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Abstract

Let V be an n-dimensional inner product space. Let λ be an irreducible character of the
symmetric group Sm, and let Vλ be the symmetry class of tensors associated with it. Let
A be a linear operator on V and let Kλ(A) be the operator it induces on Vλ. We obtain an
explicit expression for the norm of the derivative of the map A → Kλ(A) in terms of the
singular values of A. Two special cases of this problem—antisymmetric and symmetric tensor
products—have been studied earlier, and our results reduce to the earlier ones in these cases.
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1. Introduction

Let L(V ) be the space of bounded linear operators on a Hilbert space V. The
norm of an element A of L(V ) is defined as

‖A‖ = sup
{‖Av‖: v ∈ V, ‖v‖ = 1

}
.

In this paper V is finite-dimensional. Then ‖A‖ is the largest singular value of A.
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Functions f : L(V ) → L(W) are studied often in different contexts. Sometimes
f is defined on an open subset of L(V ) such as the set of invertible operators. In
perturbation theory, numerical analysis, and physics, one often wants to know the
effect of changes in A on f (A). When the map f is differentiable, it is helpful to have
estimates of the norm of its derivative. The derivative of f at A is a linear map Df (A)
from L(V ) into L(W) and its norm is defined as

‖Df (A)‖ = sup
{‖Df (A)(B)‖: B ∈ L(V ), ‖B‖ = 1

}
. (1)

Estimates of this lead to first-order perturbation bounds for f. See the discussion in
[1, Chapter X] and the papers [4,6,15,17] for different perspectives on this question.

Recall that

Df (A)(B) = d

dt

∣∣∣∣
t=0

f (A + tB). (2)

Since A and B do not always commute several difficulties arise in estimating ‖Df (A)‖.
Finding exact values of ‖Df (A)‖ is even more difficult, and very few such results are
known. Some of them have led to intriguing questions [5,7].

In this paper we obtain exact formulas for ‖Df (A)‖ when f (A) is any of the
operators induced by A on a symmetry class of tensors corresponding to the (full)
symmetric group. Two special cases have been studied earlier [2,3]. To put our results
in perspective we first recall these results. We need some basic facts, notations, and
terminology of multilinear algebra. Further details may be found in [12] or [13].

Let dimV = n, and for A ∈ L(V ) let

ν1 � ν2 � · · · � νn � 0

be the singular values of A. Let ⊗mV = V ⊗ V ⊗ · · · ⊗ V be the m-fold tensor pow-
er of V and let ⊗mA be the corresponding tensor power of A. It is easy to see that
[2]

‖D ⊗m (A)‖ = m‖A‖m−1. (3)

Now let 1 � m � n, let ∧mV be the subspace of ⊗mV consisting of antisymmet-
ric tensors, and let ∧mA be the restriction of ⊗mA to this subspace. This is sometimes
called the exterior power of A or the Grassmann power of A. In [2] it was shown that

‖D ∧m (A)‖ = sm−1(ν1, ν2, . . . , νm), (4)

where sm−1 is the (m − 1)th elementary symmetric polynomial in ν1, . . . , νm; i.e.,

sm−1(ν1, . . . , νm) =
m∑

j=1

m∏
i=1
i /=j

νi . (5)

The corresponding problem for the symmetric tensor power ∨mA (obtained by re-
stricting ⊗mA to the space ∨mV of symmetric tensors) was studied in [3], where it
was shown that

‖D ∨m (A)‖ = m‖A‖m−1 = mνm−1
1 , (6)
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and a speculation was made about a general result that would subsume (4) and (6).
The precise formulation and proof of such a result is the principal outcome of this
paper.

Let Sm be the symmetric group of degree m. Each element σ of Sm gives rise to a
linear operator P(σ) on ⊗mV . This is defined as

P(σ)(v1 ⊗ v2 ⊗ · · · ⊗ vm) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(m) (7)

on decomposable tensors and then extended linearly to all of ⊗mV .
The map σ → P(σ) is a unitary representation of Sm in ⊗mV . In other words,

P(σ1)P (σ2) = P(σ1σ2) and P(σ)−1 = P(σ−1) = P(σ)∗.
Let G be a subgroup of Sm, and let λ be an irreducible character of G. Let

T (G, λ) = λ (id)

|G|
∑
σ∈G

λ(σ)P (σ ), (8)

where id stands for the identity element and |G| for the order of the group G. This
linear operator on ⊗mV is an orthoprojector and is called a symmetriser map. Its
range is called the symmetry class of tensors associated with λ and G.

