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Morphine increases the susceptibility to opportu-
nistic infection by attenuating bacterial clearance
through inhibition of Fc� receptor (FcgR)–mediated
phagocytosis. Mechanisms by which morphine inhib-
its this process remain to be investigated. Actin
polymerization is essential for FcgR-mediated inter-
nalization; therefore, disruption of the signaling
mechanisms involved in this process is detrimental to
the phagocytic ability of macrophages. To our knowl-
edge, this study is the first to propose the modulation
of actin polymerization and upstream signaling effec-
tors [cAMP, Rac1-GTP, and p38 mitogen-activated pro-
tein kinase (MAPK)] as key mechanisms by which
morphine leads to inhibition of pathogen clearance.
Our results indicate that long-term morphine treat-
ment in vitro and in vivo, through activation of the
�-opioid receptor, leads to an increase in intracellular
cAMP, activation of protein kinase A, and inhibition
of Rac1-GTPase and p38 MAPK, thereby attenuating
actin polymerization and reducing membrane ruf-
fling. Furthermore, because of long-term morphine
treatment, FcgR-mediated internalization of op-
sonized dextran beads is also reduced. Morphine’s
inhibition of Rac1-GTPase activation is abolished in
J774 macrophages transfected with constitutively
active pcDNA3-EGFP-Rac1-Q61L plasmid. Dibutyryl-
cAMP inhibits, whereas H89 restores, activation of
Rac-GTPase and abolishes morphine’s inhibitory ef-
fect, implicating cAMP as the key effector in mor-
phine’s modulation of actin polymerization. These
findings indicate that long-term morphine treat-
ment, by increasing intracellular cAMP and activat-
ing protein kinase A, leads to inhibition of Rac1-
GTPase and p38 MAPK, causing attenuation of actin

polymerization, FcgR-mediated phagocytosis, and

1068
decreased bacterial clearance. (Am J Pathol 2012, 180:

1068–1079; DOI: 10.1016/j.ajpath.2011.11.034)

Opioid use and abuse steadily increased through the
1990s and has continued to increase over recent
years.1,2 The 2004 National Survey on Drug Use and
Health shows that between 1999 and 2001, the annual
incidence of opioid analgesic abuse increased from
628,000 initiates in 1990 to 2.4 million initiates in 2001.3 It
is well established that long-term opioid use or abuse
results in severe immunosuppression and increased sus-
ceptibility to infection.4–6 Long-term morphine use has
modulated the innate immune system through a de-
crease in the proliferative capacity of macrophage pro-
genitor cells and lymphocytes7 by inhibiting macrophage
phagocytic8,9 and migratory capabilities,10 leading to in-
creased risk of sepsis in mice.5,6 Similar studies11 show
that morphine’s inhibition of pro-inflammatory cytokines
can be overcome by addition of untreated macrophages,
suggesting that morphine-induced immunosuppression
is due to a deficit in macrophage function. Despite these
deleterious consequences of opioid abuse, morphine
and other opioid-based pain relievers remain widely pre-
scribed and abused worldwide.12 There is clearly an
urgent need to delineate the underlying cellular and mo-
lecular mechanisms by which long-term opiate use or
abuse increases susceptibility to bacterial infection. Un-
derstanding these mechanisms will allow for the devel-
opment of novel approaches to treat and prevent bacte-
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rial infection in the population abusing opiates and in
patients who receive opioids for pain management.

