
Journal of King Saud University – Computer and Information Sciences (2017) 29, 85–92
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Register allocation for fine grain threads on

multicore processor
* Corresponding author.

E-mail addresses: dck@pilani.bits-pilani.ac.in (D.C. Kiran), sguru@

pilan.bits-pilani.ac.in (S. Gurunarayanan), jpm@pilan.bits-pilani.ac.in

(J.P. Misra), munish.bhatia.cse@gmail.com (M. Bhatia).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.04.001
1319-1578 � 2016 Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
D.C. Kiran a,*, S. Gurunarayanan b, Janardan P. Misra a, Munish Bhatia a
aDepartment of Computer Science and Information Systems, Birla Institute of Technology and Science Pilani,
333031 Rajasthan, India
bDepartment of Electrical Electronics and Instrumentation, Birla Institute of Technology and Science Pilani, 333031 Rajasthan, India
Received 13 October 2014; revised 3 April 2015; accepted 14 April 2015
Available online 23 November 2015
KEYWORDS

Multicore;

Compiler;

Fine grain parallelism;

Scheduling;

Register allocation
Abstract A multicore processor has multiple processing cores on the same chip. Unicore and mul-

ticore processors are architecturally different. Since individual instructions are needed to be sched-

uled onto one of the available cores, it effectively decreases the number of instructions executed on

the individual core of a multicore processor. As each core of a multicore processor has a private

register file, it results in reduced register pressure. To effectively utilize the potential benefits of

the multicore processor, the sequential program must be split into small parallel regions to be

run on different cores, and the register allocation must be done for each of these cores. This article

discusses register allocating heuristics for fine grained threads which can be scheduled on multiple

cores. Spills are computed and its effect on speed-up, power consumption and performance per

power is compared for a RAW benchmark suite.
� 2016 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coupled with technological advancement in the field of com-
puter architecture and relentless demand for faster processing
has led to the development of multicore processors. A multi-

core processor has multiple processor cores on same processor
chip. Each individual core has a separate register file and is

capable of executing complete Instruction Set Architecture
(ISA). In order to exploit the capabilities of multicore proces-
sors, a significant amount of research in the area of code par-

allelization and multiprocessing has been carried out. An
application running on a multicore system does not guarantee
the performance improvement until the application has been
explicitly designed to take the advantage of multiple cores pre-

sent on the processor chip. To develop an application that
exploits multicore, predominantly two approaches are fol-
lowed. The first approach is to develop an explicitly parallel

code that can be scheduled on multiple cores of a given proces-
sor and the other approach is using a compiler to extract fine
grained parallelism by identifying the sets of instructions that

can be executed in parallel. Currently, several new programing

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.04.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dck@pilani.bits-pilani.ac.in
mailto:sguru@pilan.bits-pilani.ac.in
mailto:sguru@pilan.bits-pilani.ac.in
mailto:jpm@pilan.bits-pilani.ac.in
mailto:munish.bhatia.cse@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2015.04.001
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.04.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

DAG2CFG
Convertor

.asm Register
Allocator

Assembly Code
Generator

Front End DAG CFG

Schedule

Source
Code

Fine Grain
Thread

Extractor

Scheduler

sub-blocks

Figure 1 Flow of compiler.

86 D.C. Kiran et al.
models and different ways to exploit threads and data-level
parallelism are being explored which help in coarse grained
parallelism. There is very little effort from the research com-

munity toward the exploitation of compiler driven fine grained
parallelism in a sequential program.

The multicore processors can be made to exploit fine

grained parallelism of a given code by exposing the low level
architectural details to the compiler and operating systems
(Zhong, 2008). The architecture can be designed to support

the minimal set of operations required for executing an instruc-
tion and the task of extracting the fine grained parallelism can
be left for compilers and run time environment to achieve. The
runtime environment can manage resource allocation, extract-

ing parallel constructs for different cores, and scheduling based
on information generated by the compiler. Some of the archi-
tectures supporting these features are Power4 (Tendler et al.,

2002), Cyclops (Cascaval et al., 2002) and RAW (Waingold
et al., 1997) architecture. The multicore environment has mul-
tiple interconnected tiles and on each tile there can be one

RISC like processor or core. Each core has instruction mem-
ory, data memory, PC, functional units, register files, and
source clock. FIFO (queue) is used for communication. Here

the register files are distributed, eliminating the small register
name space problem. The challenge in achieving a perfor-
mance gain from fine-grain parallelism is identification of the
fine grained thread from a given single threaded application

and scheduling these threads on different cores of the multi-
core processor. There has been considerable focus on improv-
ing performance through automated fine-grain parallelization,

where a sequential program is split into parallel fine grained
threads and are scheduled onto multiple cores (Kiran et al.,
2011a,b; Kiran et al., 2012). In general, the multicore proces-

sors have a private register file, L1 data and Instruction cache
and shared L2 cache. The limited size of L1 data cache, war-
rants the optimal amount of data to be brought into the cache.

