

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 341 (2002) 391-402

www.elsevier.com/locate/laa

Variation of induced linear operators^{π}

Rajendra Bhatia ^{a,*}, J.A. Dias da Silva ^b

^aIndian Statistical Institute, 7 S.J.S. Sansanwal Marg, New Delhi 110016, India ^bDepartamento de Matemática, da Universidade de Lisboa-CELC, Av Gama Pinto 2, 1699 Lisboa Codex, Portugal

Received 19 February 2001; accepted 30 August 2001

Submitted by M.J. Tsatsomeros

Dedicated to T. Ando

Abstract

Let *V* be an *n*-dimensional inner product space. Let λ be an irreducible character of the symmetric group S_m , and let V_{λ} be the symmetry class of tensors associated with it. Let *A* be a linear operator on *V* and let $K_{\lambda}(A)$ be the operator it induces on V_{λ} . We obtain an explicit expression for the norm of the derivative of the map $A \to K_{\lambda}(A)$ in terms of the singular values of *A*. Two special cases of this problem—antisymmetric and symmetric tensor products—have been studied earlier, and our results reduce to the earlier ones in these cases. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: Symmetry class of tensors; Induced linear operator; Derivative; Norm; Positive linear operator

1. Introduction

Let $\mathscr{L}(V)$ be the space of bounded linear operators on a Hilbert space *V*. The norm of an element *A* of $\mathscr{L}(V)$ is defined as

 $||A|| = \sup \{ ||Av|| : v \in V, ||v|| = 1 \}.$

In this paper V is finite-dimensional. Then ||A|| is the largest singular value of A.

[★] This work was supported by grants from the National Board for Higher Mathematics, India, and Fundação para a Ciência e Tecnologia, Portugal.

^{*} Corresponding author.

E-mail address: rbh@isid.ac.in (R. Bhatia).

^{0024-3795/02/}\$ - see front matter © 2002 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3 7 9 5 (0 1) 0 0 4 9 6 - 7

Functions $f : \mathcal{L}(V) \to \mathcal{L}(W)$ are studied often in different contexts. Sometimes f is defined on an open subset of $\mathcal{L}(V)$ such as the set of invertible operators. In perturbation theory, numerical analysis, and physics, one often wants to know the effect of changes in A on f(A). When the map f is differentiable, it is helpful to have estimates of the norm of its derivative. The derivative of f at A is a linear map Df(A) from $\mathcal{L}(V)$ into $\mathcal{L}(W)$ and its norm is defined as

$$\|Df(A)\| = \sup\left\{\|Df(A)(B)\| \colon B \in \mathscr{L}(V), \|B\| = 1\right\}.$$
(1)

Estimates of this lead to first-order perturbation bounds for *f*. See the discussion in [1, Chapter X] and the papers [4,6,15,17] for different perspectives on this question. Recall that

$$Df(A)(B) = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} f(A+tB).$$
⁽²⁾

Since *A* and *B* do not always commute several difficulties arise in estimating ||Df(A)||. Finding *exact* values of ||Df(A)|| is even more difficult, and very few such results are known. Some of them have led to intriguing questions [5,7].

In this paper we obtain exact formulas for ||Df(A)|| when f(A) is any of the operators induced by A on a symmetry class of tensors corresponding to the (full) symmetric group. Two special cases have been studied earlier [2,3]. To put our results in perspective we first recall these results. We need some basic facts, notations, and terminology of multilinear algebra. Further details may be found in [12] or [13].

Let dim V = n, and for $A \in \mathscr{L}(V)$ let

$$v_1 \ge v_2 \ge \cdots \ge v_n \ge 0$$

be the singular values of *A*. Let $\otimes^m V = V \otimes V \otimes \cdots \otimes V$ be the *m*-fold tensor power of *V* and let $\otimes^m A$ be the corresponding tensor power of *A*. It is easy to see that [2]

$$\|D \otimes^{m} (A)\| = m \|A\|^{m-1}.$$
(3)

Now let $1 \le m \le n$, let $\wedge^m V$ be the subspace of $\otimes^m V$ consisting of antisymmetric tensors, and let $\wedge^m A$ be the restriction of $\otimes^m A$ to this subspace. This is sometimes called the exterior power of A or the Grassmann power of A. In [2] it was shown that

$$\|D \wedge^{m} (A)\| = s_{m-1}(\nu_{1}, \nu_{2}, \dots, \nu_{m}),$$
(4)

where s_{m-1} is the (m-1)th elementary symmetric polynomial in v_1, \ldots, v_m ; i.e.,

$$s_{m-1}(\nu_1, \dots, \nu_m) = \sum_{\substack{j=1 \ i=1 \\ i \neq j}}^m \prod_{\substack{i=1 \\ i \neq j}}^m \nu_i.$$
 (5)

The corresponding problem for the symmetric tensor power $\vee^m A$ (obtained by restricting $\otimes^m A$ to the space $\vee^m V$ of symmetric tensors) was studied in [3], where it was shown that

$$\|D \vee^{m} (A)\| = m \|A\|^{m-1} = m \nu_{1}^{m-1},$$
(6)

and a speculation was made about a general result that would subsume (4) and (6). The precise formulation and proof of such a result is the principal outcome of this paper.

