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 The Weak Series Reduction Property Implies Pseudomodularity

 L EONARD  T AN

 1 .  I NTRODUCTION

 Pseudomodular matroids have been introduced by Bjo ̈  rner and Lova ́  sz in [1] .
 Hochsta ̈  ttler and Kern [3] have proven that pseudomodular matroids have the
 matching property defined by Dress and Lova ́  sz in [2] .

 In [2] ,  the authors have also defined the strong and weak series reduction properties .
 They proved that the weak series reduction property implies the matching property .

 In this paper ,  we fill in the gap by showing that in fact the weak series reduction
 property implies pseudomodularity .  In the process ,  we have also obtained a somewhat
 weaker characterisation of pseudomodularity than that in [3] .

 In [2] ,  it is shown that full algebraic matroids ,  full graphic matroids and full
 transversal matroids have the weak series reduction property .  So the result in this
 paper shows that these matroids are pseudomodular ,  a fact also mentioned in [1] .

 2 .  D EFINITIONS

 2 . 1 .  Basic definitions on matroids .  We recall some basic definitions and results .  We
 also introduce some new notation convenient for our purposes .  For a fundamental
 treatment of matroids ,  the reader is refered to [4] .

 We find it convenient to define matroids using the rank function .  Other equivalent
 definitions of matroids are found in [4] .

 D EFINITION  2 . 1 . 1 .  A  matroid  is a pair ( E ,  r ) where  E  is a set (which may be finite or
 infinite) and  r  is a non-negative integer function over the subsets of  E  satisfying the
 following :

 (i)  r  is finitely generated ,  i . e .  

 for  every  A  ‘  E ,  r ( A )  is  finite  and  there  is  a  finite  set  A 0  ‘  A  such  that  r ( A )  5  r ( A 0 ) ;

 (ii)  r ( f  )  5  0 ;
 (iii)  r  is non-decreasing ,  i . e .

 A  ‘  B  ‘  E  implies  r ( A )  <  r ( B ) ;

 (iv)  r  is submodular ,  i . e .

 r ( A  <  B )  1  r ( A  >  B )  <  r ( A )  1  r ( B )  for  every  A ,  B  ‘  E ;

 (v)  for every finite subset  A  ‘  E , r ( A )  <  u A u .

 Normally ,  a matroid is defined on a finite set .  Here ,  we have extended the definition
 to infinite sets .  This is to include the ‘full’ infinite matroids introduced by Dress and
 Lova ́  sz in [2] .  The rank is finite and finitely generated to preserve the essential
 properties of finite matroids .  Possibly ,  the only interesting property lost is that of the
 dual matroid .
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 For  e  P  E ,  we shall write  e  both for the element  e  itself and the singleton  h e j   unless
 confusion arises .  So ,  for example ,   A  <  e  would mean  A  <  h e j .

 Let ( E ,  r ) be a matroid .  A  circuit  is a finite subset  C  ‘  E  such that  r ( C )  5  r ( C  2  e )  5
 u C u  2  1   for every  e  P  C .  An  independent set  is a finite subset  X  ‘  E  such that
 r ( X  )  5  u X  u .  A  basis  of a set  A  ‘  E  is an independent set  X  such that  X  ‘  A  and
 r ( A )  5  r ( X  )  5  u X  u .

 Very often ,  we would like to say things like  h b  ,  b  j   is a circuit where  r ( b  )  5  1 .  For
 this purpose ,  we shall use the following device .

 D EFINITION  2 . 1 . 2 .  Let ( E ,  r ) be a matroid .  Let  A ,  B  ‘  E .  We say that  A  < 1  B  is
 independent if  r ( A  <  B )  5  u A u  1  u B u .  We say that  A  < 1  B  is a circuit if ,  for any  e  P  A ,
 r ( A  <  B )  5  r (( A  2  e )  <  B )  5  u A u  1  u B u  2  1   and ,  for any  e  P  B , r ( A  <  B )  5  r ( A  <  ( B  2
 e ))  5  u A u  1  u B u  2  1 .