The poor choices in the placement of data can lead to the
increased memory stalls and low resource utilization. The fine
grained threads that are scheduled onto different cores need to
be allocated registers from a respective register file of the core

on which they are scheduled.
Various register allocation approaches are proposed in the

past (Chaitin, 1982; Norris and Pollock, 1994; Gupta et al.,

1994; Callahan and Koblenz, 1991; Lueh et al., 2000; Chow
and Hennessy, 1984; Briggs et al., 1989; Poletto and Sarkar,
1999; Mossenbock and Pfeiffer, 2002; Fu and Wilk, 2002;

Burkard et al., 1984; Todd et al., 1996). Most of the register
allocation algorithms assume that the CPU has regular register
file and these algorithms fail to adapt themselves for irregular
architectures. Several solutions have been proposed for irregu-

lar architectures, but without considering the specific imple-
mentation details, it is difficult to achieve optimal register
allocation (Koes and Goldstein, 2005; Kong and Wilken,

1998; Scholz and Eckstein, 2002). In the case of a multicore
processor, each core of the processor has an individual register
file and optimal register allocation is of utmost importance.

Multicore architecture is one area which expects new thinking
for register allocation. The proposed work explores the various
likely steps needed for register allocation for multicore

architecture.
This paper proposes two register allocation heuristics

referred as heuristic 3 and heuristic 4 for fine grained threads
which can be scheduled on multicore processor. Results are
compared with heuristic 1 and heuristic 2 which are existing
register allocation approaches. The proposed register alloca-
tion heuristics along with considering multiple private register

files on each core, constructs the interference graph incremen-
tally by checking the register pressure as opposed to existing
register allocation approaches which construct the global inter-

ference graph and then perform simplification to reduce regis-
ter pressure.

The rest of the paper is organized as follows. Section 2

describes background of the proposed work. It also discusses
some of the recent works pertaining to sub-block creation or
fine grained thread extraction and scheduling techniques. Sec-
tion 3 gives a detailed description of the proposed register allo-

cation technique for multicore environment. Through an
illustrative example the steps involved in the proposed algo-
rithm is presented in Section 3.4. Analysis and discussion of

the results are presented in Section 4, Section 5 presents the
conclusion and direction for future work.

2. Background

This section introduces the background of the proposed work.
The proposed work performed in conjunction with following

work.

� Parallel region formation or extracting fine grain threads

(Kiran et al., 2011a).
� Scheduling parallel regions or fine grain threads on to mul-
tiple cores (Kiran et al., 2011b, 2012).

The work flow of the compiler is shown in Fig. 1. Two addi-
tional passes are introduced into the normal flow of the com-
piler. The Fine grained extractor module and the scheduler

module. The Fine grained extractor module analyzes the basic
blocks of CFG and divides each of them into multiple sub-
blocks. The scheduler module generates the multiple schedules

which can be concurrently executed on different cores of the
processor. The register allocator module carries out the regis-
ter assignment operation using Chaitin’s register allocation

approach (Chaitin, 1982).

2.1. Fine grain thread

A fine grain thread is a sub-block formed by analyzing the

instruction dependency in the basic block of the control flow
graph (CFG) of a program Kiran et al., 2011a. The fine grain
thread extractor module in Fig. 1 creates sub-blocks. The sub-

blocks created are disjoint and can run in parallel. In Fig. 3,
the CFG has 4 basic blocks (Bp). The disjoint set operations

Allocation for fine grain threads on multicore processing 87
are applied to each basic block to form sub-blocks SBi. The
sub-block SBi belonging to basic block Bp is refereed as SBiBp.

2.2. Sub-block dependency graph (SDG)

The SDG is a graph G (V, E), where every vertex v e V is a sub-
block denoted as SBiBp. An edge e e E, is added between two

dependent vertices SBi e Bp and SBj e Bq where p – q. In
Fig. 3(a), sub-block SB1 belonging to basic block B2 is depen-
dent on sub-block SB1 belonging to basic block B1 then it is

denoted as SB1B1 ? SB1B2 and the sub-block SB1B2 should
be scheduled only after sub-block SB1B1 completes its
execution.

2.3. Scheduler

The scheduler (Inter block scheduler) identifies all the indepen-
dent sub-blocks in a CFG and formulates the schedule (Kiran

et al., 2012). The scheduler tries to generate schedules for each
core. Each schedule consists of a list of sub-blocks that can be
scheduled on a core.

In general the global scheduler selects the sub-block SBiBp

from the sub-block dependency matrix if its dependency list is
empty. Sub-block dependency matrix is a jagged matrix repre-

sentation of SDG as shown in Fig. 3(b) where the first column
contains a list of all sub-blocks in SDG and all sub-blocks on
which a specific sub-block is dependent are listed in the corre-
sponding row. Once SBiBp is scheduled and completes its exe-

cution, its corresponding entries are removed from the
dependency list. The sub-block execution time is computed
by multiplying the number of instructions in the sub-block

and average time taken to execute an instruction. Though each
instruction execution may take different amounts of time,
without loss of generality, it is assumed that the average time

taken to execute an instruction is constant.
The decision of scheduling a sub-block on a core is based

on the invariants such as scheduling latency, computed ready

time (Trdy) and finish time (Tfns) of the sub-block SBiBp. The
current schedule time (Tsch) and available time (Tca) of the core
are also taken into consideration to check the availability of a
core to schedule the sub-blocks.

Ready_time (Trdy) of a sub-block is the time at which sub-
block is free from all its dependencies and ready to be sched-
uled on a core.

Finish_time (Tfns) of a sub-block is a summation of starting
time interval when the sub-block is scheduled and total time
taken to complete the execution.