Let S_m be the symmetric group of degree *m*. Each element σ of S_m gives rise to a linear operator $P(\sigma)$ on $\otimes^m V$. This is defined as

$$P(\sigma)(v_1 \otimes v_2 \otimes \cdots \otimes v_m) = v_{\sigma^{-1}(1)} \otimes v_{\sigma^{-1}(2)} \otimes \cdots \otimes v_{\sigma^{-1}(m)}$$
(7)

on decomposable tensors and then extended linearly to all of $\otimes^m V$.

The map $\sigma \to P(\sigma)$ is a unitary representation of S_m in $\otimes^m V$. In other words, $P(\sigma_1)P(\sigma_2) = P(\sigma_1\sigma_2)$ and $P(\sigma)^{-1} = P(\sigma^{-1}) = P(\sigma)^*$.

Let G be a subgroup of S_m , and let λ be an irreducible character of G. Let

$$T(G,\lambda) = \frac{\lambda \,(\mathrm{id})}{|G|} \sum_{\sigma \in G} \lambda(\sigma) P(\sigma),\tag{8}$$

where id stands for the identity element and |G| for the order of the group G. This linear operator on $\otimes^m V$ is an orthoprojector and is called a *symmetriser map*. Its range is called the *symmetry class of tensors* associated with λ and G.

We will study symmetry classes associated with the full symmetric group $G = S_m$. Then the alternating character $\lambda(\sigma) = \varepsilon_{\sigma}$ (the signature of the permutation σ) leads to the symmetry class $\wedge^m V$; whereas the principal character $\lambda(\sigma) \equiv 1$ leads to the symmetry class $\vee^m V$.

There is a standard canonical correspondence between irreducible characters of S_m and partitions of the integer *m* [10]. We use the same symbol λ to denote an irreducible character and the corresponding partition. Recall that a partition π of *m* is a *k*-tuple of positive integers $\pi = (\pi_1, \ldots, \pi_k)$ such that $\pi_1 \ge \cdots \ge \pi_k$ and $\pi_1 + \cdots + \pi_k = m$. For convenience we think of a partition of *m* also as an *m*-tuple with nonnegative integer entries by putting some zeros at the end if necessary. We adopt a similar convention for decreasing sequences of nonnegative real numbers. If $\lambda = (1, \ldots, 1)$, then $V_{\lambda}(S_m) = \wedge^m V$; and if $\lambda = (m, 0, \ldots, 0)$, then $V_{\lambda}(S_m) = \bigvee^m V$.

Let $\ell(\lambda)$ be the length of the partition λ —this is the number of nonzero entries in λ . For each $1 \leq t \leq m$ we denote by $\lambda_{(t)}$ the *m*-tuple defined as

$$\lambda_{(t)} = \begin{cases} (\lambda_1, \dots, \lambda_{t-1}, \lambda_t - 1, \lambda_{t+1}, \dots, \lambda_m) & \text{if } t \leq \ell(\lambda), \\ (\lambda_1, \dots, \lambda_{t-1}, -\infty, \lambda_{t+1}, \dots, \lambda_m) & \text{if } \ell(\lambda) < t. \end{cases}$$
(9)

Given any *n*-tuple of nonnegative real numbers $(\nu_1, \nu_2, ..., \nu_n)$, and a *k*-tuple $(\gamma_1, ..., \gamma_k)$ whose entries are either nonnegative integers or $-\infty$, we define ν^{γ} as

$$\nu^{\gamma} = \nu_1^{\gamma_1} \nu_2^{\gamma_2} \cdots \nu_n^{\gamma_n}$$

with the convention that $a^0 = 1$ and $a^{-\infty} = 0$ for every nonnegative *a*.

Now let λ be a partition of *m* and let $\ell(\lambda) \leq n$. Put

$$S_{\lambda,\nu} = \lambda_1 \nu^{\lambda_{(1)}} + \lambda_2 \nu^{\lambda_{(2)}} + \dots + \lambda_m \nu^{\lambda_{(m)}}.$$
(10)

Note that if $\lambda = (1, 1, \dots, 1)$, then

$$S_{\lambda,\nu} = \sum_{\substack{j=1\\i\neq j}}^{m} \prod_{\substack{i=1\\i\neq j}}^{m} \nu_i = s_{m-1}(\nu_1,\ldots,\nu_m).$$

If $\lambda = (m, 0, ..., 0)$, then

$$S_{\lambda,\nu}=m\nu_1^{m-1}.$$

Now return to symmetry classes of tensors. It is well known that $V_{\lambda}(S_m) \neq \{0\}$ if and only if $\ell(\lambda) \leq n$; see [14]. Given any $A \in \mathcal{L}(V)$ we denote by $K_{\lambda}(A)$ the restriction of the operator $\otimes^m A$ to the subspace $V_{\lambda}(S_m)$. This is called the operator *induced* by A on the symmetry class $V_{\lambda}(S_m)$. Our principal result is the following theorem.