 Some of the proofs in this paper will involve duplicating or ‘doubling’ of elements of
 a matroid .  We will use the symbol  < 1  whenever we want to take a union with ‘doubling’
 of the elements in the intersection .  This is more or less an abuse of concept .  We leave
 it to the reader to work out the proper details .

 D EFINITION  2 . 1 . 3 .  Let  M  5  ( E ,  r ) be a matroid and let  A  ‘  E .  The matroid
 M  / A  5  ( E ,  r A )   obtained by  contracting  the set  A  is defined on the same set  E  by
 r A ( X  )  5  r ( X  <  A )  2  r ( A ) .

 This is slightly dif ferent from the usual definition of contraction .  Here ,  the contracted
 elements are left as loops .  The rank function  r A   is identical to that of the usual
 definition when restricted to  E  2  A .  Our definition is more convenient for tackling
 matroid matching problems ,  and in particular for proving the results in this paper .

 The  closure  of a set  A  ‘  E  is the set  A #  5  h x  P  E  :  r ( A  <  x )  5  r ( A ) j .  We have
 A #  M / V  5  V  <  A ,  where  A #  M / V   denotes the closure of  A  in the contracted matroid  M  / V .
 A set  S  is said to be the  disjoint union  of  A  and  B  if  S  5  A  <  B  and  A  >  B  5  f .  We
 denote this by  S  5  A  1  B .  We say that  S  is the  direct sum  of  A  and  B  if  S  is the disjoint
 union of  A  and  B  and  r ( S )  5  r ( A )  1  r ( B ) .  We denote this by  S  5  A  %  B .  If  S  cannot be
 expressed as a direct sum of two non-empty sets ,  we say that  S  is  connected .

 2 . 2 .  The series reduction property .  In [2] ,  Dress and Lova ́  sz gave the definition of the
 strong and weak series reduction properties .  To define these terms ,  one has first to
 define what is meant by ‘in series’ .  Due to our approach ,  our definition of ‘in series’ is
 slightly dif ferent from theirs .  However ,  there is no change to the series reduction
 properties .

 D EFINITION  2 . 2 . 1 .  Let  M  5  ( E ,  r ) be a matroid .  Let  S ,  V  ‘  E .  We say that  S  is  in
 series  with  V  if  S  and  V  are both finite and  S  is a circuit in  M  / V .

 Note that when we use the phrase ‘ S  is in series with  V  ’ ,  we mean specifically that  V
 is finite .  Otherwise ,  we would simply say ‘ S  is a circuit in  M  / V  ’ .

 D EFINITION  2 . 2 . 2 .  Let  M  5  ( E ,  r ) be a matroid .  We say that  M  has the  strong series
 reduction property  if for every  S ,  V  ‘  E  such that  S  is in series with  V  ,  the following
 property holds :
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 There exists  b  P  E  such that ,  for any  T  ‘  V , T  < 1  S  is independent if f  T  < 1  b   is
 independent (or ,  equivalently ,   T  < 1  S  is a circuit if f  T  < 1  b   is a circuit) .

 We say that  M  has the  weak series reduction property  if the above property holds for
 all  S ,  V  ‘  E  such that  S  is in series with  V  and ,  in addition ,   V  is connected .

 The equivalence mentioned in Definition 2 . 2 . 2 can be proved using Lemma 3 . 1 . 1 ,
 stated later in this paper .

 2 . 3 .  Pseudomodularity .  The definition of pseudomodularity we adopt is that of [3] .  We
 then derive other equivalent definitions .  For even more equivalent definitions ,  see [1] .