Schedule time (Tsch) is the time when a ready sub-block is
likely to be scheduled on the core. It is computed by finding
the maximum of the finish time of the currently executing

sub-block, if any, and Trdy of the sub-block to be scheduled.
Core available time (Tca) for a given core is the finish time

of the currently executing sub-block on that core.
The sub-blocks with empty dependency lists are moved to

the read list, which is arranged in descending order of schedul-
ing latency of sub-blocks. The ready sub-block is scheduled on
the core with least Tca value. To compute the scheduling

latency of a given sub-block SBiBp in SDG, all the paths lead-
ing to leaf node are identified. Each path starting from the sub-
block SBiBp to a leaf node can be considered as a linear list.

The scheduling latency for each path is computed and the
sub-block SBiBp from the path with high latency is chosen
for scheduling. The scheduling latency is a summation of exe-
cution time of all the nodes in the linear list, which can com-

puted by summing up the number of instructions in each
node in the list. It is assumed that execution time is propor-
tional to the number of instructions. The scheduling latency

of leaf sub-block SBiBp in SDG is, the total number of instruc-
tions in that sub-block. The latency of the non-leaf sub-block
SBiBp is the summation of maximum latency of all its immedi-

ate successor, sub-blocks and total number of instructions in
SBiBp. The Fig. 4a shows the generation of two schedules for
a dual core processor.

3. Register allocation for multicore processor

This section describes the proposed register allocation frame-

work as shown in Fig. 2.
The live variables are captured during SDG creation. In the

SDG, the sub-blocks are represented as vertices V and depen-
dency between the sub-blocks are represented by directed

edges E. The total number of Live_in variables of the sub-
block SBjBq is the degree of dependency between SBjBq and
SBiBp, i.e. total number of variables involved in the depen-

dency. Live variables in a sub-block SBjBq is the sum of degree
of dependency of all incoming edges and variables that are
defined in the sub-block.

Initial interference graphs are built locally for each sub-
block listed in the sub-block list. These interference graphs
are mostly k-colorable, if not they are simplified and the vari-
ables which are to be spilled are captured. The spill code is

inserted after register assignment phase.
The global interference graph is constructed incrementally

by merging individual local interference sub-graphs, one by

one and checking if the resulting sub-graph is k-colorable.
The algorithm incrementally merges the sub-blocks to form
hyper sub-blocks using a merge operator. The merge operation

is built using two functional modules, mergeSubblocks and
checkSimplifiable and produces a list of hyper sub-blocks H
(h1,h2,h3 . . .hx) whose interference graph is k-colorable.

Hyper sub-blocks ensure temporal locality by pushing maxi-
mum dependent instructions on the core for execution. As
the hyper sub-blocks are k-colorable, zero spilling is required
and instructions will remain inside private memory of individ-

ual cores till all the instruction commits without doing external
memory reference. The variables in the hyper sub-block are
assigned register at the register assignment phase.

3.1. Merge operator

The merge operator produces k-colorable hyper sub-blocks by

merging the interference graphs of sub-blocks listed in the
schedule list. While creating the hyper sub-blocks, the sub-
block dependency and simplifiability conditions must be

checked and satisfied. The algorithm for merge operator is
given below.

The conditions used in Algorithm 1 are listed below.

C1: If SBj is dependent on SBk.
C2: If Tfns of sub-block SBk < Trdy of SBi.
C3: If SBk is dependent on SBi and Trdy of SBk is > Tfns of

SBj.

Capture Live
Ranges

Build Local
Interference graph Coalesce Check Simplify

Insert Spill Code
Merge Subblocks Register

Assignment

Merge Operator

Figure 2 Modified register allocation framework.

88 D.C. Kiran et al.
C4: If the interference graph of SBi and SBj are simplifiable

and resulting interference graph after merging is also
simplifiable.
D1: Do not merge the sub-blocks.

D2: Merge the sub-blocks to schedule and allocate registers
together.

The algorithm begins by selecting two sub-blocks SBi and

SBj which is followed by a dependency constraint check. The
constraints are enforced through the condition C1, C2 and
C3. These conditions are derived from the invariants used by

the global scheduler.
Assuming that SBj is listed in the schedule of the processor

core Cra, the condition C1, C2 and C3 are checked to find if

the sub-block SBj can be merged with its predecessor sub-
block SBi to form a hyper sub-block.

The sub-block SBj can be merged with its predecessor SBi if
it is not dependent on sub-block/s SBk and SBk is scheduled on

different core CRb where a – b. In case SBj is dependent on
sub-block SBk it can be merged with its predecessor iff SBk

and SBi have non overlapping execution, i.e finish time of

SBk is less than ready time of SBi. The condition C1 and C2
are used for checking these two possibilities.

Condition C3 helps in reducing the wait time of sub-block

SBk. If a sub-block SBk scheduled on core Crb and is depen-
dent on SBi, merging of SBi with its successors to form a hyper
sub-block will cause SBk to wait till the hyper sub-block execu-

tion is completed.
To ensure zero spilling of the hyper sub-blocks, simplifiabil-

ity condition C4 is checked. An example illustrating the merge
operation is discussed in Section 3.4.

Algorithm 1. Merge Operator

MergeOperation(sub-block SBi, sub-block SBj)
begin
initialize

SBj be the successor of SBi in the schedule for
core Cra.

