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Background: In vitro cadaveric studies showed that elastomer femoroplasty prevents displacement of fracture
parts after proximal hip fracture allowing for conservative treatment. In the event that secondary displacement
does occur, the purpose of this present study was to determine the feasibility of performing osteosynthesis of a
fractured hip after preventive treatment with elastomer femoroplasty.
Methods: Ten pairs of human cadaveric femurs were fractured in a simulated fall configuration. From each pair,
one femur was randomly selected for elastomer femoroplasty prior to fracture generation and the contralateral
femur was used as control. Following hip fracture generation, osteosynthesis was performed in all femurs. The
operative time per case, technical difficulties during the procedure, and postoperative energy-to-failure load
were recorded.

Results: The mean (SD) time to perform osteosynthesis was 20 (6) minutes in the control-group and 19 (5)
minutes in the elastomer femoroplasty-group (P= 0.69). During osteosynthesis of the fractured hip in the elas-
tomer femoroplasty-group, no difficulties including the need for additional instruments to remove elastomer
from the proximal femur were recorded. Postoperative energy-to-failure load was similar in the control-group
and the elastomer femoroplasty-group.
Conclusion: Fixation with routine osteosynthesis of displaced cadaveric hip fractures is not hindered by the
presence of previously injected elastomer.
© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Among survivors of an initial hip fracture, up to 16% of elderly
patients are at increased risk of sustaining a second, contralateral hip
fracture (Berry et al., 2007; Kaper andMayor, 2001). The risk of a second
hip fracture increases with age (Berry et al., 2007; Kaper and Mayor,
2001), weakened cognitive and motor function (Yamanashi et al.,
2005), respiratory disease (Mitani et al., 2010) and solitary life (Kim
et al., 2012). Recent literature suggests that the outcome of surgery for
a second, contralateral fracture may be worse than that of a first hip
fracture (Holt et al., 2012; Pearse et al., 2003; Rodaro et al., 2004) in
terms of early postoperative complications, discharge institutionaliza-
tion, independent mobility and survival (Holt et al., 2012).

Given the detrimental impact of a second hip fracture on elderly
patients, different strategies have been proposed to prevent the sequen-
tial trauma, including pharmaceutical treatment for osteoporosis (Black
et al., 1996; Lyles et al., 2007; Reginster et al., 2008), external mechanical
protection with hip protectors (Kannus et al., 2000), and cement
erg).
augmentation of osteoporotic bone (Beckmann et al., 2007; Sutter
et al., 2010). The injection of cement into osteoporotic cadaveric proxi-
mal femurs resulted in an 82% increase in peak fracture loads for a simu-
lated fall on the hip, compared to non-injected femurs (Heini et al.,
2004). However, cement augmentation is associated with significant
heat generation due to polymethyl-methacrylate polymerization. The
exothermic reaction of cement could cause thermal necrosis of healthy
bone and potentially lead to avascular necrosis of the femoral head
(Boner et al., 2009; Dunne and Orr, 2002). In addition, osteosynthesis
of fractured femurs that were beforehand reinforced with cement may
be challenging, with particular difficulty recorded in the removal of the
composite (Beckmann et al., 2007).

We recently introduced the concept of elastomer femoroplasty
(EF), i.e. preventive stabilization with elastomer, injected in the
contralateral femur during ipsilateral hip fracture surgery (van der
Steenhoven et al., 2009; van der Steenhoven et al., 2011; van der
Steenhoven et al., 2012a). Unlike cement augmentation, the intention
of EF is not to prevent the occurrence of a second contralateral
fracture. In fact, fracture loads of EF-treated cadaveric femurs were
approximately 10% lower than those of non-augmented femurs
(van der Steenhoven et al., 2009). Rather, EF has been shown to
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Fig. 1. Graphic display of the single leg stance configuration, with the femur fixed upright
at a 20° angle from the vertical plane and 15° endorotation. The ‘L’ marks the load cell.
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prevent displacement of the fracture as measured with the neck shaft
angle (NSA) directly after impact. Similar to the well-established conser-
vative treatment of undisplaced hip fractures, Garden types 1 and 2
(Raaymakers and Marti, 1991), the prevention of fracture displacement
by EF at the time of injury could result in primary fracture healing, there-
by eliminating the need for a surgical intervention in these often, frail
elderly patients. In addition, EF has been shown to prevent secondary
displacement of the fracture during subsequent cyclic loading of cadaveric
femurs (van der Steenhoven et al., 2011; van der Steenhoven et al.,
2012a). In the event that EF fails to stabilize the fracture parts and second-
ary displacement does occur, fracturefixationwith routine osteosynthesis
should remain possible and equally stable compared to hip fractures
without preventive EF. The objective of the present in-vitro biomechani-
cal study was to determine the feasibility of performing osteosynthesis
of a fractured proximal femur that has been treatedwith EF and its subse-
quent construct stability. We hypothesized that there is no difference in
surgical time, difficulty in performing the osteosynthesis, or failure load
after osteosynthesis of fractured proximal femurs that were stabilized
with elastomer femoroplasty (EF-group) and fractured proximal femurs
without elastomer femoroplasty (control group).

