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Abstract

The application of conic programming to some traditionally difficult plasticity problems is considered. Convenient stan-
dard forms for conic programming of both limit and incremental elastoplastic analysis are given. The types of yield criteria
that can be treated by conic programming is discussed and it is shown that the three-dimensional Mohr–Coulomb criterion
can be cast as a set of conic constraints, thus facilitating efficient treatment by dedicated algorithms. Finally, the perfor-
mance of a number of mixed finite elements is evaluated together with a state-of-the-art second-order cone programming
algorithm.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Yield surfaces with corners can be treated in two different ways. The most common treatment, due to
Koiter (1953), assumes the existence of a number of smooth surfaces, each ascribed a plastic multiplier so that
the plastic strain rate is given as a the sum of the (fictitious) rates associated with each of the surfaces meeting
at the corner. This methodology is applicable whenever a corner appears as the result of the intersection of a
number of regular surfaces. Typical examples include cap–cone models for geomaterials and single crystal
plasticity models.

Singularities of the type encountered at the apex of the Drucker–Prager cone, where only one surface can be
identified, are less amenable to this treatment.

In such cases the concept of a gradient should be replaced by that of a subgradient, originally due to
Moreau (1963). This concept implies that the normal to the yield surface at the singularity is nonunique,
but confined to the cone formed by the normal vectors emanating from the singularity. This in effect imposes
a constraint, of the same type as the yield constraint, on the plastic strain state. Using these concepts, plasticity
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theory can be formulated in a particularly rigorous and general way as demonstrated by Moreau (1976),
Reddy and Martin (1994), Han and Reddy (2001), and others.

The classical numerical treatment of plasticity relies for the most part on Koiter’s methodology. This is the
case for the implicit methods developed by Simo (1998) and his coworkers, as well as the mathematical pro-
gramming methods commonly applied to limit analysis (Krabbenhøft and Damkilde, 2003; Christiansen and
Andersen, 1999; Lyamin and Sloan, 2002a,b; Zouain et al., 1993; Borges et al., 1996) – a notable exception,
though, being the work of Pontes et al. (1997). Thus, the standard interior-point paradigm, e.g., (Nash and
Sofer, 1996; Wright, 1997; Vanderbei, 2001), makes extensive use of Lagrange multiplier techniques and
Koiter’s methodology then follows naturally.

In recent years a significant amount of work has been dedicated to so-called conic programming. Here, a
methodology, which in many ways is similar to the one introduced by Moreau for plasticity, is used. Indeed,
when applied to plasticity this framework can be seen as a direct numerical treatment of this variant of plas-
ticity theory. Notably, the existence of singularities does not involve any problems, in theory or in practice
and, using various other concepts developed within the optimization community over the last few decades,
practical algorithms applicable to realistic large-scale problems have been developed, e.g., (Sturm, 1999;
Andersen et al., 2003; Tutuncu et al., 2003).

Although conic programming is relatively well-established, very few applications of it have been made in
the field of plasticity. This is despite its obvious appeal for problems involving singular yield surfaces. In geo-
mechanics such problems arise in the analysis of cohesive-frictional materials and, in particular, purely fric-
tional materials where, in common boundary value problems such as the analysis of footings, a large
number of the stress points can be expected to be located close to or at the apex of the yield surface. Of
the few applications made we can mention the work of Makrodimopoulos and Martin (2005a,b) who have
recently applied second-order cone programming (SOCP) to some traditionally difficulty problems with con-
siderable success. Applications to smooth problems, where conic programming is less appealing but still appli-
cable, have also been successful (Gilbert and Tyas, 2003; Makrodimopoulos, 2006; Bisbos et al., 2005).

In this paper some aspects of the application of conic programming to plasticity problems are investigated.
Throughout we focus on the solution of practical problems without trying to derive a complete framework.
First, in Section 2, some basic properties of conic programming and its relation to linear programming are dis-
cussed. This is done primarily in the setting of limit analysis and relevant conic standard forms are presented.
Some of the more common types of cones are then reviewed and their applicability to the Drucker–Prager,
Mohr–Coulomb and Nielsen criteria are demonstrated. The most important result here is that the three-dimen-
sional Mohr–Coulomb criterion can be cast as a set of conic constraints. In Section 3, the application of conic
programming to elastoplasticity is discussed and a convenient standard form is derived. In Section 4 some finite
element discretizations are briefly covered, including 2D solid elements and a lower bound element for laterally
loaded plates. In Section 5 a number of test examples, focusing on the above mentioned difficulties with sigu-
larities, are solved using the commercial code MOSEK (partly documented in Andersen et al. (2003)). Both limit
and incremental elastoplastic analysis problems are presented before conclusions are drawn in Section 6.