Innate immunity has a crucial role in clearance of
bacterial infections. Phagocytes, such as macro-
phages, play an essential role as the first line of de-
fense against microbial pathogens by using their
phagocytic abilities to facilitate bacterial clearance
and elimination. To internalize a wide variety of patho-
gens, macrophages have evolved a diverse set of
phagocytic receptors, such as the mannose receptor,
the scavenger receptor, the complement receptor, and
Fc� receptors (FcgRs). FcgRs are the most important
Fc receptors for inducing phagocytosis of opsonized
microbes.13 They facilitate internalization of opsonized
extracellular bacteria by recognizing the Fc region of
the IgG antibody coating (opsonizing) the surface of
the pathogen. Cross-linking of Fc�-activating recep-
tors by immune complexes leads to tyrosine phosphor-
ylation and a signal transduction cascade, ultimately
resulting in activation of Rho GTPases, which are mo-
lecular switches that control the organization of the
actin cytoskeleton and are essential for actin polymer-
ization, membrane extension, and pathogen engulf-
ment.14 Interestingly, opioid abuse has increased the
incidence of extracellular bacterial infections, such as
Streptococcus pneumoniae15 and Enterococcus faeca-
lis16; however, mechanisms underlying this phenome-
non remain to be explored. We tested the hypothesis
that morphine treatment causes inhibition of actin po-
lymerization, leading to attenuated FcgR-mediated
phagocytosis and diminished clearance of invading
bacterial pathogens. We also investigated the molec-
ular mechanisms by which morphine modulates actin
polymerization, leading to inhibition of FcgR-mediated
phagocytosis. Signaling pathways involving cAMP,
protein kinase A (PKA), Rho GTPases, and mitogen-
activated protein kinases (MAPKs) were examined as
potential mechanisms of morphine’s action.

Intracellular cAMP plays an important role in medi-
ating signaling downstream from the �-opioid receptor
(MOR). Long-term morphine treatment activates G pro-
teins that lead to increased levels of cAMP.17 Although
elevation of cAMP in lymphocytes leads to immune
suppression by a PKA-dependent pathway,18 the ef-
fects of morphine induction of cAMP on actin polymer-
ization in macrophages have not been investigated.
Therefore, we examined if the morphine-mediated in-
crease in cAMP is instrumental to inhibition of actin
polymerization and phagocytosis. Furthermore, recent
studies19 show that MAPKs, such as p38 and the re-
lated extracellular signal–regulated kinase 1/2 (ERK1/
2), are activated and play an important role during
neutrophil phagocytosis. We examined the role of
these kinases in macrophage phagocytosis and
whether morphine modulates p38 MAPK and ERK1/2
phosphorylation to inhibit actin polymerization. Our re-
sults indicate that morphine, by elevating cAMP, acts
through a PKA-dependent mechanism to inhibit activa-
tion of Rac1-GTP, causing inhibition of p38 MAPK and
ultimately attenuating actin polymerization and op-

sonophagocytosis.
Materials and Methods

Reagents

Heat-killed Escherichia coli particles [E2861: E. coli (K-12
strain) BioParticles, fluorescin conjugate (excitation, 494
nm; emission, 518 nm)], opsonizing reagent (E2870), dex-
tran beads (1-�m yellow-green fluorescent Fluo-Spheres;
F8852 (Molecular Probes, Eugene, OR); excitation, 488 nm;
emission, 518 nm), and rhodamine phalloidin (R415) were
obtained from Molecular Probes. DAPI, cytochalasin D
(CytD), H89, DB-cAMP, anisomycin, PD98059, and
SB203580 were obtained from Sigma-Aldrich (St. Louis,
MO). Antibodies used in fluorescence-activated cell sorter
(FACS) analysis included the following: anti-mouse CD64 a
and b (phosphatidylethanolamine conjugated, catalogue
number 558455; BD Pharmingen, Sparks, MD), anti-mouse
F4/80 [fluorescein isothiocyanate (FITC) conjugated, cata-
logue number 11–4801; eBioscience, San Diego, CA], and
anti-mouse CD16/CD32 FITC-conjugated (catalogue num-
ber 11-0161; eBioscience). A cAMP detection kit from R&D
Systems, Minneapolis, MN (catalogue number KGE002),
Rac-GTP G-protein ELISA kits (catalogue number BK125),
and the Rac-GTP pull-down kit (catalogue number BK035)
were obtained from Cytoskeleton (Denver, CO). Morphine
HCl powder and 75-mg slow-release pellets were a gift from
the National Institute on Drug Abuse.

Cells

The macrophage cell line J774.1 was obtained from
American Type Culture Collection (Manassas, VA) and
cultured in Dulbecco’s modified Eagle’s medium
(DMEM), supplemented with 10% heat-inactivated fetal
bovine serum and 1% penicillin-streptomycin (all from
Gibco, Grand Island, NY) under standard conditions for
cell growth.

