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Based on a result of R. P. Stanley (J. Combin. Theory Ser. B38, 1985, 132-138) 
we show that for each s > 4 there exists an integer N, such that any graph with 
n > N, vertices is reconstructible from the multiset of graphs obtained by switching 
of vertex subsets with s vertices, provided n # 0 (mod 4) if s is odd. We also 
establish an analog of P. J. Kelly’s lemma (Pacific J. Math., 1957, 961-968) for the 
above s-switching reconstruction problem. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

Let G = G( V, E) be a graph. Given a subset WE V, the switching G, 
of G at W is the graph obtained from G by replacing all edges between 
W and V\ W by the nonedges. The multiset of unlabelled graphs 
D,(G)= {G,: 1 WI =s} is called the s-switching deck of G. A graph G 
is called s-switching reconstructible if it is uniquely defined, up to 
isomorphism, by D,(G). 

A question concerning s-switching reconstruction of graphs was 
proposed by Stanley, who established the following result [ll]: 

THEOREM 1. Suppose that the Krawtchouck polynomial 

K;(x)= i (-l)i “: 
i-0 (X3 

(1) 

has no even integer roots in the interval [0, n]. Then any graph with n 
vertices is s-switching reconstructible. 

Other, probably equivalent conditions, were given in [4] (for sufficient 
conditions of different types see [4,5]). 
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For s < 3 a direct calculation of the Krawtchouck polynomials [ 1 l] 
yields that a graph is reconstructible if 

s= 1 and n#O (mod4); 

s = 2 and n # t2, where t = 0,l (mod 4); 

s = 3 and n # 0 (mod 4), n # (t2 + 2)/3, where t = 1,2,5, 10 (mod 12). 

Note that t can be also negative. 
It turned out that for s 24 the situation is quite different. Namely, we 

show that for any fixed s > 4 and n #O (mod 4) if s odd, then for all 
sufficiently large n the corresponding Krawtchouck polynomial has no 
integer roots. Thus, for each fixed s 24 and s#O (mod 4) if s odd, all but 
maybe a finite number of graphs are s-vertex switching reconstructible 
(Theorem 4). 

Our proof is based on the two following theorems on diophantine equa- 
tions: 

THEOREM 2 [lo]. The equation with integer coefficients 

y2=aOxn+a,x”-‘+ ... +a, 

has only finitely many integer solutions if the RHS has at least three 
different roots over C, where C is the complex field. 

THEOREM 3 [2,8]. Let Z[X, Y] be the set of polynomials in two 
variables with integer coefficients. If f E Z[X, Y] is an irreducible binary 
form of degree at least three and g E Z[X, Y] has degree less than the degree 
off then f(x, y) = g(x, y) has only finitely many integer solutions. 

Note that Theorem 3 is ineffective whenever an effective version of 
Theorem 2 was established by Baker [ 11, although, as far as we know, 
these bounds are too large to solve completely diophantine equations 
arising in this paper (further information can be found in [9]). 

Since Theorem 1 provides only a partial answer to the switching 
reconstruction problem one can look for parameters of a graph which are 
defined by D,(G). For s = 1 some results in this direction can be found in 
[4, 51, Here we establish an analog of Kelly’s Lemma [3] for s-switching 
reconstruction. Namely, we show that the number of induced subgraphs 
isomorphic to a given graph H on m vertices is s-vertex switching 
reconstructible if (‘; “) + ( :I,“) > ( l/2)( :) (Theorem 5). A stronger result 
will be given for m = 2 and 3 (Theorem 6). 
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2. PROOFS 

THEOREM 4 (Main Theorem). A graph with n uertices is s-vertex 
switching reconstructible if 

(i) s=l andn#O (mod4); 

(ii) s = 2 and n # t*, where t = 0, 1 (mod 4); 

(iii) s = 3 and n # 0 (mod 4), n ‘# (t’ + 2)/3, where t = 1, 2, 5, 10 
(mod 12). 

Moreover, for each s 24 there exists an integer N, such that a graph is 
s-switching reconstructible provided 

(iv) n > N,, for s even, 
(u) n > N, and s # 0 (mod 4), for s odd. 

Proof Throughout the proof we set P:(y) = K,“((n -y)/2). Thus, x is 
even iff y = n (mod 4). Note that for the cases s = 4 and s = 5 the proof is 
based on Theorem 2, whenever for s 2 6 we use Theorem 3. 