SBk be the sub-block in the schedule of other
core Crb.
if(C1 & C2 & C4)
begin

Merge the sub-blocks to schedule and allocate
register.

end
else if(!C1)
begin

if(C3 & C4)
begin
Merge the sub-blocks to schedule and

allocate register.
end

end

else
begin

Do not merge the sub-blocks.
end

end
The disjoint-set forests (Cormen et al., 2001) algorithm can be
used for merging the interference graph. The union-by-rank
heuristic is used to improve the runtime of union operation
and path-compression is used to improve the runtime of the

find set operation.

3.2. Register assignment

In this phase, the live variables in the hyper sub-blocks are
assigned register. As the simplifiability condition is checked
during the formation of hyper sub-block, the need to insert a

spill code is eliminated. The choice of the order of coloring
is simplified due to the fact that the interference graph is Chor-
dal with simplicial vertex (Pereira and Palsberg, 2005). The

edge projecting out of the simplicial vertex is pushed onto
the color stack first and continued till all the edges are pushed
onto the stack. Once all the edges are pushed onto the stack,
the color assignment module pops out the edges from the stack

to assign different colors for the conflicting edges. The color
stack is used to prioritize the coloring, i.e. the edge in higher
position in the stack is given higher priority.

3.3. Insert spill code

In this phase, the spill code load/store is inserted for the spilled

variable which is captured during the construction of initial
interference graphs of the sub-blocks. However the interfer-
ence graphs of the hyper sub-blocks are k-colorable which

eliminate the need of the spill code. Spill codes are inserted
after the creation of hyper sub-blocks and register assignment
phase to retain the properties of SSA (Cytron et al., 1991;
Hack and Goos, 2006; Pereira and Palsberg, 2006).

3.4. Working example

This section using an example illustrates the proposed register

allocation approach for the cores having four registers each.
To extract fine grained parallel threads, the disjoint sub-
blocks and SDG is created and is shown in Fig. 3(a).

The schedule created by the global scheduler for dual core
machine is shown in Fig. 4(a). The hyper sub-block generated
by using the schedule list is shown in Fig. 4(b). Fig. 4(c)

exposes the instructions in sub-blocks SB2B1 and SB2B3 sched-
uled on core 2 of dual core machine. The sub-block SB2B1 and
its successor SB2B3 are scheduled on core 2 as shown in Fig. 4
(a). The sub-block SB2B3 does not satisfy the condition C1 as it

is not dependent on any other sub-block. The condition C3 is

Dual Core Dual Core
Core1 Core2 Core1 Core2
SB3B1

SB1B1

SB1B2
SB1B3

SB1B4

SB2B4

SB2B1

SB2B3

SB2B2

SB4B4

SB3B4

SB3B1

SB1B1

SB1B2

SB1B3

SB1B4

SB2B4

SB2B1

SB2B3

SB2B2

SB4B4

SB3B4

SUB-BLOCK
SB2B1

SUB-BLOCK
SB2B3

F0=11;
G0=42;
H0=F0/G0;
I0=G0+H0;
G1=G0-I0;
H1=G1+I0;
F1=G1+H1;

U0=G1+F1;
V0=G1+H1;
W0=U0+V0;
V1=W0*V0;
U1=W0-V1;
W1=U1*W0;

(a) (b) (c)

Figure 4 (a) Sub-block lists generated for dual core processor,

(b) hyper sub-blocks whose interference graph is k-colorable, (c)

instructions in sub-blocks SB2B1 and SB2B3.

I0

G1
G0

F0 H0

F1

H1

U0
V0

V1 U1 W1 W0

U0

F1

G1

H1

W0

W1

V1 U1

V0F0

G0

H0

I0 G1

H1 F1

(a) (b)

(c)

Figure 5 (a) Interference graph of sub-block SB2B1, (b) inter-

ference graph of sub-block SB2B3, (c) interference graph of merged

sub-blocks.

0

0.5

1

1.5

2

2.5

Test
Case

1

Test
Case

2

Test
Case

3

Test
Case

4

Test
Case

1

Test
Case

2

Test
Case

3

Test
Case

4

Test
Case

1

Test
Case

2

Test
Case

3

Test
Case

4

Heuris�cs 1 Heuris�c 2 Heuris�c 3 Heuris�cs 4

Speed-Up Power Perf/ Power

Figure 6 Speed-up, power and perf/power comparison on dual

core machine.

0

0.5

1

1.5

2

2.5

3

3.5

4

Test
Case

1

Test
Case

2

Test
Case

3

Test
Case

4

Test
Case

1

Test
Case

2

Test
Case

3

Test
Case

4

Test
Case

1

Test
Case

2

Test
Case

3

Test
Case

4

Heuris�cs 1 Heuris�c 2 Heuris�c 3 Heuris�cs4

Perf/ PowerSpeed-Up Power

Figure 7 Speed-up, power and perf/power comparison on quad

core machine.

(a) (b)

 Sub-
blocks

Dependency List

1 SB1B1

2 SB2B1

3 SB3B1

4 SB1B2 SB1B1

5 SB2B2 SB3B1

6 SB1B3 SB3B1

7 SB2B3 SB2B1

8 SB1B4 SB1B2

9 SB2B4 SB1B3 SB2B2

10 SB3B4

11 SB4B4 SB2B2 SB2B3

SB 1

SB 3

SB 2

SB 1 SB2 SB 1
SB 2

SB 1

SB 3

SB 2

SB 4

B 1

B 2

B 4

B 3

Figure 3 (a) Sub-block dependency graph, (b) sub-block depen-

dency matrix.