Animals

MOR knockout (MORKO) mice (C57BL/6 � 129/Ola ge-
netic background) were produced as previously de-
scribed by Loh and colleagues.20 Briefly, a XhoI/XbaI
fragment, which spans exons 2 and 3, was replaced with
a Neor cassette, followed by the ligation of a thymidine
kinase expression cassette to the 3= end of this segment.
Wild-type (WT) mice (B6129PF1/J), aged 8 weeks, were
obtained from the Jackson Laboratory (Bar Harbor, ME).
Animal studies have been reviewed and approved by the
University of Minnesota Institutional Animal Care and Use
Committee.

Primary Macrophages

Primary peritoneal macrophages were obtained from WT
or MORKO male mice aged 6 to 8 weeks; peritoneum
was lavaged. The cells were collected and plated in
96-well plates in serum-free media for 30 minutes; non-
adherent cells were washed with PBS; and remaining
adherent macrophages were maintained in enriched

DMEM, as previously described, with or without 1 �mol/L
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morphine, where appropriate (to avoid morphine with-
drawal), and used for further experimentation.

Long-Term Morphine Treatment

For all in vitro experiments, 1 �mol/L morphine HCl was
added overnight (18 hours). For studies involving mor-
phine treatment in vivo, mice administered morphine were
implanted with 75 mg of slow-release morphine or pla-
cebo pellets for 72 hours. During the extraction of peri-
toneal cells from morphine-treated WT or MORKO mice, 1
�mol/L morphine was maintained in all PBS and media
used in the experiment to prevent withdrawal. Concen-
trations used in the in vitro paradigm were chosen to
closely replicate morphine plasma levels (11 to 1440
ng/mL), which are present in patients undergoing mor-
phine sulfate treatment (2.5 to 90 mg every 4 hours),21 as
well as mice after 72-hour implantation with 75-mg mor-
phine pellets.

In Vivo Phagocytosis Assay

Mice were treated in vivo with morphine (as previously
described), and 30 minutes before sacrifice, they were
injected with heat-killed, FITC-labeled E. coli BioParticles.
Macrophages were collected from peritoneal lavage (as
previously described) and washed with 50% trypan blue
to extinguish fluorescence of noninternalized particles.
Cells were plated in 96-well plates, left to adhere for 30
minutes in serum-free DMEM, washed, stained with DAPI,
and quantified using the fluorometric assay.

Fluorometric Assay

Cells were plated in 96-well plates (10,000 cells per well),
treated with morphine, and cultured overnight in standard
growing conditions (37°C, 10% CO2, 80% Rh). The fol-
lowing day, fluorescent (FITC-conjugated) opsonized
dextran (OPDex) beads or heat-killed opsonized (HKO)
E. coli was added (1:20, cell:bacteria/bead ratio). Beads
or bacteria were opsonized with IgG opsonizing reagent
(Invitrogen) for 1 hour at 37°C, according to the manu-
facturer’s instructions. Phagocytosis was conducted at
varied time points and was stopped by addition of trypan
blue, which extinguishes fluorescence of noninternalized
particles. Cells were washed two times with PBS and
stained with DAPI. Fluorescence was recorded using a
fluorescence plate reader (FLUOstar Omega; BMG-
Labtech, Offenburg, Germany) at an excitation of 485 nm
and an emission of 520 nm (FITC) and an excitation of
355 nm and an emission of 460 nm (DAPI). Data were
quantified as follows: Phagocytic Index � FITC/DAPI
[both given in relative fluorescence units (RFUs)], in-
dicative of particle fluorescence per cell. In actin po-
lymerization experiments, cells were treated similar to
that previously described, washed, fixed with 4% para-
formaldehyde, permeabilized with 0.1% Triton X-100, and
stained with rhodamine phalloidin (Invitrogen), according
to the manufacturer’s protocol. After rhodamine, cells
were stained with DAPI and fluorescence was measured

using the fluorescence plate reader. Actin polymerization
was quantified as ratio of rhodamine (RFU) (excitation,
544 nm; emission, 590 nm)/DAPI (RFU), indicative of
actin polymerization per cell. Data were expressed as
percentage of vehicle control.

