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I. INTRODUCTION 

The class of infinitely divisible (I.D.) random variables has been studied 
extensively in the statistical literature, and increasing applications are being 
found for I.D. random variables in various areas of Engineering. Much less 
has been written about vector-valued I.D. variates, although the theory for 
the scalar and vector cases is essentially the same. The new factor in the 
vector case is the possibility of statistical dependence among the vector 
components. Not surprisingly, the correlation matrix is no longer an ade- 
quate description of that dependence. 

As shown in Section II, if X is a zero-mean I.D. random vector with 
components Xi, i = l,..., N, mutual independence of the Xi’s is implied 
by pairwise independence. In addition, variates are pairwise independent if 
their squmes are uncorrelated. In the special case of X being either normal or 
positive, noncorrelation of the variates is sufficient to imply independence. 

In proving the results above, a significant role is played by the parameter 

We show that 0 < rrU < (rr,i~ij)r/s and that when rzj attains its upper limit, 
Xi and Xj can be written as different linear combinations of the same four 
random variables. 

In Section III, some characterizations of normal and Poisson distributions 
are developed. It is shown that X is normal if and only if nTii = 0 for all i, and 
X has Poisson marginals if and only if TV, = 2EXi3 - EX,a for all i. These 
characterizations are used to obtain central limit theorems for sequences of 
I.D. variates and also for sequences of sums of “small” independent random 
variables. 

* The research reported here is taken from the report RM-6042, The RAND 
Corp., Washington D.C. 20037. 
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Finally, it is perhaps worth noting that the class of scalar I.D. variates is 
quite broad. It includes the normal, Poisson, and compound Poisson, as well 
as the gamma distribution, the related exponential and chi-square distribu- 
tions, and the double-exponential distributions. Some distributions which are 
not included are those with bounded support (i.e., for some positive 
il!i < co, P{[ X ] > M) = 0), those for which rrii < 0, and those whose 
characteristic function is zero at some point on the real line. 

II. MEASJRES OF INDEPENDENCE AND DEPENDENCE 
FOR INFINITELY DIVISIBLE VARIATES 

Perhaps the first problem to arise in the modem theory of probability is 
that of determining the asymptotic distribution of sums of the form 

where the Xnk’s are row vectors with components X,,,. , i = I,..., N, and for 
each n = 1, 2,..., the )Lnk’s are mutually independent with distribution func- 
tions F,,(x) and characteristic functions fne(u). It is further assumed that 
ES, = 0, Cov S, - r, and the Kk:‘s are asymptotically small (i.e., 
maxk.i Var Xeki -+ 0 as n -+ co). 

If {S,} has a limiting distribution function F(x) and characteristic function 
f(u), then there is a bounded measure M having no mass at the origin and 
such that for any Bore1 set B E RN whose closure does not contain the origin, 

M(B) = ;+i zl j”, xx’ dl7nrW, 

where x’ is the transpose of x. Furthermore, 

logf(u) = - uI’p’ + j (eiUx’ - 1 - iux’) (xx’)-l M(dx), (3) 

where I’1 is a positive definite matrix. The two terms of Eq. (3) correspond 
to independent random vectors, the first of which is normal with covariance 
matrix rl and the log of the characteristic function of the second is given by 
the integral of Eq. (3). 

Conversely, if the limit in Eq. (2) exists for all Bore1 sets, B, whose closure 
does not contain the origin, and if 

x’x dF,,(x) + rl + 
i 

x’x(xx’)-l M(dx), 
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then {S,) converges in distribution and its characteristic function is given by 
Eq. (3). A random variable with this characteristic function is an I.D. random 
variable, so called because a characteristic function can be put in this form 
if and only if for every integer p > 1 there exists a characteristic function 
g,(u) such that f(u) = (g,(u))“. 

These conclusions are taken partly from Feller ([l], Ch. XVII and p. 245) 
who gives explicit formulas for the two-dimensional case and also shows 
how the normal component of f(u) arises. A particularly good development 
for the special case of finite variances (the case we will consider) and finite 
fourth moments is given by Takano [2]. 