Theorem 1. Let V be an n-dimensional Hilbert space. Let m be a positive integer. Let λ be a partition of m such that $\ell(\lambda) \leq n$. Let $A \to K_{\lambda}(A)$ be the map that associates to each element A of $\mathscr{L}(V)$ the induced operator $K_{\lambda}(A)$ on the symmetry class $V_{\lambda}(S_m)$. Then the norm of the derivative of this map at A is given by the formula

$$\|DK_{\lambda}(A)\| = S_{\lambda,\nu},\tag{11}$$

where $v_1 \ge v_2 \ge \cdots \ge v_n$ are the singular values of A, and $S_{\lambda,v}$ is the polynomial defined by (10).

Note that Theorem 1 includes as very special cases the results (4) and (6) obtained in [2,3].

To guide the reader through the proof we highlight its salient features. Let A have the singular value decomposition $A = U_1 P U_2$. Using the unitary invariance of the norm and of the singular values one sees that $||DK_{\lambda}(A)|| = ||DK_{\lambda}(P)||$. So, one may replace A by the positive diagonal matrix P. Then one observes that $DK_{\lambda}(P)$ is a positive linear map between two matrix algebras. By a general theorem of Russo and Dye, such a map between any two unital C^* -algebras attains its norm at the identity *I*. This simplifies our calculations immensely because we do not have to consider arbitrary A and B in expression (2) for derivatives. Even after this simplification some difficulties remain. While in the special examples $\wedge^m V$ and $\vee^m V$ good orthonormal bases corresponding to the standard basis in V can be found immediately, this is not the case in other symmetry classes. We explain how a suitable basis may be chosen for our purposes. This choice leads to a partition of m; and finally we have to study the relation between this partition and λ , and the corresponding functions $S_{\lambda,\nu}$. Here we prove a majorisation theorem that is of interest in its own right.

The idea of replacing A by P in calculating $||D \wedge^{k} (A)||$ occurs in [2]. It is also shown there that $\|D \wedge^k (P)\| = \|D \wedge^k (P)(I)\|$. The idea of proving the same result using completely positive maps is due to Sunder [16].

394

2. Preliminaries

Given a symmetriser map $T(G, \lambda)$ let

 $v_1 * v_2 * \cdots * v_m = T(G, \lambda)(v_1 \otimes v_2 \otimes \cdots \otimes v_m).$

These vectors belong to $V_{\lambda}(G)$ and are called decomposable symmetrised tensors.

Let $\Gamma_{m,n}$ be the set of all maps from the set $\{1, \ldots, m\}$ into the set $\{1, \ldots, n\}$. This set can be identified with the collection of all multiindices $\{(i_1, \ldots, i_m): 1 \leq i, j \leq n\}$. If $\alpha \in \Gamma_{m,n}$, this correspondence associates the index $(\alpha(1), \ldots, \alpha(m))$ with it. We order $\Gamma_{m,n}$ by the lexicographic order.

Every subgroup *G* of *S_m* acts on $\Gamma_{m,n}$ by the action $(\sigma, \alpha) \rightarrow \alpha \sigma^{-1}, \sigma \in G, \alpha \in \Gamma_{m,n}$. The subgroup G_{α} of *G* defined as

$$G_{\alpha} = \left\{ \sigma \in G : \alpha \sigma = \alpha \right\}$$

is called the *stabiliser* of α .

Let $\{e_1, \ldots, e_n\}$ be a basis of V. Then $\{e_{\alpha}^{\otimes} := e_{\alpha(1)} \otimes \cdots \otimes e_{\alpha(m)} : \alpha \in \Gamma_{m,n}\}$ is a basis for $\otimes^m V$. Hence the set

$$\left\{e_{\alpha}^{*}:=T(\lambda,G)e_{\alpha}^{\otimes}:\alpha\in\Gamma_{m,n}\right\}$$

spans the space $V_{\lambda}(G)$. However, the elements of this set need not be linearly independent. Some of them may even be zero. Let

$$\Omega = \Omega_{\lambda} = \left\{ \alpha \in \Gamma_{m,n} : \sum_{\sigma \in G_{\alpha}} \lambda(\sigma) \neq 0 \right\}.$$
(12)

It is easy to see that

$$\|e_{\alpha}\|^2 = \frac{\lambda \text{ (id)}}{|G|} \sum_{\sigma \in G_{\alpha}} \lambda(\sigma).$$

So the set $\{e_{\alpha}^* : \alpha \in \Omega\}$ consists of the nonzero elements of $\{e_{\alpha}^* : \alpha \in \Gamma_{m,n}\}$.