Allocation for fine grain threads on multicore processing 89
also not satisfied as no other sub-blocks are dependent on
SB2B1. It is evident from the Fig. 5(a) and (b) that the simpli-

fiable condition C4 is satisfied for the interference graphs of
sub-blocks SB2B1 and SB2B3. Further Fig. 5(c) shows that
the merged interference graph of sub-blocks SB2B1 and

SB2B3 is also simplifiable (3 colorable) therefore the sub-
blocks SB2B1 and SB2B3 are merged to form a single hyper
sub-block. An attempt to schedule the sub-block SB2B3 by

merging with its successor SB2B2 into the hyper sub-block
fails. The condition C1 is satisfied as the sub-block SB2B2 is
dependent upon the sub-block SB3B1. The condition C2 is also
not satisfied because the Tfns of the sub-block on which SB2B2

depends, i.e. the sub-block SB3B1 is not less than Trdy of
SB2B3. Thus the decision D1 is taken not to merge the sub-

block SB2B2 into the hyper sub-block.

4. Experiments

This section is divided into five sub sections. Section 4.1 details
the architecture, compiler and benchmarks used for the exper-
iment. Section 4.2 gives detailed evaluation criteria, for differ-

ent register allocation heuristics. A brief explanation of
different register allocation heuristics is given in Section 4.3.
Section 4.4 discuses the compilation cost in terms of algorith-

mic complexity of the register allocation approach. Table 2 in
the sub Section 4.5 gives the spills of different heuristics and
Figs. 6 and 7 show the effect of spilling on speed-up, power

and performance per power when a program is compiled for
dual core and quad core processors respectively.

4.1. Multicore architecture

The target architecture model used is capable of executing fine
grained threads. The multicore processor is an example of the
grid processor family which is typically composed of an array

of homogeneous execution nodes. The core is equivalent to a
single threaded uni-processor capable of executing 1 instruc-
tion per cycle and each core has 8 general purpose registers

Table 1 Algorithm complexity comparison.

Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4

Complexity O(n *

log(n))

O(m2 * n2) O(m * n

log(n))

O(m * n2)

90 D.C. Kiran et al.
[$r8....$r15]. Each core has instruction memory, data memory,
PC, functional units, register files, and a source clock. FIFO is
used for inter core (threads executing on different core) com-

munication. Here the register files are distributed, eliminating
the small register name space problem. The proposed work
uses open source Jackcc compiler (Jack, 2013). The test cases

to evaluate the proposed work are taken from the Raw bench-
mark suite (Babb et al., 1997).

The target architecture is an irregular architecture as the

registers files are distributed. The principle behind this design
is to avoid unnecessary, redundant, and complex connections
with other functional units, thus lowering the large area,
increasing the access speed, and lowering power consumption.

4.2. Evaluation criteria

The results discussed in this section are based on the simulated

model of the target architecture, with Dual core and Quad core
variants. The result of four extreme test cases of the bench-
mark suite such as DES, Integer matrix multiplication, Fast

Fourier transform and Merge sort are presented by analyzing
and comparing the spill cost, the speed-up, power consump-
tion, and performance per power. The result is normalized to

the performance metric to that of a basic ‘‘unit core”, which
is equivalent to the ‘‘Base Core Equivalent (BCE)” in the
Hill-Marty model (Hill and Marty, 2008; Woo and Lee,
2008). The global scheduler is designed to perform power opti-

mization, i.e. if the performance achieved using four cores can
be achieved using only three cores, then only three cores of the
quad core machine are used to execute the given task, either by

keeping the 4th core idle or utilizing it for some other compu-
tation (Kiran et al., 2012). The results with three active cores
on a quad core machine are presented to illustrate the power

optimization possibility. The amount of spill caused by four
different register allocation heuristics is computed and its
effect on speed-up, power consumption and performance per

power are compared.

4.3. Register allocation heuristics

This section describes different register allocation heuristics for

multicore processor architecture whose results are compared.
The first heuristic uses the raw list generated by the scheduler
for register allocation. Instructions in each sub-block are allo-

cated locally using Chaitin’s approach and are scheduled as
directed by the scheduler. This approach leads to reduced com-
pilation time but execution time is increased as individual sub-

blocks are to be assigned thread requiring data movement.
The second heuristics integrate register allocation with glo-

bal scheduling (Kiran et al., 2013). It mainly aims at address-

ing the phase ordering problem which leads to poor
optimization. Taking the register requirement into the account
the scheduler creates schedules for multiple cores by selecting
sub-blocks in the dependency matrix to maintain the order

of their execution.
Heuristic 3 and heuristic 4, follow the proposed register

allocation framework as shown in Fig. 4. To facilitate the glo-

bal scheduling, these heuristics incrementally merge the sub-
blocks in the sub-block list generated by scheduler to produce
a hyper sub-block list. The hyper sub-blocks ensures temporal

locality by pushing maximum dependent instructions on to
core for execution. These heuristics help to produce the opti-
mized code at the cost of increased compilation time.