 D EFINITION  2 . 3 . 1 .  A matroid  M  5  ( E ,  r ) is said to be  pseudomodular  if the
 following holds :

 If  A ,  B ,  C  ‘  E  are such that  r A ( C )  5  r B ( C )  5  r A < B ( C ) ,  then  r ( A  <  C  >  B  <  C )  2
 r ( A #  >  B #  )  5  r ( A  <  C )  2  r ( A ) .

 P ROPOSITION  2 . 3 . 2 .  Let M  5  ( E ,  r )  be a matroid . The following properties are
 equi y  alent :
 (1)  M is pseudomodular .
 (2)  If S  ‘  E is a circuit in each of the three contracted matroids M  / A , M  / B and
 M  / A  <  B , then S is also a circuit of the contracted matroid M  / A #  >  B #  .
 (3)  If W ,  X ,  Y ,  S  ‘  E are such that W  1  X and W  1  Y are independent sets , with
 W  1  X  >  W  1  Y  5  W #  , and if S is a circuit in each of the three contracted matroids
 M  / ( W  1  X  ) , M  / ( W  1  Y ) , M  / ( W  1  X  1  Y ) , then S is also a circuit of the contracted
 matroid M  / W .
 (4)  If Z is independent in M  / A  <  B , then  A  <  Z  >  B  <  Z  5  (A #  >  B #  )  <  Z .

 P ROOF .  (2)  é  (3)  Put  A  5  W  1  X , B  5  W  1  Y .
 (3)  é  (2)  Let  W  be a basis of  A #  >  B #  .  Complete this to a basis  W  1  X  of  A #    and a

 basis  W  1  Y  of  B #  .
 (1)  é  (2)  Let  e  P  S .  By definition of  S ,  we have

 r A ( S )  5  r A ( S  2  e )  5  r B ( S )  5  r B ( S  2  e )  5  r A < B ( S )  5  r A < B ( S  2  e )  5  u S u  2  1 .

 By pseudomodularity ,  we have

 r ( A  <  S  >  B  <  S )  2  r ( A #  >  B #  )  5  r ( A  <  ( S  2  e )  >  B  <  ( S  2  e ))  2  r ( A #  >  B #  )  5  u S u  2  1 .

 But ( A #  >  B #  )  <  S  ‘  A  <  S  >  B  <  S  and ( A #  >  B #  )  <  ( S  2  e )  ‘  A  <  ( S  2  e )  >  B  <  ( S  2  e ) .
 Therefore  r A #  > B #  ( S )  <  u S u  2  1 .  But  r A #  > B #  ( S )  >  r A ( S )  5  u S u  2  1 .  Therefore  r A #  > B #  ( S )  5  u S u  2  1 .
 Similarly ,   r A #  > B #  ( S  2  e )  5  u S u  2  1 .

 (2)  é  (4)  Let  e  P  A  <  Z  >  B  <  Z  2  Z .  Let  S  be the circuit of  M  / A  such that
 e  P  S  ‘  Z  1  e .  But  S  2  e  is independent in  M  / A  <  B ,  so  r A < B ( S )  5  u S u  2  1 .  By Lemma
 3 . 1 . 2 (stated later in the paper)  S  is also the circuit in  M  / A  <  B  with  e  P  S  ‘  Z  1  e .  By
 the symmetrical argument ,   S  is also the circuit in  M  / B  with  e  P  S  ‘  Z  1  e .  Propery (2)
 tells us that  S  is a circuit in  M  / A #  >  B #  .  Thus  e  P  Z #  M / A #  > B #  5  (A #  >  B #  )  <  Z .