Let Δ be the system of distinct representatives for the set $\Gamma_{m,n}/G$, constructed by choosing the smallest element (in the lexicographic order) from each orbit. Let

$$\overline{\varDelta} = \overline{\varDelta}_{\lambda} = \varDelta \cap \Omega_{\lambda}.$$

It can be proved that $\{e_{\alpha}^* : \alpha \in \overline{\Delta}\}$ is a linearly independent set. Since the set $\{e_{\alpha}^* : \alpha \in \Omega\}$ spans $V_{\lambda}(G)$ there exists a set $\widehat{\Delta}$ such that $\overline{\Delta} \subseteq \widehat{\Delta} \subseteq \Omega$ and

$$\left\{ e_{\alpha}^{*}:\alpha\in\widehat{\varDelta}\right\} \tag{13}$$

is a basis for $V_{\lambda}(G)$, not necessarily orthonormal. See [13] for details.

Each element α of $\Gamma_{m,n}$ gives rise to a partition of *m* in the following way. Let range $\alpha = \{i_1, \ldots, i_\ell\}$, where i_1, \ldots, i_ℓ are labelled in such a way that

$$|\alpha^{-1}(i_1)| \ge |\alpha^{-1}(i_2)| \ge \cdots \ge |\alpha^{-1}(i_\ell)|.$$

Then

$$\mu^{(\alpha)} := \left(|\alpha^{-1}(i_1)|, |\alpha^{-1}(i_2)|, \dots, |\alpha^{-1}(i_\ell)| \right)$$
(14)

is a partition of m of length ℓ .

On the set of partitions of *m*, we define a partial order \prec as follows: we say that $\mu \prec \lambda$ if for all $1 \leq k \leq m$

$$\sum_{j=1}^k \mu_j \leqslant \sum_{j=1}^k \lambda_j.$$

(This is the usual *majorisation* order between *m*-tuples [1] when we identify partitions with *m*-tuples.) We will need the following theorem of Merris [14].

Theorem 2 (Merris). Let λ be a partition of m and α an element of $\Gamma_{m,n}$. Let Ω_{λ} and $\mu^{(\alpha)}$ be as defined in (12) and (14). Then $\alpha \in \Omega_{\lambda}$ if and only if $\mu^{(\alpha)} \prec \lambda$.

Let λ , μ be two partitions of *m*. We say that $\mu \triangleleft \lambda$, if there exist indices $i, j \in \{1, ..., m\}$ such that

(i)
$$i < j$$
;

(ii) $\mu_i = \lambda_i - 1$, $\mu_j = \lambda_j + 1$, and $\lambda_k = \mu_k$ for $k \neq i, j$;

(iii) either i = j - 1 or $\mu_i = \mu_j$.

We will need the following result [10, p. 24].

Proposition 3. If $\mu \prec \lambda$, then there exists a sequence of partitions $\lambda^{(1)}, \lambda^{(2)}, \ldots, \lambda^{(k)}$ such that

 $\mu = \lambda^{(1)} \triangleleft \lambda^{(2)} \triangleleft \cdots \triangleleft \lambda^{(k)} = \lambda.$

For brevity we say that $A \in \mathcal{L}(V)$ is *positive* if it is positive semidefinite. A linear map $\Phi : \mathcal{L}(V) \to \mathcal{L}(W)$ is called *positive* if it maps positive elements of $\mathcal{L}(V)$ into positive elements of $\mathcal{L}(W)$. We say that Φ is unital if $\Phi(I) = I$.

Positive linear maps Φ enjoy a very special property: $\|\Phi\| = \|\Phi(I)\|$. This is a consequence of the well-known Russo–Dye Theorem [11] valid in *C**-algebras.

3. Proofs

Let $V_{\lambda} = V_{\lambda}(S_m)$ be the symmetry class of tensors associated with λ and let K_{λ} : $\mathscr{L}(V) \to \mathscr{L}(V_{\lambda})$ be the induced map. For brevity let $D_{\lambda}(A, B) = DK_{\lambda}(A)(B)$, the image of *B* under the derivative $DK_{\lambda}(A)$. Then $D_{\lambda}(A, B)$ is the restriction to V_{λ} of the operator on $\otimes^m V$ defined as

$$D(A, B) := B \otimes A \otimes A \otimes \cdots \otimes A + A \otimes B \otimes A \otimes \cdots \otimes A$$
$$+ \cdots + A \otimes \cdots \otimes A \otimes B.$$

Note that if A and B are positive, then so is D(A, B).