We will study symmetry classes associated with the full symmetric group G =
Sm. Then the alternating character λ(σ) = εσ (the signature of the permutation σ )
leads to the symmetry class ∧mV ; whereas the principal character λ(σ) ≡ 1 leads to
the symmetry class ∨mV .

There is a standard canonical correspondence between irreducible characters of
Sm and partitions of the integer m [10]. We use the same symbol λ to denote an
irreducible character and the corresponding partition. Recall that a partition π of
m is a k-tuple of positive integers π = (π1, . . . , πk) such that π1 � · · · � πk and
π1 + · · · + πk = m. For convenience we think of a partition of m also as an m-tuple
with nonnegative integer entries by putting some zeros at the end if necessary. We
adopt a similar convention for decreasing sequences of nonnegative real numbers.
If λ = (1, . . . , 1), then Vλ(Sm) = ∧mV ; and if λ = (m, 0, . . . , 0), then Vλ(Sm) =
∨mV .

Let �(λ) be the length of the partition λ—this is the number of nonzero entries in
λ. For each 1 � t � m we denote by λ(t) the m-tuple defined as

λ(t) =
{
(λ1, . . . , λt−1, λt − 1, λt+1, . . . , λm) if t � �(λ),

(λ1, . . . , λt−1,−∞, λt+1, . . . , λm) if �(λ) < t.
(9)

Given any n-tuple of nonnegative real numbers (ν1, ν2, . . . , νn), and a k-tuple
(γ1, . . . , γk) whose entries are either nonnegative integers or −∞, we define νγ as

νγ = ν
γ1
1 ν

γ2
2 · · · νγnn

with the convention that a0 = 1 and a−∞ = 0 for every nonnegative a.
Now let λ be a partition of m and let �(λ) � n. Put

Sλ,ν = λ1ν
λ(1) + λ2ν

λ(2) + · · · + λmν
λ(m) . (10)

Note that if λ = (1, 1, . . . , 1), then
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Sλ,ν =
m∑

j=1

m∏
i=1
i /=j

νi = sm−1(ν1, . . . , νm).

If λ = (m, 0, . . . , 0), then

Sλ,ν = mνm−1
1 .

Now return to symmetry classes of tensors. It is well known that Vλ(Sm) /= {0}
if and only if �(λ) � n; see [14]. Given any A ∈ L(V ) we denote by Kλ(A) the
restriction of the operator ⊗mA to the subspace Vλ(Sm). This is called the operator
induced by A on the symmetry class Vλ(Sm). Our principal result is the following
theorem.

Theorem 1. Let V be an n-dimensional Hilbert space. Let m be a positive inte-
ger. Let λ be a partition of m such that �(λ) � n. Let A → Kλ(A) be the map that
associates to each element A of L(V ) the induced operator Kλ(A) on the symme-
try class Vλ(Sm). Then the norm of the derivative of this map at A is given by the
formula

‖DKλ(A)‖ = Sλ,ν, (11)

where ν1 � ν2 � · · · � νn are the singular values of A, and Sλ,ν is the polynomial
defined by (10).

Note that Theorem 1 includes as very special cases the results (4) and (6) obtained
in [2,3].

To guide the reader through the proof we highlight its salient features. Let A have
the singular value decomposition A = U1PU2. Using the unitary invariance of the
norm and of the singular values one sees that ‖DKλ(A)‖ = ‖DKλ(P )‖. So, one may
replace A by the positive diagonal matrix P. Then one observes that DKλ(P ) is a
positive linear map between two matrix algebras. By a general theorem of Russo and
Dye, such a map between any two unital C∗-algebras attains its norm at the identity
I. This simplifies our calculations immensely because we do not have to consider
arbitrary A and B in expression (2) for derivatives. Even after this simplification
some difficulties remain. While in the special examples ∧mV and ∨mV good ortho-
normal bases corresponding to the standard basis in V can be found immediately,
this is not the case in other symmetry classes. We explain how a suitable basis
may be chosen for our purposes. This choice leads to a partition of m; and finally
we have to study the relation between this partition and λ, and the corresponding
functions Sλ,ν . Here we prove a majorisation theorem that is of interest in its own
right.