In heuristic 3 the hyper sub-blocks are created by merging

the sub-blocks. Merging of sub-block is carried out by coalesc-
ing the interference graph of the sub-blocks and by checking
the sub-block dependency, Ready_time (Trdy) and Finish_time

(Tfns) of the sub-blocks that are being merged. In these heuris-
tics, similar to Chaitin’s approach initially a global interference
graph (hyper sub-block) is built and then the interference

graph is simplified to make it k-colorable. If the interference
graph is not k-colorable, it is simplified and the spill code is
inserted. Since each hyper sub-block can be assigned a thread,

it improves the execution time as compared to heuristics 1 but
may add more spill code as an interference graph may not be
k-colorable.

The proposed fourth heuristic overcomes the limitations of

heuristic 1 & 3. In this approach the hyper sub-blocks are cre-
ated by adding a simplifiability condition to the heuristic 3.
The simplifiability condition ensures that the interference

graph of the hyper sub-blocks are k-colorable resulting in zero
spill code.

4.4. Algorithm complexity

In this section complexity analysis for the proposed register
allocation heuristic is presented. The complexity of other three

heuristics are compared and presented in Table 1.
Let m and n be the number of sub-blocks and number of

live-ranges or variables. The time consumed per sub-block to
check the presence of dependent sub-blocks or parental sub-

blocks on other cores is O(m). The mergeSubblock module
has O(n logn) complexity. Thus, for heuristic 3 the complexity
of all the iterations (for m sub-blocks) is O(m * n logn). In

heuristic 4, the time consumed to verify the individual interfer-
ence graphs for simplifiability, merging of the two interference
graphs, and verifying if the new graph is simplifiable is O(n2).

The complexity of coloring module is O(n logn). Thus, the
overall complexity of the checkSimplifiable and mergeSub-
blocks modules is in the order of O(n2 + n logn) i.e. O(n2).
Thus, the complexity of all the iterations (for m sub-blocks)

is O(m * n2).
At first sight, it might appear that heuristic 4 has a big

increase in compilation time. But this complexity is acceptable,

when the overall compilation process is considered, as the
complete code generator including register allocation con-
tributes less than 20% of the total compilation time.

4.5. Result and analysis

� Heuristic 1 does not contribute a spill code as the interfer-
ence graph of the sub-blocks are k-colorable. This heuristic

requires the runtime environment to assign threads to indi-
vidual sub-blocks and handles corresponding frequent data
movement from the memory.

Table 2 Spills.

Algorithm Heuristics 1,4 Heuristic 2 Heuristic 3

Test case 1 Dual core 0 1 0

Quad core 0 1 1

3-active

cores

0 1

Test case 2 Dual core 0 1 3

Quad core 0 1 0

3-active

cores

0 0

Test case 3 Dual core 0 0 3

Quad core 0 0 0

3-active

cores

0 0

Test case 4 Dual core 0 1 2

Quad core 0 0 2

3-active

cores

0 2

Allocation for fine grain threads on multicore processing 91
� Heuristic 2 tries to solve the phase ordering problem by
allocating register during scheduling by compromising a lit-
tle with the performance. This heuristic contributes a rea-
sonable amount of spill code as well as increases the

compilation time.
� The heuristic 3 overcomes the problem faced with heuristic
1 by allocating threads to hyper sub-blocks instead of sub-

blocks. But this heuristic contributes a greater amount of
spill code.

� Heuristic 4 by checking the simplifiablity conditions for the

hyper sub-block, combines the feature of heuristic 1 and 3
resulting into spill code elimination and reduced runtime
environment overhead.

� The amount of spilling when the 4th heuristics are used is
shown in Table 1. The spilling is almost zero when register
allocation is done on the list of sub-block using heuristic 1
as the sub-blocks are created by taking register requirement

into account. Similarly, as the interference graph of hyper
sub-blocks is are k-colorable the proposed heuristic 4 pro-
duces zero spill.

� As heuristic 2 is not designed for power optimization, the
results for 3-active cores in Table 2 are left blank.

The performance gain is a combined effort of scheduler and
register allocation approach. Results in Figs. 6 and 7 depict the
effect of spilling on speed up, power and perf/power of dual
core and quad core processor.

� The speed-up and performance per power of heuristic 1 is
lower even with zero spills. This is because of the limitation

of the local scheduler. The local scheduler assigns a thread
to each sub-block resulting in higher data movement.

� Heuristic 2 shows better speed-up for test case 2, this is

because the integrated scheduler is able to create a schedule
for dual core processor efficiently. The performance of the
heuristic 2 deteriorates for test case 2 on a quad core proces-

sor due to memory contention.
� Speed up-decreases when spill increases, due to insertion of
extra spill instructions. When heuristic 3 is applied on test
cases 2, 3 and 4 to execute on the dual core machine, the
speed-up decreases due to spilling. This results in higher

power consumption and reduced performance per power
in comparison to heuristic 4.

� Test case 3 on a quad core processor shows same perfor-

mance on all the heuristics in terms of speed up as there
is no spill in either of the heuristics.

� Heuristic 4 performs better for all the test cases on a quad
core processor.

� Heuristic 4 also offers better performance in respect to com-
pilation time.

� It is evident from the Figs. 6 and 7 that the overall perfor-

mance of heuristic 4 is better with respect to performance
per power in comparison to heuristics 1, 2 and 3.
4.6. Observation on number of registers

This section discusses the effectiveness of proposed register
allocation when the number of registers is varied. Results
shown in the previous section are for the cores having 8 general
purpose registers each. The effect of increasing the number of

registers leads to reduced spilling when heuristics 1, 2 and 3 are
used which is obvious.