2. Methods

2.1. Cadaveric femurs

Ten pairs of human cadaveric femurs from donors with a mean age
of 81 years (SD 7.6 years) were obtained from the Department of
Anatomy, Leiden University Medical Centre (LUMC). Five donors were
male and five donors were female. Preservation of the cadavers was
performedby an injection of an embalmingfluid into the femoral artery.
The embalming fluid consisted of 36% formaldehyde (CH2O) with a
mixture of ethanol (C2H5OH), glycerin (C3H5(OH)3), phenol (C6H5OH),
potassium sulfate (K2SO4), sodium sulfate (Na2SO4), sodium carbonate
(NaHCO3), sodium nitrate (NaNO3), and sodium sulfite (NaSO3).

Plain radiographs were made of all specimens to exclude the pres-
ence of focal bone pathology. The femoral neck shaft angle (NSA) was
measured from the plain anteroposterior radiograph of each femur
using IQ-view web-viewer (V2.1.0, Image Information Systems Ltd.,
London, UK).We calculated the degree of osteoporosis of each proximal
femur using dual-energy X-ray absorptiometry (DXA) with a Discovery
A, QRD scanner (Hologic Inc., Bedford, USA). All femurswere scanned in
air. Osteopenia and osteoporosis were defined according to the WHO
using T-scores of, respectively, b−1 standard deviation and b−2.5
standard deviation from the young adult mean value (Report WHO
Study Group, 1994).

2.2. Elastomer femoroplasty

From each pair, one femur was randomly selected for elastomer
femoroplasty (EF-group, n = 10). The contralateral femurs were used
as control (control-group, n = 10). Mean (±SD) bone mineral density
(BMD) was 0.703 g/cm2 (0.111) in the control group and 0.702 g/cm2

(0.120) in the EF-group, respectively. Mean (±SD) T-score, a score
used to express BMD in standard deviation from the mean BMD of a
young adult, was −2.14 (0.74) in the control group and −2.14 (0.81)
in the EF-group, respectively. The mean (±SD) NSA in the control
group was 129° (3) compared to 128° (4) in the EF-group.

Elastomer femoroplasty was performed as described in detail previ-
ously (van der Steenhoven et al., 2009). The femurs were prepared by
drilling a 3 mm hole in the lateral cortex. A channel was made in the
femur neck with a 10 mm excentric drill. Finally, a 15 mm excentric
drill hole was made in the femur head to form an “anchor site” for the
elastomer. After drilling, the hole was rinsed out using a pulsed lavage
system (Stryker, Kalamazoo, Michigan, USA) using a saline solution.
The elastomeric compound, polydimethylsiloxane (PDMS, ViaZym BV,
Delft, The Netherlands), was manually injected into the proximal
femur using a commercially available, hand held injector gun (Mixpac,
Sulzer, Haag, Switzerland). PDMS is an elastomer which initially has a
low viscosity, cureswithout exothermic heat andwithout the formation
of by-products as it hardens in an aqueous environment (Ignjatovic
et al., 2003; Khorasani et al., 2005). Filling the proximal femur continued
until either the elastomer overflowed from the lateral cortex hole or
exited vascular penetrations in the femur neck. The mean volume of
silicone per femur was 35 ml (range: 28–42 ml). The radiographs after
elastomer filling showed a regular and reproducible pattern of silicone
distribution in the head, neck and trochanteric regions of the proximal
femur.

2.3. Hip fracture generation

Biomechanical testingwas done using an LR5KPlus 5 kN load testing
machine with a XLC-50K-A1 Load-cell and NEXYGENPlus material test
and data analysis software (Lloyd Instruments, Fareham Hants, UK).
Fractures were generated by simulating a fall on the greater trochanter
in a modified Hayes-fall configuration (Courtney et al., 1995). The
femoral shaft was held firmly by a steel arm at a 20-degree angle from
the horizontal plane and with the femur head 15° internally rotated
(Fig. 1). The load was applied using a silicone-coated cup attached to
the crosshead of the testing machine. The crosshead moved with
2 mm/s and stopped automatically when the load cell registered an
abrupt reduction in load of 75%. The recorded load was defined as frac-
ture load (N). After each specimen was fractured plain anteroposterior
radiographs were made to calculate the NSA. In case of complete
displacement of the fracture the NSA was defined as 180°. The type of
generated fracture was classified according to the AO-classification.