Let $A = U_1 P U_2$ be the singular value decomposition of A. Using unitary invariance of the norm and the fact that $K_{\lambda}(U)$ is unitary if U is unitary, we see that

$$||DK_{\lambda}(A)|| = ||DK_{\lambda}(P)||.$$

From the description above it is clear that $DK_{\lambda}(P)$ is a positive linear map. Hence by the Russo–Dye Theorem

$$||DK_{\lambda}(A)|| = ||D_{\lambda}(P, I)||.$$
(15)

So we have to calculate the maximum eigenvalue of $D_{\lambda}(P, I)$. We will do this by finding a basis for V_{λ} in which $D_{\lambda}(P, I)$ is diagonal. Then the diagonal entries of this matrix are the eigenvalues of $D_{\lambda}(P, I)$; our basis need not be orthonormal for this.

Let $\alpha \in \Gamma_{m,n}$ and let $\mu^{(\alpha)}$ be the partition of length ℓ associated with α as in (14). Let

$$\nu_{\alpha} = (\nu_{i_1}, \dots, \nu_{i_{\ell}}) \tag{16}$$

be the largest (in the lexicographic order) sequence such that (i_1, \ldots, i_ℓ) satisfies (14). (For example, if $\ell = 4$ and $|\alpha^{-1}(6)| = |\alpha^{-1}(7)| > |\alpha^{-1}(4)| = |\alpha^{-1}(3)|$, then $\nu_\alpha = (\nu_6, \nu_7, \nu_3, \nu_4)$.)

Given any partition λ , let ω_{λ} be the element of $\Gamma_{m,n}$ defined as

$$\omega_{\lambda} = \left(\underbrace{1, \dots, 1}_{\lambda_1 \text{ times}}, \underbrace{2, \dots, 2}_{\lambda_2 \text{ times}}, \dots, \underbrace{\ell(\lambda), \dots, \ell(\lambda)}_{\lambda_{\ell(\lambda)} \text{ times}}\right).$$
(17)

Then clearly

$$\mu^{(\omega_{\lambda})} = (\lambda_1, \dots, \lambda_{\ell(\lambda)}) = \lambda, \quad \nu_{\omega_{\lambda}} = (\nu_1, \dots, \nu_{\ell(\lambda)}).$$
(18)

Proposition 4. Let P be a positive linear operator on V, and suppose $E = \{e_1, \ldots, e_n\}$ is an orthonormal basis for V in which the matrix of P is diagonal with diagonal entries $v_1 \ge \cdots \ge v_n$. Let $\{e_{\alpha}^* : \alpha \in \widehat{\Delta}\}$ be a basis for V_{λ} as in (13). Then in this basis $D_{\lambda}(P, I)$ is diagonal and its (α, α) entry is

$$D_{\lambda}(P,I)_{\alpha,\alpha} = \sum_{\substack{j=1\\i\neq j}}^{m} \prod_{\substack{i=1\\i\neq j}}^{m} \nu_{\alpha(i)} = S_{\mu^{(\alpha)},\nu_{\alpha}}, \quad \alpha \in \widehat{\varDelta}.$$
 (19)

Proof. Recall that for any $\alpha \in \Gamma_{m,n}$

$$e_{\alpha}^{*} = \frac{\lambda(\mathrm{id})}{m!} \sum_{\sigma \in S_{m}} \lambda(\sigma) e_{\alpha\sigma}^{\otimes}$$

Note that

$$D_{\lambda}(P,I)\left(\sum_{\sigma}\lambda(\sigma)e_{lpha\sigma}^{\otimes}\right)$$

$$= D(P, I) \left(\sum_{\sigma} \lambda(\sigma) e_{\alpha\sigma}^{\otimes} \right)$$

= $(I \otimes P \otimes P \otimes \dots \otimes P) \left(\sum_{\sigma} \lambda(\sigma) e_{\alpha\sigma}^{\otimes} \right)$
+ $\dots + (P \otimes P \otimes \dots \otimes I) \left(\sum_{\sigma} \lambda(\sigma) e_{\alpha\sigma}^{\otimes} \right)$
= $\left(\sum_{\sigma} \lambda(\sigma) \prod_{i=2}^{m} \nu_{\alpha\sigma(i)} e_{\alpha\sigma}^{\otimes} \right) + \dots + \left(\sum_{\sigma} \lambda(\sigma) \prod_{i=1}^{m-1} \nu_{\alpha\sigma(i)} e_{\alpha\sigma}^{\otimes} \right).$

For each $1 \leq k \leq m$

$$\prod_{\substack{i=1\\i\neq j}}^{m} \nu_{\alpha\sigma(i)} = \prod_{\substack{i=1\\i\neq\sigma(j)}}^{m} \nu_{\alpha(i)}.$$

This shows that

$$D_{\lambda}(P, I)e_{\alpha}^{*} = \left(\sum_{\substack{j=1 \ i=1 \\ i \neq j}}^{m} \prod_{\substack{i=1 \\ i \neq j}}^{m} \nu_{\alpha(i)}\right)e_{\alpha}^{*}.$$

Thus the matrix of $D_{\lambda}(P, I)$ in the basis $\{e_{\alpha}^* : \alpha \in \widehat{\Delta}\}$ is diagonal with entries given in (19).