1.1. Linear programming

All linear programs can be expressed in the following standard form
minimize cTx

subject to Ax ¼ b

x 6 0

ð1Þ
This canonical form is commonly used in the optimization literature. In the following, however, we will use a
slightly different form given by
minimize a

subject to BTr ¼ apþ p0

r 6 0

ð2Þ
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Although completely general, this program can also be seen as a convenient standard form for plastic limit
analysis. The scalar a is the load multiplier, BT the discrete equilibrium operator, and p and p0 are vectors rep-
resenting variable and constant loads, respectively. The constraints r 6 0 can be interpreted as tension cut-off
yield criteria. More general yield criteria, for example of the type FTr � k 6 0 can be included in the standard
form (2) by introducing a new variable n = FTr � k together with the constraint n 6 0.

The dual to (2) is given by
minimize � pT
0 u

subject to Buþ e ¼ 0

pTu ¼ 1

e 6 0

ð3Þ
where, again, the physical interpretation is quite clear. Following the upper bound theorem, the internal work
rate (including that due to external loads) is minimized subject to a constant external work rate and the rel-
evant relation between the displacement rates u and the strain rates e. Note, however, that by the sign conven-
tion adopted in (3), the strain rates e are of equal magnitude, but of opposite sign to the physical strain rates e.
That is, the problem (3) is equivalent to
minimize � pT
0 u

subject to Bu ¼ e

pTu ¼ 1

e P 0

ð4Þ
from which it follows that e = � e. Although somewhat inconvenient from a mechanical point of view, the
form (3) has, as will be shown, certain advantages over (4). Consider now a solution (a,r) satisfying all con-
straints in (2) and a solution (u, e) satisfying all constraints in (3). The duality gap, i.e., the gap between the
primal and dual objective functions is then
�pT
0 u� a ¼ �uTðBTr� apÞ � a ¼ �uTBTr ¼ rTe P 0() rTe 6 0 ð5Þ
In other words, if we converge through a sequence of feasible primal and dual solutions the objective functions
of the two problems provide bounds to the optimal solution so that
a < ða� ¼ �pT
0 u�Þ 6 �pT

0 u ð6Þ
where a* and u* are the solutions at the optimum when rTe = rTe = 0. From a mechanical point of view it is
interesting to note that a nonzero duality gap implies a physically unacceptable solution, i.e., one where the
rate of internal work (plastic dissipation) is negative.

1.2. Conic programming

Conic programming is concerned with problems that can be cast in the standard form
minimize cTx

subject to Ax ¼ b

x 2 K

ð7Þ
which can be seen as a direct extension of the linear program (1). By analogy with the special linear program-
ming form (2), we will consider the following equivalent conic programming standard form
minimize a

subject to BTr ¼ apþ p0

r 2 K

ð8Þ



Fig. 1. Primal and dual cones.
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where the conic constraint r 2 K is a generalization of the linear constraint r 6 0. The cone K can be thought
of as the direct product of a arbitrary number of subcones:
1 A fi
approp
K ¼ K1 � � � � � KN ð9Þ

Conic programming rests of three key assumptions about each cone K (Ben-Tal and Nemirovski, 2001):
K is closed : n; n0 2 K ) nþ n0 2 K
K is a conic set : n 2 K; k P 0) kn 2 K
K is pointed : K \ ð�KÞ ¼ 0

ð10Þ
Under these assumptions it can be shown (Ben-Tal and Nemirovski, 2001) that the dual to (8) is given by
minimize � pT
0 u

subject to Buþ e ¼ 0

pTu ¼ 1

e 2 K�

ð11Þ
where the dual cone is defined by
K� ¼ fe 2 RnjrTe P 0 for all r 2 Kg ð12Þ

The duality gap associated with the conic programs (8) and (11) is given by
�pT
0 u� a ¼ �uTðBTr� apÞ � a ¼ �uTBTr ¼ rTe P 0() rTe 6 0 ð13Þ
where the inequalities follow from the definition of the dual cone (12) and the interpretation of the variables e
as the physical strain rates e with the sign reversed. The mechanical interpretation of the duality gap is iden-
tical to that of linear programming, i.e., the only physically acceptable solutions are ones where the plastic
dissipation is equal to zero so that rTe = rTe = 0.

From the fundamental assumptions (10), it appears that the types of constraints of interest in limit analysis
must necessarily define cones with straight generators in principal stress space. Such constraints encompass,
amongst others, the Mohr–Coulomb, von Mises, Hill, and Drucker–Prager yield criteria. For the purely fric-
tional versions of these yield criteria it is easy to show that the plastic dissipation is equal to zero1 if an asso-
ciated flow rule is used and the only resistance to deformation is thus the displacement of self-weight.