The idea of replacing A by P in calculating ‖D ∧k (A)‖ occurs in [2]. It is also
shown there that ‖D ∧k (P )‖ = ‖D ∧k (P )(I )‖. The idea of proving the same result
using completely positive maps is due to Sunder [16].
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2. Preliminaries

Given a symmetriser map T (G, λ) let

v1 ∗ v2 ∗ · · · ∗ vm = T (G, λ)(v1 ⊗ v2 ⊗ · · · ⊗ vm).

These vectors belong to Vλ(G) and are called decomposable symmetrised tensors.
Let �m,n be the set of all maps from the set {1, . . . , m} into the set {1, . . . , n}.

This set can be identified with the collection of all multiindices {(i1, . . . , im) : 1 �
i, j � n}. If α ∈ �m,n, this correspondence associates the index (α(1), . . . , α(m))

with it. We order �m,n by the lexicographic order.
Every subgroup G of Sm acts on �m,n by the action (σ, α) → ασ−1, σ ∈ G, α ∈

�m,n. The subgroup Gα of G defined as

Gα = {
σ ∈ G : ασ = α

}
is called the stabiliser of α.

Let {e1, . . . , en} be a basis of V. Then {e⊗
α := eα(1) ⊗ · · · ⊗ eα(m) : α ∈ �m,n} is

a basis for ⊗mV . Hence the set{
e∗
α := T (λ,G)e⊗

α : α ∈ �m,n

}
spans the space Vλ(G). However, the elements of this set need not be linearly inde-
pendent. Some of them may even be zero. Let

� = �λ =
α ∈ �m,n :

∑
σ∈Gα

λ(σ ) /= 0

 . (12)

It is easy to see that

‖eα‖2 = λ (id)

|G|
∑
σ∈Gα

λ(σ ).

So the set {e∗
α : α ∈ �} consists of the nonzero elements of {e∗

α : α ∈ �m,n}.
Let � be the system of distinct representatives for the set �m.n/G, constructed by

choosing the smallest element (in the lexicographic order) from each orbit. Let

� = �λ = � ∩ �λ.

It can be proved that {e∗
α : α ∈ �} is a linearly independent set. Since the set {e∗

α :
α ∈ �} spans Vλ(G) there exists a set �̂ such that � ⊆ �̂ ⊆ � and{

e∗
α : α ∈ �̂

}
(13)

is a basis for Vλ(G), not necessarily orthonormal. See [13] for details.
Each element α of �m,n gives rise to a partition of m in the following way. Let

rangeα = {i1, . . . , i�}, where i1, . . . , i� are labelled in such a way that

|α−1(i1)| � |α−1(i2)| � · · · � |α−1(i�)|.
Then
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µ(α) := (|α−1(i1)|, |α−1(i2)|, . . . , |α−1(i�)|
)

(14)

is a partition of m of length �.
On the set of partitions of m, we define a partial order ≺ as follows: we say that

µ ≺ λ if for all 1 � k � m

k∑
j=1

µj �
k∑

j=1

λj .

(This is the usual majorisation order between m-tuples [1] when we identify parti-
tions with m-tuples.) We will need the following theorem of Merris [14].

Theorem 2 (Merris). Let λ be a partition of m and α an element of �m,n. Let �λ and
µ(α) be as defined in (12) and (14). Then α ∈ �λ if and only if µ(α) ≺ λ.

Let λ,µ be two partitions of m. We say that µ� λ, if there exist indices i, j ∈
{1, . . . , m} such that

(i) i < j ;
(ii) µi = λi − 1, µj = λj + 1, and λk = µk for k /= i, j ;

(iii) either i = j − 1 or µi = µj .
We will need the following result [10, p. 24].