Case s < 4. Suppose that G is not reconstructible. By Theorem 1, for 
s = 1 we have, P;(y) = y = 0, hence n = 0 (mod 4). 

For s = 2 we have P;(y) = ( 1/2)(y2 -n) = 0. Since n = y = y2 (mod 4) 
then y = 0, 1 (mod 4) and (ii) follows. 

For s = 3 we have P;(y) = (y/6)(y2 - 3n + 2), hence n = (y2 + 2)/3 and 
y = 1,2 (mod 3). Now, y* = 3n - 2 = 3y - 2 (mod 4), hence y = 1,2 (mod 4) 
and so, y= 1,2,5, 10 (mod 12). 

Case s = 4. For s = 4 the Krawtchouck polynomial just is 

Pi(y) = f (3n2 - 6n( y2 + 1) + y4 + 8y2), 

and has exactly four different roots for any integer n. Hence Pi(y) = 0 
yields 

n=y2+l& ( 6y4-6y2+9 l/2 

> 9 . 

Thus 6y4 - 6y2 + 9 = z2 for some integer z. But, by Theorem 2, this equa- 
tion has only finitely many solutions, hence, by Theorem 1, all but a finite 
number of graphs are reconstructible from D,. 

Case s = 5. 

P;(y) = $ ( 15n2 - lOn( y2 + 5) + y4 + 20y2 +24), 
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and the second factor again has four different roots. Thus, either y = 0 and, 
by Theorem 1, n = 0 (mod 4), or 

n-y2+5 I (10y4-50y2+265)“2 
2 - 1z 
J IJ 

In the last case (10~~ - 5Oy* + 265)“* must be 
Theorem 2, there are only finitely many such y’s. 

Case ~26. It is known (see, e.g., [6]) that the 
mials satisfy the following recurrence relation 

an integer. But, by 

Krawtchouck polyno- 

(s+ l)P:+l(Y)=yP:(y)-(n-s+ lP_,(y), 

&KY) = 1, f?(Y) =y. 
(2) 

Putting z = y2 and using induction on s one obtains 

C,(Y) =f*sk n) + g2sk n) 

c,, I(Y) = z1’*(f2s+l(z~ n) +g*s+ 1k n)), 

(3) 

where fi(z, n) is a binary form of degree Li/2] and gj(z, n) is a poly- 
nomial of degree less than that of f.(z, n). Indeed, since P:(v) = 
(l/s!)(y” + a,(n)y”-’ + ... + a,(n)) has degree exactly s thenf,(z, n) is not 
identically zero. Rewritting (2) as 

and using the induction hypothesis we convince that the first term in the 
RHS is a binary form of degree Li/2 J plus a polynomial of degree less than 
Li/Z], whenever the second term is a polynomial of degree less than Li/2]. 

Thus, in view of Theorem 3, it is enough to show that f2S(z, n) is 
irreducible. 

For set Q2s(z, n) = (2sYf2Az, n), Q2s+ ,(z, n) = (2s + l)! ?f2s+ ,(z,n). 

Then, by (2) and (3), QJz, n) satisfy the recurrence relation 

Q,, lb, n) =zl’*Qs(z, n) - N- I@, n), 

Qok n) = 1, Ql(z, n) = z”~. 
(4) 

By induction on s one easily gets 

where (2m-l)!!=ny=,(2j-l), (-l)!!=l. 
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Let now p be the largest prime less than 2s. Then a, = 1, a, = (2s - 1 )! ! 
and so, pta,, p21us. On the other hand, if 2i- 1 >p then pj (2i- l)!!, 
hence p 1 ai. If 2i- 1 <p then p ( (:T), hence, again p I ai. Thus, Q2Jz, n) is 
irreducible by Eisenstein criterion (see, e.g., [12, p. 161]), and hence, the 
theorem is proved s even. 

Similarly, for s odd z-“~QJz, n) is also irreducible. Thus, for sufficiently 
large n the only integer root of P: arises from z = 0. Then n -2x = 0 and, 
by Theorem 1, for a non-reconstructible graph we get n = 0 (mod 4). Hence 
the proof is completed. 1 

Remark 1. For s=4 and n < 10’ the polynomial P:(x) has an even 
root in the interval [0, n] only for n = 17,66, 1521, 15043. 

For s = 5 and n < lo* the corresponding exceptional values of n, n # 0 
(mod 4), are 17,67,289,10882. 