Confocal Microscopy

Following the same treatment as previously described,
cells were stained with rhodamine phalloidin according to
the manufacturer’s instructions. Images were taken using
a Nikon inverted confocal microscope (model Ti-E
eclipse 100) and a Roper camera (model Cool-snap
HQQ) (both from Nikon Instuments, Elgin, IL) at �60, with
additional digital magnification. Images shown are the
flattened sum of 15 cross sections.

Pull-Down and GLISA Assays

The J774 cells were plated at 500,000 cells per 10 mL of
supplemented DMEM (10-cm Petri dish) and cultured for
2 days. On the second day, morphine was added; on the
third day, cells were treated with OPDex beads (1:20
ratio) for 30 minutes. Cells were washed, collected, and
analyzed according to the manufacturer’s instructions.
Briefly, cell lysates were incubated with PAK-PBD beads
and allowed to pull down the PAK-PBD/GTP-Rac com-
plex. The amount of activated Rac1 is determined by
using Western blot analysis with a Rac1-specific anti-
body. GTP�S is a nonhydrolyzable GTP analog used as a
positive control, and GDP is used as a negative control.
Samples analyzed via GLISA assay were prepared as
previously described. Protein, 0.7 �g/�L, was added per
well; Rac-control protein, 0.2 �g/�L, was used as a pos-
itive control.

Plasmid Transfection

Addgene plasmid 12981:pcDNA3-EGFP-Rac1-Q61L and
pcDNA3-Flag MKK6(glu) were obtained from Addgene
(Cambridge, MA), donated by Dr. Gary Bokoch (Scripps
Research Institute, La Jolla, CA)22 and Dr. Roger Davis
(University of Massachusetts Medical School, Worcester,
MA),23 respectively. The plasmids were transfected us-
ing Fugene reagent (catalogue number 04-709-705-001;
Roche, Basel, Switzerland), according to the manufactur-
er’s protocol. The next day after the transfection, cells
were collected, plated, and treated with 1 �mol/L mor-
phine overnight and HKO E. coli (Texas Red), as previ-
ously described.

Results

Long–Term Morphine Inhibits Macrophage
Phagocytosis in Vitro and in Vivo

Macrophages play a crucial role in morphine–induced
immunosuppression.11 Because morphine has been im-
plicated in increased susceptibility to infections by extra-
cellular pathogens and FcgR is the key phagocytic re-

ceptor for clearance of extracellular pathogens, we
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investigated how morphine modulates FcgR-mediated
phagocytosis.

To determine the effects of long-term morphine treat-
ment on bacterial clearance mediated by FcgR, macro-
phages (cell line J774) undergoing long-term morphine
treatment (1 �mol/L overnight) were allowed to phagocy-
tose live opsonized green fluorescent protein (GFP)–
tagged E. coli for 30 minutes. After extensive washing,
fixation (4% paraformaldehyde), and permeabilization
(acetone), cells were stained with rhodamine phalloidin
(red, actin) and DAPI (blue, nucleus); analyzed via con-
focal microscopy (Figure 1A); and quantified for pixel
density (Figure 1B). Confocal microscopy demonstrates
that J774 cells undergoing long-term morphine treatment
display a significant inhibition of internalization (�50%
inhibition) of live opsonized GFP-tagged E. coli (at 30
minutes) when compared with the vehicle-treated cells.

