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There has been extensive work on DSA over the last few decades [1]. Recently, DSA in duplex stainless 
steels has been investigated by tensile tests [4] and low cycle fatigue tests [5] at temperatures ranging from 150 
to 500°C. The maximum DSA effect was observed at 325 – 350°C [6]. A secondary hardening was observed in 
the temperature range from 200 – 440°C [5]. However, the mechanisms for the second hardening have not been 
explained. This paper provides an investigation on the influence of nitrogen content on the dynamic strain 
ageing behavior in five modified super duplex stainless steel S32705 grades at 350°C. The mechanisms for the 
second hardening will be discussed. 

2.  Materials and experimental  

Five modified duplex stainless steel S32705 grades were prepared. These alloys have three nitrogen content 
levels and three ferrite contents. The detailed information is shown in Table 1. 

Table 1.  Modified duplex stainless steel S32705 grades (wt.%). 

Grades Dimension C Si Mn Cr Ni Mo N PRE Ferrite  Rp0,2 Rm A 

          (%) (MPa) (MPa) (%) 

25-A d=20mm 0.01 0.34 0.33 24.9 6.98 3.69 0.20 40 49 453 710 38.8 

25-B d=20mm 0.01 0.26 0.29 24.8 6.83 3.75 0.33 42 37 464 764 42.4 

25-C d=20mm 0.01 0.33 0.29 25.0 8.19 3.67 0.21 40 37 455 726 39.8 

25-D d=20mm 0.01 0.26 0.28 25.0 5.54 3.74 0.33 43 49 492 765 40.3 

25-E d=20mm 0.01 0.30 0.30 25.0 6.91 3.92 0.27 42 44 461 746 40.5 

 
For dynamic strain ageing test, cylinder-shaped samples with a diameter of 10 mm and a length of 12.5 mm 

were prepared from modified S32705 bar-shaped grades with a diameter of 25 mm. The dynamic strain ageing 
tests were carried out in a computer-assisted Instron 1342 servo-hydraulic machine. The tests were performed 
at RT (20°C), 200°C, 250°C and 350°C using a heating resistance chamber with a temperature accuracy of 1°C. 
The total strain amplitude ranged from 0.4 to 1.0% with a push-pull mode and a frequency of 0.15Hz. 

The dislocation structures were investigated using transmission electron microscopy (TEM). Discs with a 
diameter of 3 mm were taken from both the fatigue-tested specimens and as-received material for TEM 
investigation. Thin foils were electrochemically polished at -30°C using an electrolyte of 10% perchloride acid 
(HClO3) in methanol and a voltage of 17-18 V. In order to reduce the risk for surface absorption of carbon, the 
fresh thin foils were immediately inserted into sample holder and analysed. The dislocation structures were 
studied using a Philips CM200 FEG-TEM, operated at 200 kV. 

3. Results and discussion  

Figure 1 shows the stress response curves for grade 25-E. As expected, the cyclic stress response of this 
duplex grade shows an initial hardening followed by a continuous softening behavior at RT (Fig. 1a). At 
350°C, however, it shows a very different behavior: a continuous hardening behavior until damage or failure. 
At 200°C, a second hardening occurs after about 100 cycles until damage or failure has occurred. The stress 
response curve at 350°C shows a higher cyclic hardening rate in the first hardening period compared with the 
curves at RT and 200°C. This indirectly shows the effect of dynamic strain ageing. The occurrence of cyclic 
strain hardening and softening strongly depends on the dislocation multiplication, accumulation rate and 
dislocation annihilation rate in the metals during cyclic loading. This indicates that the cyclic strain hardening 
in the initial cycles is due to the dislocation multiplication and accumulation within the initiated slip bands. 
With further fatigue cycling, the annihilation rate increases due to an increasing dislocation density. This can 
lead to a progressive decrease in the strain hardening rate and finally a state of saturation, which results in 
softening as the dislocation annihilation rate is higher than the dislocation accumulation rate. An increase in 
temperature will increase dislocation annihilation, and consequently lead to an earlier softening and a higher 
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density can be observed in the austenitic phase. Fig. 3b shows one example of interactions between the moving 
dislocations and stacking faults. Nitrogen content in the alloy has a strong effect on the dislocation structures. 
For the DSS with low nitrogen content, the planar dislocation structure has few and not well organized 
dislocations. Dislocation bands with high density can be observed in the austenitic phase. In the ferritic phase, 
tangled dislocations are a typical structure. In these alloys, few stacking faults have also been observed (Fig. 
3c)). This planar dislocation structure becomes denser and well organized if the DSS contains higher nitrogen 
content or is tested at 350°C. This indicates that dynamic strain ageing with high nitrogen will promote the 
formation of planar dislocation structure, which leads to a cyclic hardening [6]. Now more fine stacking faults 
or probably twins can be observed (Fig. 3d). They are usually interacted with moving dislocation. In the ferritic 
phase, dislocation sub-cells with high dislocation density are more easily observed. From this dislocation 
structure analysis, the formation of the second hardening can still be attributed to the formation of irreversible 
dislocation structures and defects like stacking faults. The first cyclic hardening rate is also a critical parameter 
that affects the softening process. 

This study has showed that DSA in DSS may change the dislocation structure, which leads to the formation 
of stacking faults or twins. This indicates that the stacking faults energy can decrease in the temperature range 
of 25 - 350°C. Stacking faults usually appear in FCC metals with low stacking fault energy during 
plastic deformation and an increase in nitrogen content decreases the stacking fault energy in austenitic 
steels [7]. 

For DSS, spinodal decomposition can occur at temperature near 470°C. At 350°C, the occurrence of the 
spinodal decomposition can be expected very slow, which may not affect the DSA significantly.    

4. Conclusions 

Dynamic strain ageing in duplex stainless steels during cyclic loading causes the formation of a second 
hardening response in the temperature range of 150 - 350°C and the fatigue properties improves compared to 
RT.  

An increase in nitrogen content in duplex stainless steel can increase the dynamic strain ageing effect and 
fatigue life in the strain ageing temperature range. The occurrence of strain ageing can change dislocation 
structures. The formation of irreversible dislocation structures and stacking faults can contribute to the 
formation of the second hardening in the stress response curve.  
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