Interference graphs are built incrementally by checking

dependency and simplifiablity conditions. Increasing the num-
ber of registers can cause an increased number of instructions
in the hyper sub-block resulting into optimized code genera-

tion requiring lesser execution time. The improved execution
time can be attributed to the fact that a larger hyper sub- block
will require less data movement to and from memory.

According to the chromatic polynomial theory for the chor-
dal graph, a chordal graph with a largest clique of size n will
have chromatic number n. The largest clique in interference
graph of the SSA form program is 3, thus most of the time

it is 3 colorable.
The interference graph of the benchmark programs used in

this work shows either of the following coloring patterns for k

+ 1 6 8 where k ranges from 3 to 7.

� Sub-blocks are k colorable and hyper sub-block is also k

colorable.
� Sub-blocks are k colorable and hyper sub-block is k+ 1
colorable.

There will be no change in performance if the number of
registers used is reduced to 3. Further, the performance will
not change if more than 8 registers are used, because of depen-

dencies between the sub-blocks scheduled on different cores.

5. Conclusion

The work proposes a register allocation mechanism to be used
for multicore processors. The proposed mechanism, which has
been tailor made for use on a multicore processor, promises to

give better results than those obtained using a conventional
register allocation mechanism built for unicore processors.
The experimental results presented in the paper endorse this

fact. The algorithm takes into account the presence of multiple
cores and the presence of their separate register files, and
exploits this avenue to achieve better register allocation results.
Four heuristics for allocating registers for fine grained threads

92 D.C. Kiran et al.
are discussed. The spills, speed-up, power consumption and
performance per power are compared for the code generated
for the programs from the RAW benchmark suite. The use

of this register allocation technique for multicore processors
is more efficient than the use of conventional register alloca-
tion approach.

The proposed work can be extended for the multicore pro-
cessors with each core having multiple execution units (floating
point unit, integer unit) (Bhathia et al., 2013). Though the reg-

ister files are not distributed based on types (floating point reg-
isters, integer registers) the register requirement and the
proportion of the type of instruction can be considered while
performing register assignment.

References

Babb, J., Frank, M., Lee, V., Waingold, E., Barua, R., Taylor J. Kim,

M., Devabhaktuni, S., Agarwal, A., 1997. The RAW benchmark

suite: computation structures for general purpose computing. In:

Proceedings of the 5th IEEE Symposium on FPGA-Based Custom

Computing Machines, p. 134.

Bhathia, Munish, Kiran, D.C., Gurunarayanan, S., Misra, J.P., 2013.

Fine Grain Thread Scheduling on Multicore Processors: Cores with

Multiple Functional Units. ACM Compute.

Briggs, P., Cooper, K.D., Kennedy, K., Torczon, L., 1989. Coloring

heuristics for register allocation. In: Proceedings ACM SIGPLAN

Conference on Programming Language Design and Implementa-

tion. ACM, pp. 275–284.

Burkard, Rainer E, ela, Eranda C, Pardalos, Panos M, Pitsoulis,

Leonidas S, 1984. Quadratic assignment problems. European J.

Oper. Res. 15, 283–289.

Callahan, David, Koblenz, Brian, 1991. Register allocation via

hierarchical graph coloring. In: Proceedings of the ACM SIG-

PLAN Conference on Programming Language Design and Imple-

mentation Toronto Ontario, Canada, pp. 26–28.

Cascaval, C., Castanos, J., Ceze, L., Denneau, M., Gupta, M., Lieber,

D., Moreira, J.E., Strauss, K., Warren, H.S., Jr. 2002. Evaluation

of multithreaded architecture for cellular computing. In: Proceed-

ings of the 8th International Symposium on High Performance

Computer Architecture, pp. 311–322.

Chaitin, G., 1982. Register allocation and spilling via graph coloring.

In: Proceedings of the SIGPLAN Symposium on Compiler

Construction, pp. 98–105.

Chow, Fredrick, Hennessy, John, 1984. Register Allocation by

priority-based coloring. In: Proceedings of the ACM SIGPLAN

Symposium on Compiler Construction SIGPLAN Notices, 19(6).

Cormen, T., Leiserson, C., Rivest, R., 2001. Introduction to Algo-

rithms. The MIT Press, Cambridge, MA.

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.,

1991. Efficient computing static single assignment form and the

control dependence graph. ACM Trans. Program. Lang. Syst. 13

(4), 451–490.

Fu, Changqing, Wilk, Kent, 2002. A faster optimal register allocator.

In: Proceedings of the 35th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-35).

Gupta, Rajiv, Lou Soffa, Mary, Ombres, Denise, 1994. Efficient

register allocation via coloring using clique separators. ACM

Trans. Program. Lang. Syst. 16 (3), 370–386.

Hack, S., Goos, G., 2006. Optimal register allocation for SSA-form

programs in polynomial time. Inf. Process. Lett. 98 (4), 150–155.
Hill, M.D., Marty, M.R., 2008. Amdahl’s Law in the multicore era.

