NOTE

On a Crossing Number Result of Richter and Thomassen

Gelasio Salazar

HCO-UASLP, Av. Karakorum 1470, Lomas 4ta. Seccion, San Luis Potosi, SLP 78210, Mexico

Received February 3, 1998

We show that if G is a graph minimal with respect to having crossing number at least k, and G has no vertices of degree 3, then G has crossing number at most $2k + 35$.

Richter and Thomassen proved that if G is minimal with respect to having crossing number at least k, then the crossing number $cr(G)$ of G is at most $2.5k + 16$ [1]. Our aim in this note is to observe that if G has no vertices of degree 3, then the proportionality constant in this bound can be improved to 2.

Theorem 1. Let G be a graph minimal with respect to having crossing number at least k. Suppose that G has no vertices of degree 3. Then $cr(G) \leq 2k + 35$.

Proof. Our proof is largely based on the proof of Theorem 3 in [1].

As proved in Theorem 3 in [1], we can assume G is simple and has no vertices of degree 2. Since G clearly cannot have vertices of degree 1, it follows that we can assume G has minimum degree at least 4.

Let t_0 be least possible such that there is a set E of t_0 edges such that $G - E$ is planar. Let C be a cycle and v a vertex as in Theorem 2 in [1]. Thus \(\sum_{u \in P(C) \setminus \{v\}} (d(u) - 2) \leq t_0 + 36 \). Let $e = vw$ be an edge of C incident with v, and let P be the path $C - e$. Since the minimum degree of G is at least 4, it follows that there are at most $(t_0 + 36)/2$ edges in P.

By minimality of G, there is a drawing of $G - e$ with at most $k - 1$ crossings. In this drawing some edges in P may cross other edges in P. We regard the drawing of P as a planar graph H with vertices of degrees 2 and 4. Let P' be a path in H joining v and w.

98
There are two ways of drawing e close to P, one for each side of P. It is readily checked that the total number of crossings in these two drawings of e is at most $(t_0 + 36) + 2\text{cr}(P)$, where $\text{cr}(P)$ is the number of crossings of edges of P in the drawing of $G - e$.

Removing from $G - e$ the (at most $(t_0 + 36)/2$) edges of P leaves a drawing with at most $k - 1 - \text{cr}(P)$ crossings. Therefore, there is a set of at most $1 + (t_0 + 36)/2 + (k - 1 - \text{cr}(P))$ edges whose removal from G leaves a planar graph. By the definition of t_0, this implies that $\text{cr}(P) \leq k - t_0/2 + 18$.

Thus, the number of crossings in the two drawings of e is at most $(t_0 + 36) + 2\text{cr}(P) \leq 2k + 72$, and so e can be drawn with at most $k + 36$ crossings. Since $G - e$ is drawn with at most $k - 1$ crossings, it follows that G can be drawn with at most $2k + 35$ crossings.

Theorem 1 implies the following versions of Corollaries 1 and 2 in [1].

Corollary 1. Let G be a graph with crossing number k. Suppose that G has no vertices of degree 3. Then there is an edge e of G such that $\text{cr}(G - e) \geq (k - 37)/2$.

Corollary 2. Let G be a simple graph minimal with respect to having crossing number at least k. If all vertices of G have degree at least 7, then G has at most $4k + 58$ vertices.

REFERENCE