Proposition 3. If µ ≺ λ, then there exists a sequence of partitions λ(1), λ(2), . . . , λ(k)

such that

µ = λ(1) � λ(2) � · · · � λ(k) = λ.

For brevity we say that A ∈ L(V ) is positive if it is positive semidefinite. A linear
map � : L(V ) → L(W) is called positive if it maps positive elements of L(V ) into
positive elements of L(W). We say that � is unital if �(I ) = I .

Positive linear maps � enjoy a very special property: ‖�‖ = ‖�(I )‖. This is a
consequence of the well-known Russo–Dye Theorem [11] valid in C∗-algebras.

3. Proofs

Let Vλ = Vλ(Sm) be the symmetry class of tensors associated with λ and let Kλ :
L(V ) → L(Vλ) be the induced map. For brevity let Dλ(A,B) = DKλ(A)(B), the
image of B under the derivative DKλ(A). Then Dλ(A,B) is the restriction to Vλ of
the operator on ⊗mV defined as

D(A,B) :=B ⊗ A ⊗ A ⊗ · · · ⊗ A + A ⊗ B ⊗ A ⊗ · · · ⊗ A

+ · · · + A ⊗ · · · ⊗ A ⊗ B.

Note that if A and B are positive, then so is D(A,B).
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Let A = U1PU2 be the singular value decomposition of A. Using unitary invari-
ance of the norm and the fact that Kλ(U) is unitary if U is unitary, we see that

‖DKλ(A)‖ = ‖DKλ(P )‖.
From the description above it is clear that DKλ(P ) is a positive linear map. Hence
by the Russo–Dye Theorem

‖DKλ(A)‖ = ‖Dλ(P, I)‖. (15)

So we have to calculate the maximum eigenvalue of Dλ(P, I). We will do this by
finding a basis for Vλ in which Dλ(P, I) is diagonal. Then the diagonal entries of
this matrix are the eigenvalues of Dλ(P, I); our basis need not be orthonormal for
this.

Let α ∈ �m,n and let µ(α) be the partition of length � associated with α as in (14).
Let

να = (νi1 , . . . , νi�) (16)

be the largest (in the lexicographic order) sequence such that (i1, . . . , i�) satisfies
(14). (For example, if � = 4 and |α−1(6)| = |α−1(7)| > |α−1(4)| = |α−1(3)|, then
να = (ν6, ν7, ν3, ν4).)

Given any partition λ, let ωλ be the element of �m,n defined as

ωλ = (
1, . . . , 1︸ ︷︷ ︸
λ1 times

, 2, . . . , 2︸ ︷︷ ︸
λ2 times

, . . . , �(λ), . . . , �(λ)︸ ︷︷ ︸
λ�(λ) times

)
. (17)

Then clearly

µ(ωλ) = (λ1, . . . , λ�(λ)) = λ, νωλ = (ν1, . . . , ν�(λ)). (18)

Proposition 4. Let P be a positive linear operator on V, and suppose E = {e1, . . . ,

en} is an orthonormal basis for V in which the matrix of P is diagonal with diagonal
entries ν1 � · · · � νn. Let {e∗

α : α ∈ �̂} be a basis for Vλ as in (13). Then in this
basis Dλ(P, I) is diagonal and its (α, α) entry is

Dλ(P, I)α,α =
m∑

j=1

m∏
i=1
i /=j

να(i) = Sµ(α),να
, α ∈ �̂. (19)

Proof. Recall that for any α ∈ �m,n

e∗
α = λ(id)

m!
∑
σ∈Sm

λ(σ )e⊗
ασ .

Note that

Dλ(P, I)

(∑
σ

λ(σ )e⊗
ασ

)
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= D(P, I)

(∑
σ

λ(σ )e⊗
ασ

)

= (I ⊗ P ⊗ P ⊗ · · · ⊗ P)

(∑
σ

λ(σ )e⊗
ασ

)

+ · · · + (P ⊗ P ⊗ · · · ⊗ I )

(∑
σ

λ(σ )e⊗
ασ

)

=
(∑

σ

λ(σ )

m∏
i=2

νασ(i)e
⊗
ασ

)
+ · · · +

(∑
σ

λ(σ )

m−1∏
i=1

νασ(i)e
⊗
ασ

)
.