 (4)  é  (1)  Let  Z  be a basis of  C  in  M  / A  <  B . Z  is also a basis of  C  in  M  / A  and  M  / B .
 Thus

 A  <  C  >  B  <  C  5  C #  M / A  >  C #  M / B  5  Z #  M / A  >  Z #  M / B  5  A  <  Z  >  B  <  Z  5  (A #  >  B #  )  <  Z .
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 Since  Z  is independent in  M  / A #  > B #  ,  we have  r (( A #  >  B #  )  <  Z )  5  r ( A #  >  B #  )  1  u Z u  5
 r ( A #  >  B #  )  1  r ( A #  <  Z #  )  2  r ( A )  5  r ( A #  >  B #  )  1  r ( A  <  C )  2  r ( A ) and 1 follows .  h

 3 .  W EAK  C HARACTERISATION OF  P SEUDOMODULARITY

 In fact ,  a slightly weaker form of property 3 of Proposition 2 . 3 . 2 characterises
 pseudomodularity .

 D EFINITION  3 . 0 . 1 .  A matroid  M  5  ( E ,  r ) is said to satisfy condition WCP (Weak
 Characterisation of Pseudomodularity) if the following holds .

 Let  W ,  X  and  Y  be finite pairwise disjoint subsets of  E  such that  W  1  X  and  W  1  Y
 are independent sets with  W  1  X  >  W  1  Y  5  W #  .

 Put  V  5  W  1  X  1  Y .  Suppose that  V  is  connected .
 Let  S  be a circuit in each of the three contracted matroids  M  / ( W  1  X  ) , M  / ( W  1  Y )

 and  M  / ( W  1  X  1  Y ) .
 Then  S  is also a circuit of the contracted matroid  M  / W .

 T HEOREM  3 . 0 . 2 .  A matroid M  5  ( E ,  r )  is pseudomodular if f it satisfies condition
 WCP .

 The rest of this section is devoted to proving this theorem .

 3 . 1 .  Preliminary propositions

 L EMMA  3 . 1 . 1 .  Let M  5  ( E ,  r )  be a matroid . Let S ,  V  ‘  E such that S  >  V  5  [ .
 Suppose that S is a circuit of M  / V . Then e y  ery circuit C of M such that C  ‘  S  <  V either
 is disjoint from S or contains S entirely .

 There exists at least one circuit C 0   of M such that S  ‘  C 0  ‘  S  <  V . If , in addition , V is
 an independent set , then C 0   is unique .

 P ROOF .  Let  C  ‘  S  <  V  be a circuit of  M .  Suppose that  C  >  S  ?  [ .  We have
 u C  >  V  u  ,  u C u   and  r ( C  >  V  )  5  u C  >  V  u   since  C  is a circuit of  M .  We thus have
 r V  ( C  >  S )  5  r ( C  <  V  )  2  r ( V  )  <  r ( C )  2  r ( C  >  V  )  5  u C u  2  1  2  u C  >  V  u  5  u C  >  S u  2  1 .  But  S
 is a circuit of  M  / V  and so  C  “  S .

 Now suppose that  S  2  V  ?  f .  Let  x  P  S  2  V . r ( V  <  S )  5  r V  ( S )  1  r ( V  )  5  r V  ( S  2  x )  1
 r ( V  )  5  r ( V  <  S  2  x ) .  Therefore there exists a circuit  C  of  M  with  x  P  C  ‘  V  <  S .  Since
 C  >  S  ?  f  ,  the first part of the proof tells us that  C  “  S .  If there are two distinct circuits
 C  and  C 9  such that  S  ‘  C  ‘  S  1  V  and  S  ‘  C 9  ‘  S  1  V ,  then there exists a circuit
 C 0  ‘  C  <  C 9  2  s  for some  s  P  S .  But from what is proved above ,   C 0  ‘  V  ,  so  V  cannot be
 independent .  h

 L EMMA  3 . 1 . 2 .  Let M  5  ( E ,  r )  be a matroid and let V  ‘  E . Let S  ‘  E  2  V and let C
 be a circuit of M such that S  ‘  C  ‘  S  1  V . Suppose that r V  ( S )  >  u S u  2  1 . Then S is a
 circuit of M  / V .