The graphical interpretation of the primal and dual cones is shown in Fig. 1. It should here be noted that, in
general, the cones do not need to be symmetric about a particular axis as indicated in the figure. Indeed, the
criterion proposed by Nielsen (1984) is an example of a conic yield criterion which does not possess this kind
of symmetry.
nite cohesion can be included by translating the cone along the hydrostatic axis. The dissipation can then be made equal to zero in a
riately transformed stress space whereas, in physical stress space, it will be finite, see for example Section 2.1.1.
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2. Specific cones

The definition of a cone is relatively broad and often non-conic constraints can be reformulated to comply
with the fundamental restrictions (10). So far, however, robust algorithms have only been developed for a
limited number of cones. The two most common of these are the second-order and the positive semidefinite
cones.

2.1. The second-order cone

The two most common second-order cones are the quadratic cone
Kq ¼ x 2 Rmþ1jx1 P

ffiffiffiffiffiffiffiffiffiffiffiffiXmþ1

j¼2

x2
j

vuut
8<
:

9=
; ð14Þ
and the rotated quadratic cone
Kr ¼ x 2 Rmþ2j2x1x2 P
Xmþ2

j¼3

x2
j ; x1; x2 P 0

( )
ð15Þ
where it can be shown that Kr can be obtained from Kq by a linear transformation (Andersen et al., 2003).
Common to these cones is that they are self-dual, or self-scaled, meaning that
Kq ¼ K�q and Kr ¼ K�r ð16Þ
Such cones occur ‘naturally’ in some cases, for example for a two-dimensional friction law of the type
jsj 6 c + r tan/ with c = 0 and / = 45�. If this is not the case, see e.g., Fig. 1, a linear transformation of
the stresses can be introduced to bring the problem on self-dual form. For our friction law we can introduce
a new variable r 0 = c + r tan/ so that the cone describing the constraint jsj 6 r 0 is self-dual. In the following,
the self-dual conic forms of some common yield criteria are briefly presented.

2.1.1. Plane strain Mohr–Coulomb criterion

This criterion is given by
f ðrx; ry ; sxyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrx � ryÞ2 þ 4s2

xy

q
þ ðrx þ ryÞ sin /� 2c cos / 6 0 ð17Þ
where x and y refer to the in-plane directions. This constraint can be cast in terms of a conic quadratic
constraint:
q 2 Kq; Kq ¼ q 2 R3jq1 P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

2 þ q2
3

q� �
ð18Þ
with the transformation between q and r being defined by
q ¼ Drþ d ð19Þ

where
D ¼
sin / sin / 0

1 �1 0

0 0 2

2
64

3
75; d ¼

2c cos /

0

0

2
64

3
75 ð20Þ
and r = (rx,ry,sxy)T. The transformation matrix D is here non-singular for / > 0, a fact which can be
exploited when setting up the relevant limit analysis problem (see Section 3).
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2.1.2. Nielsen criterion

For assessment of the ultimate load bearing capacity of two-dimensional reinforced concrete structures
(plates loaded either in their own plane or subjected to lateral loading) the yield criterion proposed by Nielsen
(1984) is often used. With reference to lateral loading this criterion can be written as
ðmþpx � mxÞðmþpy � myÞP m2
xy

ðm�px þ mxÞðm�py þ myÞP m2
xy

� m�px 6 mx 6 mþpx

� m�py 6 my 6 mþpy

ð21Þ
Defining compressive (positive) bending as that resulting in compression of the top-side fibers, mþpx and mþpy are
the compressive yield moments in the x and y directions, and similarly, m�px and m�py are the tensile yield mo-
ments in these two directions. Thus, mþpx and mþpy are functions of the concrete compressive strength rc and the
bottom-side reinforcement, whereas m�px and m�py are related to rc and the top-side reinforcement (see Nielsen
(1984) for details). Geometrically, the constraints (21) depict two intersecting cones as shown in Fig. 2. For
mþpx ¼ m�py ¼ mþpx ¼ m�py ¼ mp the square yield criterion of Johansen (1962) is recovered. We can now define
Dþ ¼ 1ffiffiffi
2
p

�1 0 0

0 �1 0

0 0 1

2
64

3
75; d ¼ 1ffiffiffi

2
p

mþpx

mþpy

0

0
B@

1
CA; qþ ¼

qþx
qþy
qþxy

0
B@

1
CA; ð22Þ
and again introduce the transformation q+ = D+r + d where r = (mx,my,mxy)T. The first constraint of (21),
together with the conditions mx 6 mþpx and my 6 mþpy , can then be expressed as a rotated quadratic cone accord-
ing to
q 2 Kþr ; Kþr ¼ qþ 2 R3j2qþx qþy P ðqþxyÞ
2
; pþx ; p

þ
y P 0

n o
ð23Þ
Similar expressions can be developed for the remaining constraints of (21). Again, it is seen that the transfor-
mation matrix D+ is invertible.