For any random vector X, define 

rij = EXi’Xj* - EXi*EXj” - 2(ELYiXj)2. (4) 

We see that if i = j, then nii is the fourth cumulant of X, , which is often 
written &(X,) = rli . As usual, pii will be the correlation coefficient. If X 
has characteristic function f(u), then 

?Tij = L lOgf(U) luco. at+* auj2 

LEMMA 1. If X is infinitely divisible withfinite (2n)th absolute moments, then 

~~<+~, 
au'Ti auTlj log f (u) lUEo = (i)ma+mj j x?x?(xx’)-l M(dx) 

I , 
(6) 

for all integers m, and mj such that m, + mj < 2n. 

Proof. First of all, the existence of the (2n)th absolute moments ensures 
the existence of the derivatives on the left-hand side of the equation. The 
(2n)th symmetric derivative can be written ([3], p. 199) 

/ & log f (0) / = Fz 1 ($$)“” $‘(xx’)-’ M(dx), 
2 e E 

(7) 

and by the Fatou-Lebesque theorem the right-side is greater than or equal to 

I x~(xx’)+ M(dx). 

Similarly, the integral of x3” with respect to (xx’)-l M(dx) is finite. Thus the 
integral which results from differentiation of Eq. (3) under the integral sign 
is absolutely convergent, and therefore the differentiation is justified. 

109/33/z-8 
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Characterization of Independence 

THEOREM 1. Let X be I.D. and let EX = 0. 

1. If X is normal, {Xi} are statistically independent if and only ;f pij = 0 
for all i, j such that i # j. 

2. If for some finite number M, P(X, > M) = 1 for all i, then (Xi) are 
statistically independent if and only ;f pij = 0 for all i, j such that i # j. 

3. In general, (Xi} are statistically independent if and only if 

EXi2Xj2 - EX;EXj2 = 0 

for all i, j sub that i # j. 

4. The nonnormal term of X has statistically independent components if and 
only if nil = 0 for all i, j such that i # j. 

Statement 1 is included for completeness. We also note that in all cases, 
pairwise independence implies mutual independence. 

Consider statement 3 above. That statistical independence implies 
EXi2XF - EX,zEX,z = 0 is well known. Conversely, from Eq. (6) we see 

that rrij is always positive. Thus if EXi2Xj2 - EXi2EXj2 = 0, then nij = 0, 
EX,X, = 0, and pij = 0. Consider 

(8) 

Since the integrand above is 0 only on the axes of RN, M can have mass 
only on the axes. In this case, M can be written as M = Cpl Mi , where Mi 
has mass only on the xi axis. If we let h(u, ,..., uN; x) be the integrand of 

Eq. (3), we have 

bgf (U) f UrlU’ = 1 h(u, ,.a., UN 9 X) 1 Mi(dx) 
I 

= T j- h(0 ,..., 0, ui , 0 ,..., 0; x) Mi(dx) 

= 7 J h(O,..., 0, Iii 9 O,..., 0; X) M(dX), 

(9) 

which is the sum of the log characteristic function of I.D. variates. Thus the 
nonnormal part of X has independent components, and the correlation of 
Xi and Xj equals the correlation of their normal components. Since pii = 0, 
r, is diagonal and {Xi} are mutually independent. 
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Statement 4 results from the argument above when pi, is not necessarily 0. 
To prove statement 2, we note that if the Xi’s are bounded from below 

(i.e., for some finite constant M, P{X, > M} = l), X can have no normal 
component; i.e., I’i = 0. Furthermore, M has mass only in the region in 
which all the xi’s are positive. To see this, we consider an M with a single 
mass point x, where one of the components of x is negative. The Xi corre- 
sponding to that component is a Poisson variate multiplied by a negative 
number; and P{X, > M} < 1 for all M > - cc. 

Finally, we consider 

1 pij = /,i,, --a f C xixj(xx’)-1 M(dx) = 0 
i.J ii 

(10) 

and proceed as before. 