 P ROOF .  Let  e  P  S . We ha y  e e  P  C  2  e  ‘  V  <  ( S  2  e ) and so  r ( V  <  S )  5  r ( V  <  ( S  2
 e )) .  Therefore ,   r V  ( S  2  e )  5  r ( V  <  ( S  2  e ))  2  r ( V  )  5  r ( V  <  S )  2  r ( V  )  >  u S u  2  1 .  On the
 other hand ,   r V  ( S  2  e )  <  u S u  2  1 .  h
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 P ROPOSITION  3 . 1 . 3 .  Let  ( E ,  r )  be a matroid and let W ,  X and Y be pairwise disjoint
 subsets of E . Suppose that W  1  X and W  1  Y are independent sets and that

 W  1  X  >  W  1  Y  5  W #  .

 Then , for any W  9  ‘  W , X  9  ‘  X and Y 9  ‘  Y , we ha y  e

 W  9  1  X  9  >  W  9  1  Y 9  5  W #  9 .

 P ROOF .  Let  A  5  W  9  1  X  9  >  W  9  1  Y 9 .  We have  A  ‘  W  1  X  >  W  1  Y  5  W #  .  Hence

 r ( A )  5  r ( W  9  1  X  9  >  W  9  1  Y 9  >  W #  )  <  r ( W  9  1  X  >  W #  )

 <  r ( W  9  1  X )  1  r ( W #  )  2  r ( W  1  X )

 5  r ( W  9 )  1  r ( X  )  1  r ( W  )  2  r ( W  )  2  r ( X  )  5  r ( W  9 ) .

 On the other hand ,  obviously  W #  9  ‘  A .  h

 P ROPOSITION  3 . 1 . 4 .  Let M  5  ( E ,  r )  be a matroid . Let S ,  V  ‘  E such that S  ?  f  ,
 S  >  V  5  f  and S is a circuit of M  / V . Suppose that V  5  V 1  %  V 2  . Let C 1   and C 2   be two
 circuits such that S  ‘  C 1  ‘  S  1  V and S  ‘  C 2  ‘  S  1  V . Then C  5  S  1  ( C 1  >  V 1 )  1  ( C 2  >
 V 2 )  is a circuit .

 We first prove the following weaker form .

 L EMMA  3 . 1 . 5 .  Under the hypothesis of the abo y  e proposition , there exists a circuit C
 of M such that S  ‘  C  ‘  S  1  ( C 1  >  V 1 )  1  ( C 2  >  V 2 ) .

 P ROOF .  Let  C  be a circuit such that  S  ‘  C  ‘  S  1  V , C  >  V 1  ‘  C 1  >  V 1  and such that
 u ( C  >  V 2 )  2  C 2 u   is a minimum with these properties .  We want to show that ( C  >
 V 2 )  2  C 2  5  f  .  Suppose that we have the contrary and let  a  P  ( C  >  V 2 )  2  C 2 .  Now
 a  P  C , a  ̧  C 2  and  S  ‘  C  >  C 2 .  So there exists a circuit  C 3  such that  a  P  C 3  ‘  C  <  C 2  2  s
 for some  s  P  S .  But from Lemma 3 . 1 . 1 ,   C 3  >  S  5  f  ,  so  a  P  C 3  ‘  ( C  <  C 2 )  2  S  ‘  V .  Note
 that  C 3  ‘  V 2  because  a  P  V 2 ,  and  V  5  V 1  %  V 2 .  Now we have  a  P  C  >  C 3  , S  ‘  C  2  C 3  .
 Thus there exists a circuit  C 9  such that  s  P  C 9  ‘  C  <  C 3  2  a ,  where  s  P  S  but ,  again
 from Lemma 3 . 1 . 1 ,   C 9  “  S .  We now have  C 9  >  V 1  ‘  C  >  V 1  ‘  C 1  >  V 1  and ( C 9  >  V 2 )  2
 C 2  ‘  ( C  >  V 2 )  2  a  2  C 2   contradicting the assumption that  u ( C  >  V 2 )  2  C 2 u   is minimal .  h