Table 1
Time (minutes) required to perform osteosynthesis of the proximal femur in the control-
group and the elastomer femoroplasty (EF)-group, stratified by type of implant used. DHS,
dynamic hip screw; PFNA, proximal femoral nail-antirotation.

Femur Control-group EF-group Unpaired student
t-test

Implant Min Implant Min P = 0.8852
#1 DHS 14 DHS 16
#2 DHS 13 DHS 13
#3 DHS 18 DHS 17
#4 DHS 14 DHS 13
#5 DHS 13 DHS 12
Mean (SD) 14 (2) 14 (2)
#6 PFNA 28 PFNA 23
#7 PFNA 22 PFNA 24
#8 PFNA 28 PFNA 19
#9 PFNA 29 PFNA 22
#10 PFNA 20 PFNA 27
Mean (SD) 25 (4) 23 (3) P = 0.3171

744 W. Schaasberg et al. / Clinical Biomechanics 29 (2014) 742–746
2.4. Osteosynthesis

Simple and multifragmentary pertrochanteric (AO–A1 and AO–A2)
fractures were treated with a dynamic hip screw (DHS) with a 4 hole
plate and intertrochanteric (AO–A3) fractures were treated with a proxi-
mal femoral nail-antirotation (PFNA small, Synthes, Zuchwil, Switzerland,
length 200 mm) following AO guidelines. The column screws of both
the DHS and the PFNA were placed with a maximum tip apex dis-
tance of 25 mm, as noted in the study of Baumgaertner and Solberg
(Baumgaertner and Solberg, 1997). During the osteosynthesis proce-
dures, the operative time (min) and any technical difficulties during
the procedure were recorded.

2.5. Failure load following osteosynthesis

After osteosynthesis, each specimen was replaced in the load testing
machine in the same single leg stance configuration (Fig. 1). The actuator
movedwith a speed of 2mm/s and stoppedwhen an abrupt reduction in
load of 75% was detected. The recorded load was defined as failure load
(N). X-rays of all three stages, fracture after EF – osteosynthesis after EF
with fracture – after failure of osteosynthesis, are shown in Fig. 2.

2.6. Statistical analysis

Statistical analysis was done using SPSS (SPSS 16.0, SPSS Inc., Chicago,
IL, USA). Within the control and EF-groups, proximal femurs were
grouped according to implant used for osteosynthesis and descriptive
statistics including mean and standard deviation were used. In addition,
unpaired Student-T testswere performed to detect significant differences
in operative time and failure load between the EF-group (n=10) and the
control group (n = 10). P-values were considered significant when
b0.05.

3. Results

After loading in both groups five fractures were pertrochanteric and
fivewere intertrochanteric. In both the control-group and the EF-group,
five out of ten osteosynthesis procedures were performed with a DHS
and five out of ten procedures were performed with a PFNA (Table 1).
The overall mean (±SD) time to perform osteosynthesis was 20 (±6)
min in the control-group and 19 (±5) min in the EF-group. During
osteosynthesis of the fractured hip in the EF-group, no difficulties in-
cluding the need for additional instruments to remove elastomer from
the proximal femur were recorded.
Fig. 2. X-rays of the cadaveric femurs with (from left to right) fracture after
After osteosynthesis of the fractured hip no difference in overall
mean failure load was recorded between the control-group and the
EF-group (3783 ± 527 N and 3472 ± 754 N, respectively) (Table 2).
4. Discussion

The feasibility of performing standard osteosynthesis of a fractured
proximal femur after preventive elastomer femoroplasty was evaluated
in an in-vitro biomechanical study. We found no statistically significant
differences in either operative time to perform osteosynthesis or post-
operative energy-to-failure load between fractured human cadaveric
femurs that were beforehand treated with elastomer femoroplasty
and fractured proximal femurs without the elastomer stabilization. In
addition, no technical difficulties or the need for specific instrumenta-
tion to remove the elastomer was necessary for osteosynthesis of the
fracture in the elastomer femoroplasty group.

This feasibility study has certain limitations.We did not compare the
performance of osteosynthesis in fractured hips augmentedwith elasto-
mer with osteosynthesis in fractured hips reinforcedwith bone cement.
The concept of femoroplasty with polymethyl-methacrylate (i.e. bone
cement) as a prophylactic reinforcement of the femur has been intro-
duced previously (Heini et al., 2004; Sutter et al., 2010). Heini et al.
injected cement into osteoporotic cadaveric proximal femurs (Heini
et al., 2004). By doing so, peak fracture load for a simulated fall on the
hip was increased by 82%, with a corresponding increase in energy
EF; osteosynthesis after EF with fracture; after failure of osteosynthesis.

image of Fig.�2


Table 2
Failure load (N) after osteosynthesis of the proximal femurs in the control-group and the
elastomer femoroplasty (EF)-group, with either proximal femoral nail-antirotation
(PFNA) or dynamic hip screw (DHS).