IEEE Comput., 33–38

Woo, Dong Hyuk, Lee, Hsien-hsin S., 2008. Extending amdahl’s law

for energy-efficient computing in the many-core era. IEEE Com-

put., 24–31

Kiran, D.C., Gurunarayanan, S., Misra, J.P., 2011a. Taming compiler

to work with multicore processors. IEEE Conf. Process Autom.

Control Comput.

Kiran, D.C., Radheshyam, B., Gurunarayanan, S., Misra, J.P., 2011b.

Compiler assisted dynamic scheduling for multicore processors.

IEEE Conf. Process Autom. Control Comput.

Kiran, D.C., Gurunarayanan, S., Faizan, Khaliq, Nawal, Abhijeet,

2012. Compiler efficient and power aware instruction level paral-

lelism for multicore architectures. The International Eco-friendly

Computing and Communication Systems, Published in the Com-

munications in Computer and Information Science (CCIS).

Springer-Verlag, pp. 9–17.

Kiran, D.C., Gurunarayanan, S., Misra, J.P., 2012. Compiler driven

inter block parallelism for multicore processors. In: 6th Interna-

tional Conference on Information Processing, published in the

Communications in Computer and Information Science (CCIS).

Springer-Verlag.

Kiran, D.C., Gurunarayanan, S., Misra, J.P., Yashas, D., 2013.

Integrated scheduling and register allocation for multicore archi-

tecture. In: IEEE Conference on Parallel Computing Technologies

PARCOMPTECH-2013, Organized by C-DAC in IISC Bangalore.

Koes David, Goldstein, Seth Copen, 2005. A progressive register

allocator for irregular architectures. In: CGO, pp. 269–280.

Kong, Timothy, Wilken, Kent D., 1998. Precise register allocation for

irregular architectures. International Symposium on Microarchi-

tecture. ACM, pp. 297–307.

Lueh, Guei-Yuan, Gross, Thomas, Adl-Tabatabai, Ali-Reza, 2000.

Fusion-based register allocation. ACM Trans. Program. Lang.

Syst. 22 (3), 431–470.

Mossenbock, Hanspeter, Pfeiffer, Michael, 2002. Linear scan register

allocation in the context of SSA form and register constraints. In:

CC, LNCS, pp. 229–246.

Norris, Cindy, Pollock, Lori L., 1994. Register allocation over the

program dependence graph. SIGPLAN 94-6/94.

Pereira, Fernando Magno Quintao, Palsberg, Jens, 2005. Register

Allocation via Coloring of Chordal Graphs. In APLAS, Springer,

pp. 315–329.

Pereira, Fernando Magno Quintao, Palsberg, Jens, 2006. Register

allocation after classic SSA elimination is np-complete. In: Foun-

dations of Software Science and Computation Structures. Springer.

Poletto, Massimiliano, Sarkar, Vivek, 1999. Global linear scan register

allocation. ACM Trans. Program. Lang. Syst. 21 (5), 895–913.

Todd, A., Proebsting, Fischer, Charles N., 1996. Probabilistic register

allocation, ACM SIGPLAN ’92 PLD1-6/92/CA.

Scholz, Bernhard, Eckstein, Erik, 2002. Register allocation for

irregular architectures. LCTES/SCOPES. ACM, pp. 139–148.

The Jack Compiler, http://jackcc.sourceforge.net.

Tendler, J.M., Dodson, J.S., Fields, J.J.S., Le, H., Sinharoy, B., 2002.

Power 4 system microarchitecture. IBM J. Res. Dev. 46 (1), 5–6.

Waingold, E., Taylor, M., Srikrishna, D., Sarkar, V., Lee, W., Lee, V.,

Kim, J., Frank, M., Finch, P., Barua, R., Babb, J., Amarasinghe,

S., Agarwal, A., 1997. Baring it all to software: raw machines.

Computers 30 (9), 86–93.

Zhong, Hongtao, 2008. Architectural and Compiler Mechanisms for

Accelerating Single Thread Applications on Multicore Processors

(Ph.D. Dissertation). University of Michigan, Ann Arbor (ACM),

MI, USA.

http://refhub.elsevier.com/S1319-1578(15)00078-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0010
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0015
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0015
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0015
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0015
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0020
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0045
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0045
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0050
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0060
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0060
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0060
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0065
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0065
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0070
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0070
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0075
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0075
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0075
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0080
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0080
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0080
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0085
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0085
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0085
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0090
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0090
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0090
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0090
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0090
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0090
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0095
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0110
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0110
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0110
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0115
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0115
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0115
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0130
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0130
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0130
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0135
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0135
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0135
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0140
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0140
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0150
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0150
http://jackcc.sourceforge.net
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0160
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0160
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0165
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0165
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0165
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0165
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0170
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0170
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0170
http://refhub.elsevier.com/S1319-1578(15)00078-6/h0170

	Register allocation for fine grain threads on multicore processor
	1 Introduction
	2 Background
	2.1 Fine grain thread
	2.2 Sub-block dependency graph (SDG)
	2.3 Scheduler

	3 Register allocation for multicore processor
	3.1 Merge operator
	3.2 Register assignment
	3.3 Insert spill code
	3.4 Working example

	4 Experiments
	4.1 Multicore architecture
	4.2 Evaluation criteria
	4.3 Register allocation heuristics
	4.4 Algorithm complexity
	4.5 Result and analysis
	4.6 Observation on number of registers

	5 Conclusion
	References