 P ROOF OF  P ROPOSITION  3 . 1 . 4 .  From Lemma 3 . 1 . 5 ,  let  C  be a circuit such that
 S  ‘  C  ‘  S  1  ( C 1  >  V 1 )  1  ( C 2  >  V 2 ) .  Using two more times the Lemma 3 . 1 . 5 there exists
 a circuit  C 9 1  such that  S  ‘  C 9 1  ‘  S  1  ( C  >  V 1 )  1  ( C 1  >  V 2 )  ‘  C 1  and a circuit  C 9 2  such that
 S  ‘  C 9 2  ‘  S  1  ( C 2  >  V 1 )  1  ( C  >  V 2 )  ‘  C 2 .  We thus have  C 9 1  5  C 1  and  C 9 2  5  C 2  by defini-
 tion of circuits and thus  C  <  V 1  5  C 1  >  V 1  and  C  >  V 2  5  C 2  >  V 2 .  h

 P ROPOSITION  3 . 1 . 6 .  Let M  5  ( E ,  r )  be a matroid . Let S ,  V  ‘  E such that S  ?  f  ,
 S  >  V  5  f  and S is a circuit of M  / V . Suppose that V  5  V 1  %  V 2  . Let C be a circuit such
 that S  ‘  C  ‘  S  1  V . Then S 9  5  S  1  ( C  >  V 1 )  5  C  >  ( S  1  V 1 )  5  C  2  V 2   is a circuit of M  / V 2 .

 P ROOF .  We have  u S u  2  1  5  r C > V ( S )  5  r ( C > V 1 ) < ( C > V 2 ) ( S )  >  r ( C > V 1 ) < V 2
 ( S )  >  r V  ( S )  5  u S u  2

 1 ,  and so  r ( C > V 1 ) < V 2
 ( S )  5  u S u  2  1 .  Also  r (( C  >  V 1 )  <  V 2 )  5  r ( C  >  V 1 )  1  r ( V 2 ) because
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 V  5  V 1  %  V 2 .  Thus  r V 2
 ( S 9 )  5  r ( S 9  <  V 2 )  2  r ( V 2 )  5  r ( S  <  ( C  >  V 1 )  <  V 2 )  2  r ( V 2 )  5  u S u  2  u  1

 r (( C  >  V 1 )  <  V 2 )  2  r ( V 2 )  .  u S u  2  1  1  u C  >  V 1 u  5  u S 9 u  2  1   and therefore ,  from proposition
 3 . 1 . 2 ,   S 9  is a circuit in  M  / V 2 .  h

 3 . 2 .  Proof of the weak characterisation theorem

 P ROOF OF  T HEOREM  3 . 0 . 2 .  We shall prove property (3) of Proposition 2 . 3 . 2 .  Let
 W ,  X ,  Y  ‘  E  be such that  W  1  X  and  W  1  Y  are independent and  W  1  X  >  W  1  Y  5  W #  .
 Let  S  ‘  E  such that  S  is a circuit in each of the three contracted matroids  M  / W  1  X ,
 M  / W  1  Y , M  / W  1  X  1  Y .  We want to prove that  S  is a circuit in  M  / W .

 If  S  is a singleton ,  the result is obvious ,  so assume that  S  is not a singleton .  This
 means that  S  >  ( W  1  X  1  Y )  5  f .

 By Proposition 3 . 1 . 1 ,  there exists a unique circuit  C 1  of  M  such that  S  ‘  C 1  ‘
 S  1  W  1  X  and a unique circuit  C 2  of  M  such that  S  ‘  C 2  ‘  S  1  W  1  Y .

 Put  V  5  W  1  X  1  Y .  Let  V  9  be a connected component of  V .  So ,   V  5  V  9  %  V  0 ,
 where  V  0  5  V  2  V  9 .  Write  W  9  5  W  >  V  9 , X  9  5  X  >  V  9  and  Y 9  5  Y  >  V  9 .