2.2. The positive semidefinite cone

The positive semidefinite cone consists of all symmetric matrices A 2 Rn�n which are positive semidefinite,
i.e.,
xTAx P 0 for all x 2 Rn ð24Þ

In the following we will use the notation A � 0 to mean that A is positive semidefinite. Thus, a constraint of
the type
X � 0 ð25Þ
Fig. 2. Nielsen criterion.
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is in fact a conic constraint. Since requiring a matrix to be positive semidefinite is equivalent to requiring that
all its eigenvalues are nonnegative, this cone is of some interest in plasticity. If we consider the 3 · 3 symmetric
stress tensor
R ¼
r11 r12 r13

r12 r22 r23

r13 r23 r33

2
64

3
75 ð26Þ
then the constraint
�R � 0 ð27Þ
corresponds physically to a tension cut-off, i.e., to requiring that all principal stresses are less than or equal to
zero. More interesting, however, is the fact that it is also possible to cast constraints which depend on the dif-
ference between two principal stress in the form (25). This is shown for the three-dimensional Mohr–Coulomb
criterion in Appendix.

Semidefinite programs can be solved using much the same techniques as those employed for second-order
cone programs, and although a number of good solvers are available, we have in this paper chosen to focus on
problems that can be cast as SOCPs.

3. Limit analysis

In practice general purpose SOCP algorithms inevitably operate only on self-dual cones. Except under very
special circumstances it is therefore necessary to introduce additional variables. With reference to the trans-
formations discussed above a practical standard form of limit analysis is therefore
minimize a

subject to BTr ¼ apþ p0

q ¼ Drþ d

q 2 K

ð28Þ
If D is invertible this can be simplified to
minimize a

subject to BTD�1q ¼ apþ p0 þ BTD�1d

q 2 K

ð29Þ
which contains the same number of constraints as the original problem (8), although it should be noted that
BTD�1 may be significantly more dense than the original constraint matrix BT.

4. Incremental elastoplastic analysis

We now turn our attention to developing a convenient standard form for the problem of incremental elas-
toplastic analysis. In Krabbenhøft et al. (in press) three equivalent forms were derived using Lagrangian dual-
ity theory. It was then argued that the most convenient form was the maximization problem given by
minimize anþ1 �
1

2
ðrnþ1 � rnÞTMðrnþ1 � rnÞ

subject to BTrnþ1 ¼ anþ1pþ p0

f ðrnþ1Þ 6 0

ð30Þ
The subscripts n and n + 1 here refer to the known and unknown states, respectively, and M is a matrix of
elastic compliances so that ee = Mr where ee are the elastic strains. When solving this problem using standard
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nonlinear programming methods the displacement increments and plastic multipliers appear as the Lagrange
multipliers associated with the equilibrium and yield constraints, respectively.

4.1. Elasticity

The first obstacle to writing (30) in conic programming standard form is the nonlinearity of the objective
function. This may be handled as follows. First, consider the purely elastic problem:
minimize anþ1 �
1

2
ðrnþ1 � rnÞTMðrnþ1 � rnÞ

subject to BTrnþ1 ¼ anþ1pþ p0

ð31Þ
It is straightforward to verify that this problem is equivalent to
minimize anþ1 � xnþ1

subject to BTrnþ1 ¼ anþ1pþ p0

1

2
ðrnþ1 � rnÞTMðrnþ1 � rnÞ � xnþ1 6 0

ð32Þ
where a new variable xn+1 has been introduced. At the optimum, the last restriction will be satisfied as an
equality. This problem can be cast as a SOCP by introducing
nnþ1 ¼M
1
2ðrnþ1 � rnÞ ð33Þ
and, in addition, a scalar variable
ynþ1 ¼ 1 ð34Þ

The problem (32) can then be written as
minimize anþ1 � xnþ1

subject to BTM�1
2nnþ1 ¼ anþ1pþ p0 � BTrn

ynþ1 ¼ 1

ðx; y; nÞnþ1 2M

ð35Þ
where M is a rotated quadratic cone:
M¼ ðx; y; nÞ 2 Rmþ2j2xy > nTn; x; y P 0
� �

ð36Þ
The dual to this problem is given by
minimize � ðp0 � BTrnÞTmnþ1 � xnþ1

subject to M�1
2Bnnþ1 þ enþ1 ¼ 0

rnþ1 � 1 ¼ 0

xnþ1 þ tnþ1 ¼ 0

pTmnþ1 ¼ 1

ðs; t; eÞnþ1 2 M
�

ð37Þ
where mn+1, xn+1, en+1, rn+1, and tn+1 are the dual variables and
M� ¼ ðr; t; eÞ 2 Rmþ2j2rt P eTe; r; t P 0
� �

ð38Þ
Although not immediately obvious, the constraints of (37) do in fact define the discrete elastic stress–strain–
displacement relation. To see this, we first note that by virtue of the objective function xn+1 will be as large as
possible. Together with the conditions rn+1 � 1 = 0, xn+1 + tn+1 = 0, and tn+1 P 0 it can be verified that the
condition
tnþ1 ¼ eT
nþ1enþ1 ð39Þ
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must hold at the optimum. Next, using the condition of a vanishing duality gap at the optimum we have
½xr þ yt þ nTe�nþ1 ¼
1

2
½nTnþ eTeþ nTe�nþ1 ¼

1

2
½ðnþ eÞTðnþ eÞ�nþ1 ¼ 0 ð40Þ
so that
enþ1 ¼ �nnþ1 ¼ �M
1
2ðrnþ1 � rnÞ ð41Þ
Inserting this into the first constraint of (37) gives the desired relation
Bmnþ1 ¼Mðrnþ1 � rnÞ ð42Þ

where it is clear that the variables mn+1 should be interpreted as the displacement increments mn+1: = un+1 � un.

4.2. Elastoplasticity

It is straightforward to extend the problem (35) to include plasticity. This is done simply by limiting the
stresses by the relevant yield condition so that the final elastoplastic problem reads
minimize anþ1 � xnþ1

subject to BTrnþ1 ¼ anþ1pþ p0

nnþ1 ¼M
1
2ðrnþ1 � rnÞ; ynþ1 ¼ 1

ðx; y; nÞnþ1 2M
qnþ1 ¼ Drnþ1 þ d

qnþ1 2 K

ð43Þ
where K defines the yield constraints in a transformed stress space. As in the case of limit analysis the physical
stresses r can be eliminated to give
minimize anþ1 � xnþ1

subject to BTM�1
2nnþ1 ¼ anþ1pþ p0 � BTrn

qnþ1 �DM�1
2nnþ1 ¼ d þDrn

ynþ1 ¼ 1

qnþ1 2 K; ðx; y; nÞnþ1 2M

ð44Þ
Note that, in contrast to what is the case with limit analysis, this reduction is always possible (as long as M is
non-singular). Nevertheless, the problem (44) still contains more than twice the number of variables and
equality constraints as compared to the original problem (30). Also, it should be mentioned that in practice,
at least using MOSEK, the problem (43) is often faster to solve than the reduced one (44). Finally, by following
the same procedure as in the purely elastic case, it can be verified that the dual to (44) gives the relevant stress–
strain–displacement relation:
Bðunþ1 � unÞ ¼Mðrnþ1 � rnÞ þ Dep
nþ1; Dep

nþ1 2 �K
� ð45Þ
Thus, despite significant modification of the original problem (30) the Lagrange multipliers associated with the
equilibrium constraints retain their physical significance as the displacement increments.

5. Finite element discretizations

5.1. Solid elements

For two-dimensional solid problems the finite element discretizations of both the limit and elastoplastic
analysis problems follow that of Krabbenhøft et al. (in press) where a number of linear stress/quadratic dis-
placement elements were discussed in some detail. If Nr and Nu contain the stress and displacement interpo-
lation functions, respectively, the quantities defining the elastoplastic analysis problem (30) are given by
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B ¼
Z

X
NT

rrNu dX; M ¼ NT
rE�1Nr dX ð46Þ

p ¼
Z

X
NT

u bdXþ
Z

C
NT

u t̂ dC; p0 ¼
Z

X
NT

u b0 dXþ
Z

C
NT

u t̂0 dC ð47Þ
where E is the elastic modulus and X and C are the domain and its boundary, respectively. The tractions and
body forces are divided into variable parts t̂ and b and constant parts t̂0 and b0, respectively.

By varying the numerical integration schemes for M and B, a class of elements with relatively different
properties can be constructed. In the following the displacements are continuous between elements and are
always interpolated from the corner and midside nodes. The stresses are interpolated from three points that
vary among the different elements. The matrix M is always evaluated numerically by a three-point scheme with
the integration points coinciding with the stress interpolation points. Furthermore, the yield function is always
enforced at these points. The force vectors p and p0 are evaluated exactly using an appropriate scheme. If all
tractions and body forces are constant the standard three-point scheme is sufficient. Depending on the choice
of the stress interpolation points used to evaluate the matrix B, various elements may be derived. These are
briefly outlined below.

5.2. Upper bound element

A rigorous upper bound element can be constructed by interpolating the stresses from the corner nodes and
using these nodes as integration points for B. The flow rule is then satisfied throughout the element. That is,
since the displacement variation is quadratic the condition Bu + e = 0 is satisfied everywhere if it is enforced at
three points, and if these three points are the corner nodes the condition e 2 K� is satisfied everywhere. This
element, which can be seen as a generalization of the one proposed by Yu et al. (1994), has recently been used
for upper bound limit analysis of cohesive-frictional materials by Makrodimopoulos and Martin (2005a).