By definitions (14) and (19)

$$\begin{split} \sum_{j=1}^{m} \prod_{\substack{i=1\\i\neq j}}^{m} v_{\alpha(i)} &= \mu_{1}^{(\alpha)} v_{i_{1}}^{\mu_{1}^{(\alpha)}-1} v_{i_{2}}^{\mu_{2}^{(\alpha)}} \cdots v_{i_{\ell}}^{\mu_{\ell}^{(\alpha)}} + \mu_{2}^{(\alpha)} v_{i_{1}}^{\mu_{1}^{(\alpha)}} v_{i_{2}}^{\mu_{2}^{(\alpha)}-1} \cdots v_{i_{\ell}}^{\mu_{\ell}^{(\alpha)}} \\ &+ \cdots + \mu_{\ell}^{(\alpha)} v_{i_{1}}^{\mu_{1}^{(\alpha)}} v_{i_{2}}^{\mu_{2}^{(\alpha)}} \cdots v_{i_{\ell}}^{\mu_{\ell}^{(\alpha)}-1} \\ &= S_{\mu^{(\alpha)} v_{\alpha}}. \quad \Box \end{split}$$

Proposition 5. Let λ and μ be partitions of m, and let $v_1 \ge \cdots \ge v_m \ge 0$ be any decreasing sequence of nonnegative numbers. If $\mu \prec \lambda$, then $S_{\mu,\nu} \le S_{\lambda,\nu}$.

Proof. By Proposition 3, it is enough to prove this when $\mu \triangleleft \lambda$. Assume $\nu_m > 0$; the general case follows from this by continuity.

Use the notations as in definition of $\mu \lhd \lambda$, before Proposition 3. Then for $k \neq i, j$

$$\lambda_k v^{\lambda_{(k)}} = \lambda_k v_k^{\lambda_k - 1} \prod_{r \neq k} v_r^{\lambda_r}$$

398

$$= \mu_k v_k^{\mu_k - 1} \prod_{r \neq k} v_r^{\lambda_r}$$

$$\geq \mu_k v_k^{\mu_k - 1} \left[\prod_{r \neq i, j, k} v_r^{\lambda_r} \right] v_i^{\lambda_i - 1} v_j^{\lambda_j + 1}$$

$$= \mu_k v_k^{\mu_k - 1} \prod_{r \neq k} v_r^{\mu_r}$$

$$= \mu_k v^{\mu(k)}.$$

Next note that

$$\begin{split} \left[\lambda_{i}v^{\lambda_{(i)}} + \lambda_{j}v^{\lambda_{(j)}}\right] &- \left[\mu_{i}v^{\mu_{(i)}} + \mu_{j}v^{\mu_{(j)}}\right] \\ &= \frac{v^{\lambda}}{v_{i}^{2}v_{j}} \left[\lambda_{i}v_{i}v_{j} + \lambda_{j}v_{i}^{2} - (\lambda_{i} - 1)v_{j}^{2} - (\lambda_{j} + 1)v_{i}v_{j}\right] \\ &= \frac{v^{\lambda}}{v_{i}^{2}v_{j}} \left[(\lambda_{i} - 1)v_{i}v_{j} - (\lambda_{i} - 1)v_{j}^{2} + \lambda_{j}(v_{i}^{2} - v_{i}v_{j})\right] \\ &\geqslant \frac{v^{\lambda}}{v_{i}^{2}v_{j}} \left[(\lambda_{i} - 1)(v_{i}v_{j} - v_{j}^{2})\right] \quad (\text{since } v_{i}^{2} \geqslant v_{i}v_{j}) \\ &\geqslant 0 \quad (\text{since } \lambda_{i} = \mu_{i} + 1 \geqslant 1). \end{split}$$

Taken together, the two inequalities we have obtained, prove the proposition. \Box

Let $\lambda = (\lambda_1, \dots, \lambda_\ell, 0, \dots, 0)$ be a partition of *m*. Then we denote by λ^* the partition of $m - \ell$ given as

$$\lambda^* = (\lambda_1^*, \ldots, \lambda_{m-\ell}^*),$$

where $\lambda_i^* = \lambda_i - 1$ if $i \leq \ell$ and $\lambda_i^* = 0$ if $i > \ell$.

Given an *m*-tuple $(\theta_1, \ldots, \theta_m)$ of real numbers we denote by θ^{\downarrow} its decreasing rearrangement; i.e., $\theta^{\downarrow} = (\theta_1^{\downarrow}, \ldots, \theta_m^{\downarrow})$, where $\theta_1^{\downarrow} \ge \cdots \ge \theta_m^{\downarrow}$ are the numbers $\theta_1, \ldots, \theta_m$ rearranged. We use the notation $\nu \ge \theta$ to mean $\nu_j \ge \theta_j$ for all *j*.