 We will now prove that  C 1  >  V  9  5  C 2  >  V  9 .
 By Proposition 3 . 1 . 4 ,   C 3  5  S  1  ( C 2  >  V  9 )  1  ( C 1  >  V  0 ) is a circuit of  M .
 Put  S 9  5  S  1  ( C 1  >  V  0 )  5  C 1  >  ( S  1  V  0 )  5  C 3  >  ( S  1  V  0 ) .  Now ,  by Proposition 3 . 1 . 6 ,

 S 9   is a circuit in  M  / W  9  1  W  9 , M  / W  9  1  Y 9  and  M  / W  9  1  X  9  1  Y 9 .  Thus ,  from the
 hypothesis and Proposition 3 . 1 . 3 ,   S 9  is a circuit in  M  / W  9 .  So ,  by Proposition 3 . 1 . 1 ,
 there exists a circuit  C 4  such that  S 9  ‘  C 4  ‘  S 9  1  W  9 .  Again by 3 . 1 . 1 ,   C 4  5  C 1  5  C 3
 because  W  1  X  and  W  1  Y  are independent .  This shows that  C 1  >  V  9  5  C 2  >  V  9 .

 Since this is true for every connected component  V  9  of  V  ,  we have in fact
 C 1  5  C 2  ‘  S  1  W  and thus  S  is a circuit of  M  / W .  h

 4 .  T HE  M AIN  T HEOREM

 M AIN  T HEOREM .  If a matroid has the weak series reduction property , then it is
 pseudomodular .

 P ROOF .  Let  W ,  X ,  Y ,  V  and  S  be as in the ‘hypothesis part’ of condition WCP .
 By the weak series reduction property ,  there exists  b  P  E  such that for any  T  ‘  V ,

 T  1  S  is a circuit if and only if  T  < 1  b   is a circuit .
 S  is a circuit of  M  / ( W  1  X  ) ,  so by Lemma 3 . 1 . 1 ,  there exists  T 1  ‘  W  1  X  such that

 S  < 1  T 1   is a circuit .  Thus ,   b  < 1  T 1  is a circuit and so  b  P  W  1  X .  Similarly ,   b  P  W  1  Y .
 Therefore  b  P  W #  .  Thus ,  there exists  T 0  ‘  W  such that  b  < 1  T 0  is a circuit .  This means
 that  S  < 1  T 0  is a circuit .  By Lemma 3 . 1 . 2 ,   S  is a circuit in  M  / W .  h

 5 .  A C OUNTEREXAMPLE TO THE  C ONVERSE OF THE  M AIN  T HEOREM

 The converse to the main theorem is not true .  Here is a counterexample .
 We shall consider a subset  E  of the af fine plane  R 2 .  Remember that the dimension of

 a point is 1 and that of a line is 2 .
 Put  a 1  5  (1 ,  0) , a 2 (2 ,  0) , a 3  5  (3 ,  0) and  b 1  5  (1 ,  1) ,  and  b 2  5  (2 ,  2) .
 Let  E  5  h a 1  ,  a 2  ,  a 3  ,  b 1  ,  b 2 j .  Let  r  be the dimension function .
 One verifies easily that the circuits are  h a 1  ,  a 2  ,  a 3 j   and  h a i  ,  a j  ,  b 1  ,  b 2 j ,  with  i ,  j  P

 h 1 ,  2 ,  3 j , i  ?  j .
 The connected sets are the circuits and  E  itself .
 ( E ,  r ) is pseudomodular .  This is easy to verify using the weak characterisation .
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 Consider  V  5  h a 1  ,  a 2  ,  a 3 j , S  5  h b 1  ,  b 2 j .  b   with the property in Definition 2 . 3 . 1 does not
 exist .
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