To study the mechanisms involved in this process,
without the potential confounding effects of bacterial tox-
ins and lipopolysaccharides, IgG-opsonized FITC-la-
beled dextran (OPDex) beads were used to mimic inter-
nalized pathogen. Similar to phagocytosis with E. coli,
long-term morphine treatment led to a decrease in inter-
nalization of OPDex beads, as demonstrated through a
reduction in the phagocytic index in a time-dependent
manner (see Supplemental Figure S1A at http://ajp.
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Figure 1. Long-term morphine leads to inhibition of FcgR-mediated phago
treatment (1 �mol/L overnight) and 30-minute incubation with live opson
microscopy using Nikon EZ-C1 3.90 software. Original magnification, �60. Sc
nucleus. Images were quantified for pixel density using ImageJ software. B:
with 10 �mol/L naltrexone (Sigma-Aldrich) 2 hours before overnight morph
next day using fluorometric analysis, after a 60-minute incubation with OPD
examined 30 minutes after the i.p. injection of HKO E. coli (WT and MOR
treatment. To avoid withdrawal, morphine was maintained in washes and
morphine in vivo). Phagocytosis was assessed using fluorometric analysis. E
coli (Texas Red conjugated), recorded in Supplemental Video S1 (available a
index is defined as the intensity of red fluorescence per cell (and expressed a
longest length - shortest length observed in 30 minutes of phagocytosis) (F).
G and H: FACS analysis of morphine modulation of FcgR1 a/b (anti-mo
macrophage marker anti-mouse F4/80 (FITC conjugated; eBioscience) (G) a
(H). Left panels: Vehicle treatment. Middle panels: Morphine treatment. R
experiments. Data were collected using Guava EasyCyte and quantified usin
**P � 0.01 and ***P � 0.001.
amjpathol.org), with maximal inhibition at 60 minutes (Fig-
ure 1C). Morphine’s attenuation of internalization was lim-
ited to opsonized particles because phagocytosis of un-
opsonized particles was not altered with morphine
treatment (see Supplemental Figure S1B at http://ajp.
amjpathol.org). In addition, morphine’s inhibitory effect
was abolished in cells pretreated with naltrexone (10
�mol/L) 2 hours before the addition of morphine (Figure
1C). These findings indicate that morphine’s inhibitory
effect in J774 cells is mediated by classic opioid rece-
ptors.

We next investigated the effect of in vivo long-term
morphine treatment on phagocytosis using an in vivo
phagocytosis assay (as described in Materials and Meth-
ods). WT and MORKO mice were implanted with slow-
releasing 75-mg morphine or placebo pellets. Thirty min-
utes before sacrifice, mice were i.p. injected with HKO E.
coli. Peritoneal lavage cells were washed in trypan blue to
extinguish fluorescence of noninternalized HKO E. coli,
and peritoneal macrophages were isolated using stan-
dard protocols. Phagocytosis of HKO E. coli was inhibited
in primary peritoneal macrophages isolated from mor-
phine-treated WT mice. This effect was abolished in peri-
toneal macrophages harvested from MORKO mice (Fig-
ure 1D). These data indicate that the phagocytic ability of
primary peritoneal macrophages is significantly reduced
in mice undergoing in vivo long-term morphine treatment
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phine-induced inhibition in macrophages extracted from
the MORKO mice. These findings were further confirmed
using time-lapse imaging, during which we observed
that, over 60 minutes of phagocytosis of Texas Red–
labeled HKO E. coli (Invitrogen), J774 cells that under-
went long-term morphine treatment displayed signifi-
cantly impaired bacterial clearance (Figure 1E; see also
Supplemental Video S1 at http://ajp.amjpathol.org) and
reduced cell elongation (Figure 1F; see also Supplemen-
tal Video S1 at http://ajp.amjpathol.org).

To examine if morphine’s attenuation of phagocyto-
sis is due to modulation of FcgR surface expression,
we conducted FACS analysis of morphine-treated J774
macrophages (Figure 1, G and H). FACS analysis de-
termined that expression of key phagocytic receptors,
such as FcgR1 a/b (Figure 1G), FcgR2, and FcgR 3
(Figure 1H), was not altered in J774 cells after mor-
phine treatment, indicating that morphine modulation
of FcgR is not involved in morphine- induced inhibition
of phagocytosis. Based on this evidence, we speculate
that cross talk between the MOR and FcgR signaling
pathways must be downstream from the FcgRs. Con-
sidering recent reports24 –26 that indicate that morphine
induces macrophage apoptosis, the effects of mor-
phine on cell viability were investigated. An MTT assay
was used to quantify cell viability after morphine treat-
ment or OPDex bead exposure (see Supplemental Fig-
ure S1C at http://ajp.amjpathol.org). The data indicate
that, in this model, there were no changes in cell via-
bility with morphine or OPDex bead treatments.

Together, these findings show that morphine-induced
inhibition of phagocytosis observed in the macrophage
cell line J774 can be replicated in primary macrophages,
and that morphine’s inhibitory effects on phagocytosis
are not due to changes in FcgR expression or changes in
cell viability. Furthermore, we also demonstrate, via
QT-PCR, that primary and J774 macrophages display
comparable MOR and FcgR expression levels, ex-
pressed as ratio of MOR/FcgR (see Supplemental Figure
S1H at http://ajp.amjpathol.org). Therefore, all subse-
quent mechanistic studies were conducted in J774 cells
using OPDex beads.