Femur Control-group EF-group Unpaired
student
t-test

Implant Failure load (N) Implant Failure load (N)

#1 DHS 4510 DHS 3050
#2 DHS 3750 DHS 2450
#3 DHS 3200 DHS 5000
#4 DHS 3930 DHS 2670
#5 DHS 3200 DHS 3560
Mean (SD) 3718 (550) 3346 (1016) P = 0.4920
#6 PFNA 3200 PFNA 4050
#7 PFNA 3680 PFNA 3940
#8 PFNA 4740 PFNA 2900
#9 PFNA 3820 PFNA 3640
#10 PFNA 3800 PFNA 3460
Mean (SD) 3848 (558) 3598 (455) P = 0.5717
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absorption of up to+188%, compared to noninjected femurs, indicating
that cement augmentation might prevent hip fractures in elderly
patients. Unfortunately, cement augmentation was associated with
significant heat generation due to polymethyl-methacrylate poly-
merization. In addition, osteosynthesis of fractured femurs that
were beforehand reinforced with cement was a challenging procedure,
with particular difficulty recorded in the removal of the composite
(Beckmann et al., 2007).

As an alternative to bone cement to reinforce the proximal femur,
we introduced femoroplasty using polydimethylsiloxane (van der
Steenhoven et al., 2009), an elastomer which cures without exother-
mic heat (Ignjatovic et al., 2003; Khorasani et al., 2005). The resul-
tant construct stability of femoroplasty with elastomer is different
from that with bone cement. Unlike cement augmented femurs,
peak fracture load for a simulated fall on the hip in elastomer augment-
ed femurswas not significantly different from untreated control femurs
(van der Steenhoven et al., 2009). Dislocation according to neck shaft
angle was significantly reduced in the EF group (van der Steenhoven
et al., 2009; van der Steenhoven et al., 2011). Furthermore, during sub-
sequent cyclic loading, the failure load of fractured femurs stabilized by
elastomer femoroplasty was 2709 N (van der Steenhoven et al., 2012a)
—well exceeding the peak loads of approximately 1500–2025 N during
normal gait in a 75 kg individual (Bergmann et al., 2001; Kotzar et al.,
1991). These findings suggested that EF might both reduce initial
displacement of hip fractures at the time of injury as well as reduce
secondary displacement rates during subsequent conservative treat-
ment of undisplaced hip fractures. In contrast to the data available
on cement femoroplasty, we found in the present study that — if
surgical stabilization was necessary after all, i.e. in the event of
secondary dislocation — osteosynthesis of fractured femurs that were
preventively treated with EF is not associated with any additional
challenges.

In this cadaveric study, we did not evaluate the presence of debris
and its potential biological response elicited after osteosynthesis in EF
treated hips. Elastomer is already widely used in-vivo, e.g. for the aug-
mentation of nasal bones and in vascular grafts, because of its physio-
logical inert properties (Kheir et al., 1998; Spiller et al., 2007; van der
Steenhoven et al., 2012b). These studies did not show any biological
response. However, the biocompatibility of elastomer with the unique
environment of cortical and cancellous bone and the marrow space is
unknown. In addition, EF remains an invasive technique with possible
complications including emboli, infection and hematoma. Future
studieswill have to investigate the in-vivo behavior of elastomer in frac-
tured hips and subsequent osteosynthesis, and evaluate the cost-
benefits of the intervention. An additional limitation of this study was
that, similar to our previous experiments, we used fixed specimens
instead of fresh frozen cadaveric bones. We justified this choice of
material because contralateral side femurs were used for the control
group.

There was a large variability in failure loads after osteosynthesis
in the control-group and the EF-group (Table 2). A possible explana-
tion for this large spread in failure loads could be the differences in
hip geometry between individual proximal femora. Previous studies
using cadaveric materials also found large standard deviations in the
load to fracture (Heini et al., 2004; van der Steenhoven et al., 2009).
Finally, the study sample was relatively small and more cadavers
would be needed to reduce the chance of a possible type II error.
However, in the present feasibility study no clinically significant dif-
ficulties in performing osteosynthesis after stabilization with EF
were encountered.

In conclusion, duration of surgery, difficulty in performing the
osteosynthesis, and failure load after osteosynthesis of fractured proxi-
mal femurs that were stabilized with EF were comparable to the un-
treated contralateral femurs. This indicates that fixation with routine
osteosynthesis of secondary displaced cadaveric hip fractures is not
hindered by the presence of preventive EF.
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