A Measure of Dependence 

Our next result establishes rrii as a measure of dependence for I.D. random 
variables. 

THEOREM 2. Let Xi and Xj be jointly I.D.; let EX, = EXj = 0; and 
let rl be null. Then 

7rij < (Trii7rjj)l~2. (11) 

Equality holds if and only if there exist independent random variables X+ and X- 
such that EX+ = EX- = 0 and the distribution of (Xi , Xj) is the same as 
(X+ + X-, Y(X+ - X-)), where r = (7rjj/~ii)1/4. 

Proof. We use the inequality 

2x .=xj2 < I 12x .a + 1 r-2x .4 3 

for any constant r. 
Integrating both sides with respect to (xx’)-l M gives 27rij 4 r2rii + ye2mjj 

for all r. The right-hand side is minimum when r* = rjj/rrai . Substituting 
yields Eq. (11). 

On the other hand, if rfj = niinjj , 

(Y2xi4 + rm2xi4 - 2x,“+) (xx’)-1 M(dx) = 0 (12) 

for r4 = rrjj/mii . Since the integrand is positive, it must therefore be 0 almost 
everywhere. Thus only in the regions xj = f rxi will A4 have positive mass. 
Here, M is defined on the plane R2. 
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Since M has no mass at the origin it can be decomposed, M = Mf + M-, 

so that M+ has mass only when xi = rxi , and M- has mass only when 
xj = - rxi . On some probability space define X+ and X- as independent 
random variables having log characteristic functions 

c’(u) z.Y 1 [gusi - 1 - iuxi] (xi” + xi”)-‘M+(dx) 

and 

c-(u) = j [eiUZi - 1 - iuxi] (xi” + x:)-l M-(dx), 

respectively. Let 

10gfjj(u, , uj) = log E exp[iu,(X+ + X-) + 2+(X+ - X-)] 

= log E exp[i(u, + ruj) X+] + log E exp[i(ui - YU~) X-1 

= [eiuizl+iwjr* s - 1 - i(ui + rq) xi] (xi” + x:)-l M+(dx) 

+ J” k izix+uTjzi - 1 - i(u, - ruj) xi] (xi2 + xj2)-l M-(&). 
(13) 

Since M+ has mass only when xj = rxi , replace yxi by xi in the first term; 
replace - rxi by Xj in the second term. Then 

logfii(u, , uj) = J [eiu~z~+iu’s’ J J - 1 - z&xi - iuixj] (xi” + xj2)-l M(dx), (14) 

and the proof is complete. 
Theorem 2 remains true when rr is not null, except that (X, , Xi) are 

distributed as (Zi + X+ + X-, Zj + rX+ - rX-), where (Zi , Zi) are jointly 
normal. Of course, Zi and Zj can be written as different linear combinations 
of independent normal variates. 

The bound in Eq. (11) makes rrij a legitimate measure of dependence 
between variates Xi and Xj with no normal component. When ~~j/~rli~jj is 
small compared to 1, it is reasonable to infer that the dependence between Xi 
and Xj is small. Without the bound, to say that 7rii is small or large would not 
be meaningful. 

Of course, the correlation coefficient of Xi2 and Xi2 is also a measure of 
dependence, since when it is 0, X, and Xj are independent, and when it is 1, 
there is a constant C such that Xi2 = CXj2 with probability 1. 
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III. CENTRAL LIMIT THEOREMS 

Before proving certain central limit theorems, we will show some character- 
izations of jointly normal and jointly Poisson variates. 

Some Characterizations 

LEMMA 2. Let X be I.D. with EX = 0; X is normal if and only if rii = 0 
for all i. 

Proof. Consider 

T nii = j c x:(XX’)-1 M&x) = 0. 

2 

Since M has no mass at the origin (Eq. (3)) and the integrand is zero only at 
the origin, M is the zero measure. Conversely, if X is normal, then nii = 0 
for all i. 

Notation. A zero-mean Poisson variate is one whose characteristic 
function is exp[-ih + heiU - A]. 