5.3. Displacement element I

This element uses the midside nodes as the stress interpolation and integration points. It is readily shown
(Krabbenhøft et al., in press) that the standard quadratic displacement element, using the quadrature scheme
with the integration points located at the midside nodes is recovered. Since the flow rule is imposed at the mid-
side nodes it is not necessarily satisfied throughout the element and does not result in rigorously bounded limit
loads (although they tend to converge from above).

5.4. Displacement element II

Same as above except that the stress interpolation and integration points are located at
ðkj�1; kj; kjþ1Þ ¼ 1

6
; 4

6
; 1

6

� �
; j ¼ 1; 2; 3; where kj are the area coordinates.

5.5. Mixed element

A mixed element is constructed by using the corner nodes as the stress interpolation points and the midside
nodes as the integration points. The yield condition is then satisfied throughout the element and it can be
shown (Krabbenhøft et al., in press) that the limit load will always be less than or equal to that of the above
three elements. It does not, however, possess any bounding properties with respect to the exact solution. This
element was first proposed by Borges et al. (1996) in the context of limit analysis.

5.6. Plate element

For the limit analysis of laterally loaded plates the element proposed by Krabbenhøft and Damkilde (2002)
is used. This element uses piecewise linear and discontinuous moment interpolations. If point or line loads are
applied, rigorous lower bound solutions can be computed. Distributed loads are approximated by equivalent
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line loads. Although this leads to solutions which are not completely rigorous lower bounds, the performance
of the element is quite good and usually the limit loads converge from below.

6. Examples

In the following we solve a number of limit and elastoplastic analysis problems. In all examples the general
purpose solver MOSEK is used. Default settings were used with the exception that the presolve option was sup-
pressed (this routine eliminates redundant constraints which is not relevant for the problems considered here).

6.1. Limit analysis: strip footing on a purely frictional soil

The first example concerns the limit analysis of a smooth strip footing on a purely frictional soil obeying the
Mohr–Coulomb criterion. For this problem the limit load is usually written in the form
V u=B ¼ 1

2
cBN c ð48Þ
where c is the soil unit weight and Nc is the dimensionless bearing capacity factor to be determined. This prob-
lem is known to be particularly challenging, both due to the singularity at the apex of the Mohr–Coulomb
cone and due to the large number of elements that typically have to be used in order to produce satisfactory
results. Recently, Martin (2005) has solved the problem using the method of characteristics and obtained re-
sults which, for all practical purposes, are exact.

In the following the performance of the four elements introduced above is examined. Three different
unstructured meshes, graded as indicated in Fig. 3, were used. The results of the analyses in terms of the limit
loads and their deviation from Martin’s results are given in Tables 1–4 for friction angles of 20�, 30�, 35�, and
40�.

The results reveal that the performance of the upper bound element is quite poor. The two displacement
elements offer some improvement, but the mixed element is far superior for all meshes and all friction angles.
Although somewhat surprising in view of the relatively small difference between the various elements, this
trend confirms the one observed in Krabbenhøft et al. (in press) for other types of problems.

The performance of the conic optimizer was largely unaffected by the friction angle. The time required to
converge was �1 s, �6 s, and �50 s for the three different meshes and in all cases the number of iterations
varied between 20 and 35, typically increasing with the mesh density. It should be mentioned that in some
cases MOSEK terminated the iterations (‘‘due to slow progress’’) before the default tolerance was reached.
In all such cases, however, solutions with acceptable tolerances (typically of the order 10�5–10�4) were still
obtained.
Fig. 3. Strip footing problem (coarse mesh).



Table 1
Solution statistics for smooth Nc problem with / = 20�, c = 1

DOFs Upper bound elem. Disp. elem. I Disp. elem. II Mixed elem.

Nc Err. (%) Nc Err. (%) Nc Err. (%) Nc Err. (%)

2256 2.2585 +43.1 1.9646 +24.5 1.9312 +22.3 1.7085 +8.23
7976 1.9089 +20.9 1.7915 +13.5 1.7585 +11.4 1.6132 +2.19
31,176 1.7820 +12.9 1.7064 +8.09 1.6925 +7.21 1.6345 +3.54

Table 2
Solution statistics for smooth Nc problem with / = 30�, c = 1

DOFs Upper bound elem. Disp. elem. I Disp. elem. II Mixed elem.