Proposition 6. Let v, θ be m-tuples of nonnegative real numbers such that v is decreasing and $v \ge \theta^{\downarrow}$. Then for every partition λ of m we have $S_{\lambda,\nu} \ge S_{\lambda,\theta}$.

Proof. Note first that

$$\nu^{\lambda} \ge (\theta^{\downarrow})^{\lambda} \ge \theta^{\lambda}. \tag{20}$$

For any *m*-tuple $\rho = (\rho_1, \dots, \rho_m)$ of nonnegative real numbers let

$$T_{\lambda,\rho} = \sum_{i=1}^{m} \rho^{\lambda_{(i)}}.$$

Then, bearing in mind that $\lambda_{(i)}(i) = -\infty$ if $i > \ell$ we have

$$T_{\lambda,\rho} = \sum_{i=1}^{\ell} \rho^{\lambda_{(i)}}$$

= $\rho_1^{\lambda_1 - 1} \rho_2^{\lambda_2 - 1} \cdots \rho_{\ell}^{\lambda_{\ell} - 1} (\rho_2 \cdots \rho_{\ell} + \rho_1 \rho_3 \cdots \rho_{\ell} + \cdots + \rho_1 \cdots \rho_{\ell-1})$
= $\rho^{\lambda^*} s_{\ell-1}(\rho_1, \dots, \rho_{\ell}),$

where $s_{\ell-1}$ is the $(\ell - 1)$ th elementary symmetric polynomial in ℓ variables. So from (20) and using the symmetry of $s_{\ell-1}$ we have

$$T_{\lambda,\nu} \geqslant T_{\lambda,\theta}.$$
 (21)

Next note that

$$S_{\lambda,\rho} = T_{\lambda,\rho} + (\lambda_1 - 1)\rho^{\lambda_{(1)}} + (\lambda_2 - 1)\rho^{\lambda_{(2)}} + \dots + (\lambda_\ell - 1)\rho^{\lambda_{(\ell)}}$$

$$= T_{\lambda,\rho} + \rho_1 \cdots \rho_\ell \left(\lambda_1^* \rho^{\lambda_{(1)}^*} + \dots + \lambda_{m-\ell}^* \rho^{\lambda_{(m-\ell)}^*}\right)$$

$$= T_{\lambda,\rho} + \rho_1 \cdots \rho_\ell S_{\lambda^*,\rho}.$$
 (22)

We prove the assertion $S_{\lambda,\nu} \ge S_{\lambda,\theta}$ by induction on the integer λ_1 . If $\lambda_1 = 1$, then

 $S_{\lambda,\nu} = s_{m-1}(\nu_1,\ldots,\nu_m) \ge s_{m-1}(\theta_1,\ldots,\theta_m) = S_{\lambda,\theta}.$

If $\lambda_1 > 1$, use (22) to write

$$S_{\lambda,\nu} = T_{\lambda,\nu} + \nu_1 \cdots \nu_\ell S_{\lambda^*,\nu}.$$

Then use (21), the inequalities $\nu \ge \theta^{\downarrow}$, and the induction hypothesis to conclude that $S_{\lambda,\nu} \ge S_{\lambda,\theta}$. \Box

Combining Propositions 5 and 6 we have:

Proposition 7. Let v, θ be *m*-tuples of nonnegative real numbers such that v is decreasing and $\theta^{\downarrow} \leq v$. Let λ, μ be partitions of *m* such that $\mu \prec \lambda$. Then

$$S_{\mu,\theta} \leqslant S_{\lambda,\nu}.$$

Proof of Theorem 1. By Proposition 4, the matrix of $D_{\lambda}(P, I)$ is diagonal in the basis $\{e_{\alpha}^* : \alpha \in \widehat{A}\}$, and the diagonal elements are given by $S_{\mu^{(\alpha)},\nu_{\alpha}}$.

Let ω_{λ} be the element of $\Gamma_{m,n}$ associated with λ by (17). Then $\omega_{\lambda} \in \overline{\Delta} \subseteq \widehat{\Delta}$. By the proof of Proposition 4, we also have $D_{\lambda}(P, I)_{\omega_{\lambda},\omega_{\lambda}} = S_{\lambda,\nu}$ (see the relations (18)). So $||D_{\lambda}(P, I)|| \ge S_{\lambda,\nu}$.

By Theorem 2, $\mu^{(\alpha)} \prec \lambda$. It is obvious that $\nu_{\alpha}^{\downarrow} \leq \nu$. Hence $S_{\mu^{(\alpha)},\nu_{\alpha}} \leq S_{\lambda,\nu}$ by Proposition 7.

