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Let X ={1,2,..,n} and let T = (¢,;: i, j € X) denote a generalized tourna-
ment on X;le., 0 <ty <1,and t;; 4+ ¢;;, = 1 foreach i s¢ j, and 7;; = O
for each i. A real vector § = (8, S 5ees Sp)y 83 T 53 < o0 XS, , 18 @ sCOTE
vector if there exists a generalized tournament 7 on X such that Z:;I ty =S,
for each i.

Extending Landau’s well-known theorem, Moon [4] proved the foliowing
theorem.

THEOREM. A real vecior S = (51, 85,0003 Sp)y 8 K Sy < - K5, 5 @
score vector if, and only if,

m
z Sz )
k=1 n I

Moon’s proof is based upon Gale’s feasibility theorem, which in turn rests
on two major results: the minimum cut theorem of Ford and Fulkerson [2],
and Hall’s theorem on systems of distinct representatives. In this note Moon’s
theorem is proved by a direct application of Hall’s theorem coupled with the
following elementary convergence argument. If S is approximated by a
componentwise convergent sequence QU, Q¥ ... of rational vectors, each
O™ being the score vector of a generalized tournament 7, then because
tournament entries are bounded there exists a subsequence converging
to a tournament 7 having the desired score vector S. To complete the proof,
therefore, we need only bridge two gaps: (1) construct an appropriate
sequence O, 0@ .. of rational vectors converging to S componentwise,
and (2) prove that each Q™ is a score vector.
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Suppose first that § = (s, 8 ,...,5,) IS a real nondecreasing vector
satisfying (*) and having at least one irrational component. There exists
a largest integer m << n such that s,, < s,,4, . For each positive integer /,
choose rational numbers ¢, , 45 ,..., ¢, such that ¢, < ¢, < - <¢,,, and
forl <i<m

53 <y < 8+ (S — Sw)f2ml.

If we put gp.y = = = qn = (&) — Spos 41)/(n — m), then a routine cal-
culation confirms that QW = (¢, g5 ,..., ¢,) is a rational nondecreasing
vector satisfying (*). Clearly, Q™ converges to S.

To build the second bridge, we assume that S is a nondecreasing rational
vector satisfying (*¥). Let p be a positive integer so large that pS is a vector
of nonnegative integers. Since pS may fail to satisfy (*), we cannot resort to
Landau’s theorem for (ordinary) tournaments. Instead, we use a technique
[1] based upon the simple extension of Hall’s theorem [3, Theorem 2.2},
stated next.

LemMA. If H = {H;: i€ B} is a finite set of nonempty subsets of G, and
if P=1{1,2,..,p}, then there exists an injection f: B X P — G satisfying
f(i, ) e H, for each i € B, if, ond only if,

U H;

€A

=plAl|,  foreach AC B.

For each i e X, let G, be a set for which | G; | = ps; . Assume that these
sets are pairwise disjoint and that G is their union. Let B = {(i,j): 1 <i <
j<n} and set H={G, VGG )eB. If ACB and Y ={i:({, k) or
(k, 1) € A for some k}, then

|UtG v G Gied| =p Y. s,

i€y

=p( V) =pial

By the Lemma there exists an injection f: B X P — G satisfying
f((laj)a ') € Gz U Gj for each i <].

Now define a generalized tournament T on X by #;; = 0 for i€ X, and for
each i < j

ti = Uik f(G ), ) eGil  and 1 =1 — 1.
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By the hvpothesis | B X P| = | G |, hence f'is a bijection and it follows that

Z ty = Up) Y Rk (@GR e Gl = (1Up) LG =55

Thus the necessary generalized tournaments exist, and the argument is
complete.
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