - \sum_{k=1}^m q_k)/(n-m)$, then a routine calculation confirms that $Q^{(1)} = (q_1, q_2, ..., q_n)$ is a rational nondecreasing vector satisfying (*). Clearly, $Q^{(1)}$ converges to S.

To build the second bridge, we assume that S is a nondecreasing rational vector satisfying (*). Let p be a positive integer so large that pS is a vector of nonnegative integers. Since pS may fail to satisfy (*), we cannot resort to Landau's theorem for (ordinary) tournaments. Instead, we use a technique [1] based upon the simple extension of Hall's theorem [3, Theorem 2.2], stated next.

LEMMA. If $H = \{H_i : i \in B\}$ is a finite set of nonempty subsets of G, and if $P = \{1, 2, ..., p\}$, then there exists an injection $f : B \times P \to G$ satisfying $f(i, \cdot) \in H_i$ for each $i \in B$, if, ond only if,

$$\left| \bigcup_{i \in A} H_i \right| \ge p \mid A \mid, \quad \text{for each } A \subseteq B.$$

For each $i \in X$, let G_i be a set for which $|G_i| = ps_i$. Assume that these sets are pairwise disjoint and that G is their union. Let $B = \{(i, j): 1 \leq i < j \leq n\}$ and set $H = \{G_i \cup G_j: (i, j) \in B\}$. If $A \subseteq B$ and $Y = \{i: (i, k) \text{ or } (k, i) \in A \text{ for some } k\}$, then

$$\left| \bigcup \{G_i \cup G_j : (i,j) \in A\} \right| = p \sum_{i \in Y} s_i$$
$$\geqslant p \left(\begin{bmatrix} Y \\ 2 \end{bmatrix} \right) \geqslant p \mid A \mid.$$

By the Lemma there exists an injection $f: B \times P \rightarrow G$ satisfying

 $f((i, j), \cdot) \in G_i \cup G_j$ for each i < j.

Now define a generalized tournament T on X by $t_{ii} = 0$ for $i \in X$, and for each i < j

$$t_{ij} = (1/p) |\{k: f((i, j), k) \in G_i\}|$$
 and $t_{ji} = 1 - t_{ij}$.

By the hypothesis $|B \times P| = |G|$, hence f is a bijection and it follows that

$$\sum_{j} t_{ij} = (1/p) \sum_{j} |\{k: f((i,j),k) \in G_i\}| = (1/p) |G_i| = s_i.$$

Thus the necessary generalized tournaments exist, and the argument is complete.

REFERENCES

- 1. C. M. BANG AND H. SHARP, JR., Score vectors of tournaments, J. Combinatorial Theory, to appear.
- 2. L. R. FORD AND D. R. FULKERSON, "Flows in Networks," Princeton Univ. Press, Princeton, N. J., 1962.
- 3. L. MIRSKY AND H. PERFECT, Systems of representatives, J. Math. Anal. Appl. 15 (1966), 520–568.
- 4. J. W. MOON, An extension of Landau's theorem on tournaments, *Pacific J. Math.* 13 (1963), 1343–1345.