LEMMA 3. Let X be I.D. with EX = 0; X is Poisson (i.e., jointly I.D. with 
Poisson marginah) if and only ;f nii - 2EX,3 + EX,” = 0 for all i. 

Proof. It is easy to show that when Xi is a zero-mean Poisson variate, 
nii = 2EXi3 - EXi2. Conversely, the characteristic function of Xi can be 
written 

where K(rJ is a monotonic function which, however, may have a step at 
the origin. 

rrTTii - 2EXi3 + EXiz = * (xi - 1)’ dK(xJ 
J 

1 0 

implies that K increases only at xi = 1, and thus Xi is a zero-mean Poisson 
variate. 

LEMMA 4. Let X be I.D. with EX = 0; {Xi} are mutually independent 
and Poisson if and only if rrTii - 2EXi3 + EXi2 = 0 for all i, and EX,X, = 0 
for all i, j such that i # j. 
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Proof. Since mii = 2EXi’ - EX,z, Xi has no normal component. Con- 
sider 

; (~ii - 2EX,3 + EXi2) = [ c xi2(xi - 1)2 (XX’)-’ M(&) 
= 0. 

Thus M(dx) has mass only when ail the xi’s are either 0 or 1. However, mass 
at the origin is excluded in the definition of M. Finally, 

C EXiXi = l C xdXj(xx’)-l M(dX) 
i.i i.i 
ifj ifi 

= 0. 

Since the mass of M occurs only at points such that a11 coordinates are greater 
than or equal to 0, and since the integrand is positive at any point x where 
more than one coordinate is positive, M(dx) has mass only on the axes. Now, 
using the same arguments as in Theorem 1, we see that {Xi) are independent. 

To characterize I.D. distributions corresponding to measures, M, more 
complicated than those we have considered would require more complicated 
moments. For example, if X is a scalar variate whose log characteristic 
function is 

s 
(eiux - 1 - kv) x-2 dK(x), 

and if kj is the jth cumulant of X, 

kj = (- i)j T& logfx(u) luzO , 

then X = Xc + X, where X, is normal, and X, is Poisson if and only if 
k, - 2, + k4 = 0. In this case, k4 will be equal to the size of the jump of 
K(x) at x = 1, which means that Var X, = k, . Similarly, Var 
Xc = k4 - 2k, + k, or Var Xc = k, - k, . 

Central Limit Theorems 

The characterizations discussed above are related to certain central limit 
theorems for I.D. variates and the sums of Eq. (1). Consider a sequence of 
I.D. random vectors X, = (Xnl ,..., X,,) with characteristic function 

logfn(u) = - uI;,u’ + f (einx’ - 1 - iux’) (XX’)-l M,(dx). (16) 
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Takano [2] has shown that fn(u) -f(u) if M,(B) -+ M(B) for all bounded 
Bore1 sets, B, whose closure does not contain the origin and 

rln + I - x’x(xx’)-1 M,(dx) --+ l-1 + s x’x(xx’)-1 M(dx). 
Similarly, for the sequence S, (Eq. (l)), &(u) -+f(~) if 

g1 j, @II dl;,k(X) - M(B) 
1 

for all bounded Bore1 sets, B, whose closure does not contain the origin and 

%j x’x dF,,(x) 3 r1 + x’x(xx’)-1 kqdx). 
%=l f 

THEOREM 3. X, , n = 1, 2 ,..., aye I.D. oariates, and Cov(X,J -+ I’. Then, 

1. X, is asymptotically normal if aii(Xni) + 0 as n --+ 00. 

2. X, is asymptotically Poisson if N < 2, Xii(X*i) - 2EXS,i + EXii + 0 
as n -+ co, and m12(Xnl , X,,) -+ 0. 

Proof of statement 1. Consider 

s ,,,,,M”(dd G $ j,,,, (1~~)~ (xx’)-l M,(dx) c 

as tr + c/3. Thus M,({x : ( x ( > G)) - 0. The proof is complete. 