A question of whether 15043 is sufficiently large remains open. 

THEOREM 5. Let p(H + G) be the number of subgraphs of G isomorphic 
to H. Then p( H -+ G) is reconstructible from D,(G), provided (“J”) + 
(::,“)>(1/2)(:), where m= 1 V(H)1 and (;)=O if a<b or b<O. 

Proof: A switching G, with I WI = k will be called a k-switching. Given 
a graph G, ) V(G)1 = n, and integers s, m satisfying 

(6) 

Let L, = {H’, H*, . . . } be the set of all unlabelled graphs on m vertices. Let 
,4;(g) be a matrix whose rows and colomn are indexed by elements of L, 
and the entries aij= I{ WS V(H’):H’$,=Mi I WI =k}l. Note that A;=A; 
is a unite matrix, since a switching of an empty set as well as of the whole 
set of vertices is the identity. 

Consider the matrix B = Br = CF=, (::?)A:. Observe that any colomn 
sum of A: is (T), hence, for column sums of B we have 

Moreover, each diagonal element bii of B is at least (“7”) + (:I,“), the 
contribution of (n; m 
thus, B is invertible. 

)A:+ (:z,“)Ai in B. Hence, by (6), bii>&,ciaji and 

Now, define a vector p,,JG) = p(G) = (,u,, p2, . ..) where pi = p(H’ + G). 
We also set AD,(G)) = CFED,cGj P(F). 

Fix Fc G, I V(F)1 = m and Z c V(F), IZ( = k. Consider an s-switching 
GW such that Wn V(F) = Z. There are (“,I:) possible choices of such a W 
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each of which transforms F into Fz. Therefore, the Ith component of the 
vector (::T)Arp(G) is just the number of subgraphs isomorphic to H’ in 
D,(G) which were obtained by a k-switching of the m vertices subgraphs of 
G. Therefore we have the equation B p(G) = p(D,(G)). 

Here the RHS is known, the matrix B is invertible and so, one can find 
P(G). I 

For m = 2, i.e., when H is a single edge, and m = 3 we will show a little 
more, namely, 

THEOREM 6. If m = 2, 3 then p(H + G) is reconstructible from D,(G) 
except, possibly, the cases s = (i) and n = t2 or n = (t - 1 )*, t = 2, 3, . . . . 

Proof: For m = 2 or 3 the matrix By can be easily calculated, namely, 

where 

and the graphs are listed by increasing the number of edges. 
Hence, det Bz = (a - 2b)(a + 2b), det Bz = (a + 3b)*(a - b)*. One can see 

that in both cases B is not invertible only if s = (i) and n = t*, t = 2, 3, . . . . 
We omit the details. [ 

Remark 2. One can check that the matrices A; satisfy the recurrence 

(k+ lMIC+, =(k+ l)ArAy-(m-k+ l)Az-,, (7) 

i.e., precisely the recurrence (2) for the Krawtchouck polynomials. Indeed, 
the entry ij of ATAI; is just the number of ways to obtain Hi from Hi by 
a two-steps switching: first k vertices and then one vertex. Thus, the result 
will be either (k + l)- or (k - l)-switching, and in the first case we have 
(k + 1) choices for the first step, while in the second case there are 
(n - k + 1) choices. 
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This observation shows that By is invertible iff no eigenvalue of A7 is 
the root of the polynomial 

Remark 3. Note that two graphs are not s-switching reconstructible iff 
the corresponding columns of Al are equal. It easily follows from (7) and 
(3) that A;,+,-- - A;C for some matrix C. Hence, if A; has two equal 
columns then A’;,, 1 has two also. Thus if G is not l-switching reconstruc- 
tible then it is not (2s + 1 )-switching reconstructible for all s. 

It is natural to ask whether the degree sequence of a graph is reconstruc- 
tible? Stanley proved that the answer is “yes” for s = 1 and n’# 4 [ 111. As 
far as we know, the question remains open even for s = 2. 

In conclusion let us formulate the following conjecture which can be con- 
sidered as an analog of the Nah-Williams Lemma [7] for the l-switching 
reconstruction problem: 

Conjecture. Let D,(G)=D,(H) but G & H, then there is a pairing 
(u, C(U)), u # CT(U), of the vertices of G such that the switching of any f pairs 
results in H for f odd and in G for t even. 
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