For each 1 � k � m

m∏
i=1
i /=j

νασ(i) =
m∏
i=1

i /=σ(j)

να(i).

This shows that

Dλ(P, I)e∗
α =

 m∑
j=1

m∏
i=1
i /=j

να(i)

 e∗
α.

Thus the matrix of Dλ(P, I) in the basis {e∗
α : α ∈ �̂} is diagonal with entries given

in (19).
By definitions (14) and (19)

m∑
j=1

m∏
i=1
i /=j

να(i) =µ
(α)
1 ν

µ
(α)
1 −1

i1
ν
µ
(α)
2

i2
· · · νµ

(α)
�

i�
+ µ

(α)
2 ν

µ
(α)
1

i1
ν
µ
(α)
2 −1

i2
· · · νµ

(α)
�

i�

+ · · · + µ
(α)
� ν

µ
(α)
1

i1
ν
µ
(α)
2

i2
· · · νµ

(α)
� −1

i�

= Sµ(α)να
. �

Proposition 5. Let λ and µ be partitions of m, and let ν1 � · · · � νm � 0 be any
decreasing sequence of nonnegative numbers. If µ ≺ λ, then Sµ,ν � Sλ,ν .

Proof. By Proposition 3, it is enough to prove this when µ� λ. Assume νm > 0;
the general case follows from this by continuity.

Use the notations as in definition of µ� λ, before Proposition 3. Then for k /= i, j

λkν
λ(k) = λkν

λk−1
k

∏
r /=k

νλrr
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= µkν
µk−1
k

∏
r /=k

νλrr

� µkν
µk−1
k

 ∏
r /= i,j,k

νλrr

 ν
λi−1
i ν

λj+1
j

= µkν
µk−1
k

∏
r /=k

νµr
r

= µkν
µ(k) .

Next note that[
λiν

λ(i) + λjν
λ(j)

] − [
µiν

µ(i) + µjν
µ(j)

]
= νλ

ν2
i νj

[
λiνiνj + λjν

2
i − (λi − 1)ν2

j − (λj + 1)νiνj
]

= νλ

ν2
i νj

[
(λi − 1)νiνj − (λi − 1)ν2

j + λj (ν
2
i − νiνj )

]
� νλ

ν2
i νj

[
(λi − 1)(νiνj − ν2

j )
]

(since ν2
i � νiνj )

� 0 (since λi = µi + 1 � 1).

Taken together, the two inequalities we have obtained, prove the proposition. �

Let λ = (λ1, . . . , λ�, 0, . . . , 0) be a partition of m. Then we denote by λ∗ the
partition of m − � given as

λ∗ = (λ∗
1, . . . , λ

∗
m−�),

where λ∗
i = λi − 1 if i � � and λ∗

i = 0 if i > �.
Given an m-tuple (θ1, . . . , θm) of real numbers we denote by θ↓ its decreas-

ing rearrangement; i.e., θ↓ = (θ
↓
1 , . . . , θ

↓
m), where θ

↓
1 � · · · � θ

↓
m are the numbers

θ1, . . . , θm rearranged. We use the notation ν � θ to mean νj � θj for all j.

Proposition 6. Let ν, θ be m-tuples of nonnegative real numbers such that ν is de-
creasing and ν � θ↓. Then for every partition λ of m we have Sλ,ν � Sλ,θ .