Proof of Statement 2. Consider 

R,={x:(x]>aand]xi--l]>>fori= 1,2} 

and 

j 
Rl 

M,(dx) f f j c xj2(xI - 1)2 (xx’)-l M,(dx) 
1 

< f C (~!7i, - 2EX$ + EX$) 
z 

-+O 
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jR*M,(dX) < $ j c "~"xjyxx')-' M,(dx) 
i.j iri 

as n -+ cc. Therefore lim A&, is a zero measure in every region excluding the 
origin, except perhaps on the axes near the points Xi = 1. 

By an argument similar to that of Lemma 3, it can be shown that 
nii(X,J - 2EX$ + EX:, + 0 implies that the marginal distributions of 
Xni are asymptotically Poisson. Therefore, r,, --+ 0 as n + co, and 

s 
Xi2(XX’)-1 M,(dX) + Var Xi 

Is*-lI<E 

for all E > 0. Since M, is asymptotically 0 in regions in which more than one 
component of x is greater than E and since the integrand is less than or equal 
to 1, the integral may be reduced to 

s 
,x-e ,, < @(xx’)-l MJdx) -+ Var Xi , 

I 6 

where ei is either (0, 1) or (1,O). Since this is true for all E > 0, we have shown 
that 111, converges to the proper limit, and the proof is complete. 

Sufficient conditions for the distribution function of scalar I.D. variates 
(XJ to converge to the convolution of a normal and Poisson distribution 
can be obtained using the characterization discussed previously. It can be 
shown that if /z&X,) - 2&(X,) + kl(Xn) + 0 and both R&X,) and k,(X,) 
are convergent, then X,, converges in distribution to X = X, + Xc , where 
Var X, = lim k,(X,) and Var X, = lim R2(Xn) - lim &(X,J. 

To prove limit theorems for sums of the form of Eq. (l), we need simply 
apply the comparison Lemma (see ([3], p. 291) or [2]). 

COMPARISON LEMMA. Let S, be the sum of Eq. (1) and let S,’ be a random 
vector with I.D. law 

log fn’ = 1 (eiux - 1 - iux) C @&x); 
k 

then ES,’ = ES, , Var S,’ = Var S, , and (logf, - logfn’> - 0. 
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Theorem 3 provides sufficient conditions for the convergence of I.D. 
vrariates. Since these conditions involve only moments, they are also sufficient 
for the convergence of S, . 

THEOREM 4. Let S, be suwu of the form of Eq. (1) with ES, = 0, 
Cov S, - I’, and max,,i Var X,,ki --, 0 as n --, Z. 

I. S, is asymptotically normal ;f iTii(Sni) + 0 as n + Co for all i. 

2. S, is asymptotically Poisson ifN < 2 and mii(S,i) - 2ES,,fi + ESti + 0 
as n --f co for all i and T~~(S,,~ , S,,) + 0. 

The conditions of Theorem 4 may be restated in terms of moments of 
Xnk as follovis: 

Since max,,i EX:,, ---f 0 as n---f 00, C (EXikJ2 < maxk,i EXf& Var (Sni) -+ 0 
as n -+ cc. Therefore, the condition max,., EXiti + 0 together with 

c EX;,, -+O 
k=l 

(for all i) 

implies rrii(S,J + 0. The condition above is the Liapunov condition. In 
fact, one can show that the Liapunov condition implies max,,i EXEki + 0 
and thus also implies nii(S,J + 0. 

Similarly, 

li+~(~~i(S,;) - 2ESzi + ES:,) = liz C [rii(Xnki) - 2EXEki + EXzk,] 
kl 

= !i+i c EX;,,(Xn,, - I)‘, 
k=l 

and 

n,j(S,f 9 Snj) = C nij(xnki t xnkj), 

k=l 

= c [EX;tkiX,kj ~- EXzkiEXikj - 2(EX,,,X,,,)*]. 
k=l 

One can show that the last two sums are asymptotically 0, so that 
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The results of Theorems 3 and 4 are generalizations of results already 
reported in Pierre [4]. 