Nc Err. (%) Nc Err. (%) Nc Err. (%) Nc Err. (%)

2256 10.984 +43.5 9.3790 +22.6 8.9532 +17.0 7.7680 +1.50
7976 9.2393 +20.7 8.5554 +11.8 8.3317 +8.87 7.5196 �1.74
31,176 8.5188 +11.3 8.1660 +6.70 8.0525 +5.22 7.7414 +1.16

Table 3
Solution statistics for smooth Nc problem with / = 35�, c = 1

DOFs Upper bound elem. Disp. elem. I Disp. elem. II Mixed elem.

Nc Err. (%) Nc Err. (%) Nc Err. (%) Nc Err. (%)

2256 25.449 +44.8 21.512 +22.4 20.313 +15.57 17.178 �2.27
7976 21.537 +22.5 19.666 +11.9 19.046 +8.36 17.046 �3.02
31,176 19.549 +11.2 18.699 +6.39 18.418 +4.78 17.573 �0.026

Table 4
Solution statistics for smooth Nc problem with / = 40�, c = 1

DOFs Upper bound elem. Disp. elem. I Disp. elem. II Mixed elem.

Nc Err. (%) Nc Err. (%) Nc Err. (%) Nc Err. (%)

2256 63.389 +46.8 52.957 +22.6 49.845 +15.42 40.030 �7.31
7976 54.304 +25.7 48.769 +12.9 46.799 +8.36 42.202 �4.60
31,176 48.001 +11.1 45.828 +6.02 45.181 +4.62 42.703 �1.12
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6.2. Elastoplastic analysis: strip footing on a purely frictional soil

Next, an elastoplastic analysis of the same problem is performed. The material parameters are the follow-
ing. Young’s modulus: E = 40 MPa, Poison’s ratio: m = 0.3, unit weight: c = 18 kN/m3, cohesion: c = 0, and
friction angle / = 30�. The state of deformation is plane and yielding is governed by the plane strain Mohr–
Coulomb criterion (17). Thus, all strains, both elastic and plastic, are suppressed in the out-of-plane direction.
The footing is considered rough, giving an exact bearing capacity of Vu = 265.58 kN (Martin, 2005). The self-
weight is first applied and the analysis then proceeds by way of 25 displacement increments of equal magnitude
Du = 0.4 cm, giving a total footing displacement of 10 cm. The load–displacement curves for each of the three
meshes and four elements types are shown in Fig. 4. Again, the outstanding performance of the mixed element
is evident, with very little difference between the curves for the three different meshes. Regarding solutions
times, a comparison between these and the ones obtained for the corresponding limit analysis problems is
shown in Table 5. A steep increase in relative CPU time is seen. For standard nonlinear interior-point solvers
the cost of each iteration is roughly the same regardless of whether the problem is one of limit or incremental
elastoplastic analysis (Krabbenhøft and Damkilde, 2003; Krabbenhøft et al., in press). Thus, the bulk of the
cpu time is spent on solving a set of linear equations of the type KDu = r where K is of the same size and spar-
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Fig. 4. Load–displacement curves for rough Nc problem with different elements. Coarse, medium and fines meshes contain 2256, 7976, and
31,176 displacement degrees-of-freedom, respectively.

Table 5
Solution statistics for rough Nc problem using the mixed element

Dofs Limit analysis Elastoplasticitya

No. iter. t (s) t/iter. (s) No. iter. t (s) t/iter. (s)

2256 25 1.3 0.052 30 3.0 0.10
7976 24 4.4 0.18 29 15.1 0.52
31,176 27 26.4 0.98 35 115.2b 2.6

a Iteration counts and cpu times for a representative load step (averaged over a total of 25 steps).
b Time spent on iterations only – in addition �75 s is spent on ‘‘matrix reordering’’ at the beginning of each load step before the

iterations commence.
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sity as a usual elastic stiffness matrix. For the conic programming standard form (44) matters are somewhat
different as the elastoplastic problem contains significantly more linear constraints than the limit analysis
problem. Also, the additional conic constraint accounting for elasticity could be problematic. If handled prop-
erly, however, there is little doubt that the solution time could be reduced. For example, whether the block-
diagonal structure of the elasticity matrix M is exploited or not is unclear, but if not this could probably
explain the dramatic increase in CPU time as compared to the corresponding limit analysis problems.

6.3. Limit analysis: reinforced concrete plate

A classical test example in the limit analysis of reinforced concrete structures is the square, clamped plate
subjected to a uniform pressure. For an isotropic reinforcement layout the exact solution was found by Fox
(1974) as
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p ¼ 42:851 mp=l2 ð49Þ

Two different meshes as shown in Fig. 5 were used. In Table 6 the limit loads computed by means of the quasi
lower bound element discussed previously are shown. As seen, the results are quite satisfactory and the per-
formance of MOSEK was in this case somewhat better than for the Mohr–Coulomb problems, i.e., there were
fewer reports of termination due to slow progress.
Fig. 5. Square slab subjected to uniform pressure.