Proof. Note first that

νλ � (θ↓)λ � θλ. (20)

For any m-tuple ρ = (ρ1, . . . , ρm) of nonnegative real numbers let

Tλ,ρ =
m∑
i=1

ρλ(i) .
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Then, bearing in mind that λ(i)(i) = −∞ if i > � we have

Tλ,ρ =
�∑

i=1

ρλ(i)

= ρ
λ1−1
1 ρ

λ2−1
2 · · · ρλ�−1

� (ρ2 · · · ρ� + ρ1ρ3 · · · ρ� + · · · + ρ1 · · · ρ�−1)

= ρλ∗
s�−1(ρ1, . . . , ρ�),

where s�−1 is the (� − 1)th elementary symmetric polynomial in � variables. So from
(20) and using the symmetry of s�−1 we have

Tλ,ν � Tλ,θ . (21)

Next note that

Sλ,ρ = Tλ,ρ + (λ1 − 1)ρλ(1) + (λ2 − 1)ρλ(2) + · · · + (λ� − 1)ρλ(�)

= Tλ,ρ + ρ1 · · · ρ�
(
λ∗

1ρ
λ∗
(1) + · · · + λ∗

m−�ρ
λ∗
(m−�)

)
= Tλ,ρ + ρ1 · · · ρ�Sλ∗,ρ . (22)

We prove the assertion Sλ,ν � Sλ,θ by induction on the integer λ1. If λ1 = 1, then

Sλ,ν = sm−1(ν1, . . . , νm) � sm−1(θ1, . . . , θm) = Sλ,θ .

If λ1 > 1, use (22) to write

Sλ,ν = Tλ,ν + ν1 · · · ν�Sλ∗,ν .

Then use (21), the inequalities ν � θ↓, and the induction hypothesis to conclude that
Sλ,ν � Sλ,θ . �

Combining Propositions 5 and 6 we have:

Proposition 7. Let ν, θ be m-tuples of nonnegative real numbers such that ν is de-
creasing and θ↓ � ν. Let λ,µ be partitions of m such that µ ≺ λ. Then

Sµ,θ � Sλ,ν.

Proof of Theorem 1. By Proposition 4, the matrix of Dλ(P, I) is diagonal in the
basis {e∗

α : α ∈ �̂}, and the diagonal elements are given by Sµ(α),να
.

Let ωλ be the element of �m,n associated with λ by (17). Then ωλ ∈ � ⊆ �̂. By
the proof of Proposition 4, we also have Dλ(P, I)ωλ,ωλ = Sλ,ν (see the relations
(18)). So ‖Dλ(P, I)‖ � Sλ,ν.

By Theorem 2, µ(α) ≺ λ. It is obvious that ν↓
α � ν. Hence Sµ(α),να

� Sλ,ν by
Proposition 7.

Since Sµ(α),να
, α ∈ �̂, is an enumeration of all the eigenvalues of the positive

operator Dλ(P, I), this implies ‖Dλ(P, I)‖ � Sλ,ν . Thus ‖Dλ(P, I)‖ = Sλ,ν . Use
(15) to complete the proof. �
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4. Remarks

1. Using standard results of Calculus [1, Chapter X] we can obtain from Theorem 1
perturbation bounds for Kλ. Thus we have for B close to A the first-order pertur-
bation bound

‖Kλ(A) − Kλ(B)‖ � Sλ,ν‖A − B‖ + O(‖A − B‖2). (23)

2. Given an irreducible character λ of Sm, let

dλ(A) = 1

λ(id)

∑
σ∈Sm

λ(σ )

m∏
j=1

ajσ(j).

This is called an immanant of A. These functions are important in representation
theory and combinatorics.
Let m = n. When λ(σ) = ε(σ ) the function dλ is the determinant, and when
λ(σ) ≡ 1, it is the permanent. It is well known that we can choose an orthonormal
basis for Vλ(Sn) such that dλ(A) is one of the diagonal entries of Kλ(A) in this
basis. So from (23) we obtain

|dλ(A) − dλ(B)| � Sλ,ν‖A − B‖ + O(‖A − B‖2). (24)

3. For simplicity we have restricted our discussion to symmetry classes associated
with the full symmetric group. Similar results can be obtained for general symme-
try classes. Let G be a subgroup of Sm and let λ be a complex irreducible character
of G. Denote by πλ the multilinearity partition of λ [8]. Using arguments similar
to those that have been used to prove Theorem 1 and the results in [9], we can see
that

‖DKλ(A)‖ � Sπλ,ν .

Furthermore if the inner product (πλ, λ)G is different from zero, then it can be
proved that

‖DKλ(A)‖ = Sπλ,ν .
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