Since $S_{\mu^{(\alpha)},\nu_{\alpha}}$, $\alpha \in \widehat{A}$, is an enumeration of all the eigenvalues of the positive operator $D_{\lambda}(P, I)$, this implies $||D_{\lambda}(P, I)|| \leq S_{\lambda,\nu}$. Thus $||D_{\lambda}(P, I)|| = S_{\lambda,\nu}$. Use (15) to complete the proof. \Box

4. Remarks

1. Using standard results of Calculus [1, Chapter X] we can obtain from Theorem 1 perturbation bounds for K_{λ} . Thus we have for *B* close to *A* the first-order perturbation bound

$$\|K_{\lambda}(A) - K_{\lambda}(B)\| \leq S_{\lambda,\nu} \|A - B\| + O(\|A - B\|^2).$$
(23)

2. Given an irreducible character λ of S_m , let

$$d_{\lambda}(A) = \frac{1}{\lambda(\mathrm{id})} \sum_{\sigma \in S_m} \lambda(\sigma) \prod_{j=1}^m a_{j\sigma(j)}.$$

This is called an *immanant* of *A*. These functions are important in representation theory and combinatorics.

Let m = n. When $\lambda(\sigma) = \varepsilon(\sigma)$ the function d_{λ} is the determinant, and when $\lambda(\sigma) \equiv 1$, it is the permanent. It is well known that we can choose an orthonormal basis for $V_{\lambda}(S_n)$ such that $d_{\lambda}(A)$ is one of the diagonal entries of $K_{\lambda}(A)$ in this basis. So from (23) we obtain

$$|d_{\lambda}(A) - d_{\lambda}(B)| \leq S_{\lambda,\nu} ||A - B|| + O(||A - B||^2).$$
(24)

3. For simplicity we have restricted our discussion to symmetry classes associated with the full symmetric group. Similar results can be obtained for general symmetry classes. Let *G* be a subgroup of S_m and let λ be a complex irreducible character of *G*. Denote by π_{λ} the multilinearity partition of λ [8]. Using arguments similar to those that have been used to prove Theorem 1 and the results in [9], we can see that

 $\|DK_{\lambda}(A)\| \leqslant S_{\pi_{\lambda},\nu}.$

Furthermore if the inner product $(\pi_{\lambda}, \lambda)_G$ is different from zero, then it can be proved that

$$\|DK_{\lambda}(A)\| = S_{\pi_{\lambda},\nu}.$$

Acknowledgement

This work was done while the second author had a visiting position at the Indian Statistical Institute, New Delhi. He thanks the Institute for its wonderful hospitality.

References

- [1] R. Bhatia, Matrix Analysis, Springer, New York, 1997.
- [2] R. Bhatia, S. Friedland, Variation of Grassmann powers and spectra, Linear Algebra Appl. 40 (1981) 11–18.

- [3] R. Bhatia, Variation of symmetric tensor powers and permanents, Linear Algebra Appl. 62 (1984) 269–276.
- [4] R. Bhatia, Matrix factorisations and their perturbations, Linear Algebra Appl. 197/198 (1994) 245–276.
- [5] R. Bhatia, K.B. Sinha, Variation of real powers of positive operators, Indiana Univ. Math. J. 43 (1994) 913–925.
- [6] R. Bhatia, K.B. Sinha, Derivations, derivatives and chain rules, Linear Algebra Appl. 302/303 (1999) 231–234.
- [7] R. Bhatia, J.A. Holbrook, Fréchet derivatives of the power function, Indiana Univ. Math. J. 49 (2000) 1155–1173.
- [8] J.A. Dias da Silva, A. Fonseca, On the multilinearity partition of an irreducible character, Linear and Multilinear Algebra 20 (1987) 203–218.
- [9] J.A. Dias da Silva, A. Fonseca, Nonzero star products, Linear and Multilinear Algebra 27 (1990) 49–55.
- [10] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, New York, 1981.
- [11] R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, vol. 4, Birkhäuser, Boston, MA, 1992.
- [12] M. Marcus, Finite Dimensional Multilinear Algebra—Part I, Marcel Dekker, New York, 1973.
- [13] R. Merris, Multilinear Algebra, Gordon and Breach, Amsterdam, 1997.
- [14] R. Merris, Nonzero decomposable symmetrized tensors, Linear Algebra and Appl. 17 (1977) 287–292.
- [15] G.K. Pedersen, Operator differentiable functions, Publ. Res. Inst. Math. Sci. Kyoto 36 (2000) 139–157.
- [16] V.S. Sunder, A noncommutative analogue of $D|X|^k = k|X|^{k-1}$, Linear Algebra Appl. 44 (1982) 87–95.
- [17] M. Suzuki, Quantum analysis—non-commutative differential calculi, Commun. Math. Phys. 183 (1997) 339–363.