IV. APPLICATIONS 

Suppose a collection of M airborne targets are illuminated by N different 
radiation sources having N different frequencies. At each source is a receiver 
which receives only echoes from its corresponding source. The received data 
are often modeled as a random process (see Karp, et al. [5]): 

where M is a Poisson-distributed random variable with mean h, and (tm> 
are a collection of time delays reflecting the spatial distribution of the targets. 
The t,‘s are assumed to be independent and uniformly distributed over the 
time period of interest. Finally &t) 3 0, pi(t) is the vector random process 
representing the signatures of the first scatterer when illuminated by the 
N different sources, and c&t), G = 1, 2 ,..., are independent and identically 
distributed signatures corresponding to independent scatterers. For the 
purpose of illustration, we take the case of N = 2 and look at X(0): 

and 

where &, = p)Jtm). Let H(x, , x2) be the joint distribution function of 

(Am ,9s,,J for m > 0. Then, 

logf(u, , &) = log &wl(O)~“~2~~(0) 
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logf(u, , Us) = x 
SI 

(eitirZi+iUzQ - 1 - iU,X, - iU.$*) dH(.r, ) xs). (20) 

It is now clear that X(0) is jointly I.D., and M(dx) = X&r’) &2(x, , x2). 
One problem which arises in this context is that of choosing the frequencies 

of the sources so as to maximize the amount of new information contained 
in each additional frequency band about any desired target. One approach 
to the problem would be to minimize the amount of redundant information 
about the target. (This is not equivalent to the original problem, of course.) 
If the X(t) processes were normal, this could be accomplished by minimizing 
the correlation coefficients pij , thus making Xi and Xj approach statistical 
independence. In the general nonnormal situation, minimizing pij may or may 
not be relevant. However, the results of Section II show that in the I.D. case, 
minimizing EaYi2Xj2 - EXipEXj2 causes Xi and Xj to approach statistical 
independence. 

Next, consider the situation in which the number of targets is large; 
i.e., h is large. The notion of a central limit theorem is often invoked in order 
to verify that the random processes Xi(t) are approximately normal. However, 
certain conditions must be satisfied in order for this to be possible. A simple 
physical argument will illustrate a situation in which the necessary conditions 
for the central limit theorem are violated. Assume that we have a large number 
of scatterers, but that each is highly directional. In this case, most of the 
scatterers will contribute very little to Xi(t), and only a few will make signi- 
ficant contributions. The process Xi(t) will look more like a shot-noise 
process (i.e., a small number of impulses) than a normal process. Thus Xi(t) 
is approximately normal only if the scatterers are not highly directional. The 
conditions of Section III allow this constraint to be expressed mathematically. 

Finally, we note that the results of Section III allow all of the results of 
[6] to be extended to the vector case. In ([6], Sec. III), the author considered 
scalar processes X(t) defined by Eq. (17), except that the functions pi(t) and 
cpj(t) were not required to be statistically independent. This allows for some 
coupling among the scatterers. In this case, X(t) is called a conditionally 
linear process. Such conditionally linear processes are often appropriate as 
models of clutter from dense, statistically coupled scatterers. 

REFERENCES 

1. W. FELLER, “An Introduction to Probability Theory and its Applications, Vol. II,” 
John Wiley and Sons Inc., New York, 1966. 

2. K. TAKANO, Multidimensional central limit criterion in the case of bounded 
variances, Ann. Inst. of Statist. Math. 2 (1956), 81-94. 



354 PIERRE 

3. M. LOBVE, “Probability Theory,” 3d ed., D. Van Nostrand Company, Princeton, 
New Jersey, 1963. 

4. P. A. PIERRE, New conditions for central limit theorems, Ann. Math. Stat. 40 
(1969), 319-321. 

5. S. KAFW, R. M. GAGLIARDI, AND I. S. REED, Radiation models using discrete 
radiator ensembles, Proc. IEEE 56 (1968), 1704-1711. 

6. P. A. PIERRE, Central limit theorems for conditionally linear random processes, 
with applications to models of radar clutter, Report RM-6013-PR, The RAND 
Corp., April 1969. 