6
clamped plate: solution statistics, l = 1.0, mp � 1.0

Mesh (a) Mesh (b)

p Err. (%) Iter. t (s) p Err. (%) Iter. t (s)

40.696 �5.0 10 <1 41.326 �3.6 10 <1
42.156 �1.6 13 <1 41.970 �2.1 13 <1
42.566 �0.67 18 <1 42.517 �0.78 19 <1
42.729 �0.29 23 2 42.729 �0.29 22 2
42.792 �0.14 32 12 42.800 �0.12 35 12
42.828 �0.054 29 61 42.831 �0.037 35 56

Fig. 6. Reinforced concrete plate with opening, all measurements in m.



Table 7
Optimal yield moments (kN m/m) for reinforced concrete plate with hole subjected to uniform pressure of p = 6.75 kN/m2

mþpx mþpy m�px m�py Mean

Isotropic 50.00 50.00 50.00 50.00 50.00
Colberg (1998) 27.83 78.65 14.56 3.26 31.08
Krabbenhøft and Damkilde (2002) 34.00 75.24 11.19 1.64 30.52
Present 31.54 76.51 7.52 0.47 29.01
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6.4. Limit design: reinforced concrete plate

As a final example the limit design of the plate shown in Fig. 6 is considered. The task is to determine the
optimal values of the four yield moments subject to a load bearing capacity of 6.75 kN/m2. This problem has
previously been considered by Colberg (1998) and Krabbenhøft and Damkilde (2002). Using a mesh contain-
ing 240 elements (5040 stress and design variables) we improve slightly on the results obtained by Krabbenhøft
and Damkilde (2002), see Table 7. The solution time for this problem was less than 2 s in the course of 17
iterations. The same problem, now containing 540 elements (11300 stress and design variables) was then
attempted. Quite inexplicably, the solution time then increased to 150 s per iteration and the iterations were
terminated before convergence.

7. Conclusions

Some problems of limit and incremental elastoplastic analysis have been formulated as conic programs.
These include second-order as well as semidefinite programs. In the former case the solution of the problems
of achieved by use of the commercial solver MOSEK. Although the performance of this solver on average is
quite satisfactory there were also several problematic issues as highlighted throughout the Section 5. Never-
theless, the results are encouraging and there is little doubt that a conic programming algorithm dedicated
to continuum mechanical applications could be very successful. Finally, the formulation of the three-dimen-
sional Mohr–Coulomb criterion as a set of conic (semidefinite) constraints is most interesting as this difficult
yield criterion is handled in a less than ideal way using general nonlinear programming methods. However, the
performance of suitable conic programming algorithms for solving this problem still remain to be evaluated.

Appendix. The 3D Mohr–Coulomb criterion as a set of semidefinite constraints

The Mohr–Coulomb criterion is given by
r1 � ar3 6 k ð50Þ

where
a ¼ 1� sin /
1þ sin /

; k ¼ 2c cos /
1þ sin /

ð51Þ
Here c is the cohesion, / is the friction angle and r1 P r2 P r3 are the principal stresses, i.e., the eigenvalues
of the 3 · 3 symmetric stress tensor R. The criterion (50) can be cast as two semidefinite constraints given by
Rþ fI � 0 ð52Þ
� Rþ ðk � afÞI � 0 ð53Þ
where f is an auxiliary variable.
To demonstrate the equivalence between (50) and (52)–(53) the following well-known relations, see e.g.,

Golub and van Loan (1996), are useful. Let kj, j = 1, . . . ,n be the eigenvalues of the matrix A 2 Rn�n and
let g 2 R. It can then be shown that

• The eigenvalues of B = A + gI are k̂j ¼ kj þ g; j ¼ 1; . . . ; n.
• k̂1 � � � � � k̂n ¼ det B and thus, B � 0) detB P 0.
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We then have
Rþ fI � 0) detðRþ fIÞ ¼ ðr1 þ fÞðr2 þ fÞðr3 þ fÞP 0 ð54Þ

with the solution
f P �r3 () �r3 þ s ¼ f; s P 0 ð55Þ

Similarly,
�Rþ ðk � afÞI � 0) detð�Rþ ðk � afÞIÞ ¼ ½�r1 þ ðk � afÞ�½�r2 þ ðk � afÞ�½�r3 þ ðk � afÞ� ð56Þ

so that
k � af P r1 () r1 þ z ¼ k � af; z P 0 ð57Þ

must hold. Combining (55) and (57) we have
r1 � ar3 þ zþ as ¼ k; s; z P 0 ð58Þ

or
r1 � ar3 6 k ð59Þ

with equality only when s = z = 0, i.e., when both the constraints (52) and (53) are active.
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