Long-Term Morphine Treatment Inhibits
Phagocytosis by Inhibiting Actin Polymerization

Remodeling of the actin cytoskeleton is a prerequisite for
FcgR-mediated phagocytosis.27,28 Actin polymerization
enables formation of the phagocytic cup, leading to the
subsequent internalization of the phagocytic target and
phagosome maturation.28 In our initial studies using time-
lapse imaging (see Supplemental Video S1 at http://
ajp.amjpathol.org), we observed that cells undergoing
long-term morphine treatment, in addition to a reduced
ability to internalize bacteria, displayed profound defects
in cell motility and elongation (Figure 1F) during phago-
cytosis of HKO E. coli. When exposed to long-term mor-
phine treatment, cells were more rounded and had de-
creased motility when compared with the vehicle-treated

cells, which were more spindlelike and had greater
cell motility (see Supplemental Video S1 at http://ajp.
amjpathol.org). These observations of changes in phago-
cytosis and cell elongation indicate that morphine may
play a role in modulation of actin polymerization.

To examine the function of actin polymerization in mor-
phine-mediated attenuation of phagocytosis, we used
CytD, a known inhibitor of actin polymerization. As ex-
pected, pretreatment by CytD (10 �mol/L) abolished
J774 macrophage phagocytosis of both vehicle- and
morphine-treated cells (Figure 2A). The dramatic de-
crease in the phagocytic rate after CytD treatment con-
firms the essential role of actin in FcgR-mediated phago-
cytosis.

Confocal microscopic analysis of cells undergoing
phagocytosis after long-term morphine treatment exhib-
ited a reduction in membrane ruffling (Figure 2B), as well
as changes in lamellipodial protrusions (Figure 2B) com-
pared with vehicle controls. Furthermore, morphine-
treated cells displayed a reduction in overall intensity of
rhodamine phalloidin staining (Figure 2B), suggesting a
decrease in actin polymerization. A similar inhibition with
morphine treatment was observed in fluorometric analy-
sis, in J774 cells treated with morphine for a long time
(see Supplemental Figure S1D at http://ajp.amjpathol.org)
exposed for 60 minutes to OPDex beads (Figure 2C).
Morphine modulation of actin polymerization was only
observed with opsonized particles (see Supplemental
Figure S1E at http://ajp.amjpathol.org), and antagonized
by naltrexone pretreatment (Figure 2C). The role of MOR
in morphine’s inhibitory effect on actin polymerization
was further confirmed using macrophages isolated from
MORKO mice. Morphine’s inhibition of actin polymeriza-
tion, observed in WT macrophages (Figure 2D), was
abolished in primary macrophages extracted from
MORKO mice (Figure 2E). These data indicate the crucial
involvement of classic opioid receptors (namely, MOR) in
modulation of actin polymerization.

Phagocytosis was also analyzed after synchronization
using cytospin, which allowed for phagocytosis to begin
at a fixed time. Cells were treated with morphine (previ-
ously described), and immediately after the addition of
OPDex beads, they were centrifuged to synchronize the
beginning of phagocytosis (with the starting point deter-
mined as time 0 minutes after centrifugation). Actin po-
lymerization is rapidly increased at early time points after
synchronization. Results show that morphine does not
merely delay, but rather inhibits, the process of phago-
cytosis (Figure 2F) and actin polymerization (Figure 2G)
at each time point.

Long-Term Morphine Inhibits Actin
Polymerization by Modulating Activation of
Rac-GTPases

Rho GTPases, such as Rac and Cdc42, play an essen-
tial role in actin polymerization by modulating mem-
brane ruffling and lamellipodial protrusions.29 Because
morphine leads to defects in cell elongation (Figure 1F)
and membrane ruffling (Figure 2B), we investigated if

long-term morphine inhibits activation of Rho GTPases.
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Long-term morphine treatment significantly inhibits ac-
tivation of Rac1-GTPase in cells undergoing phagocy-
tosis of OPDex beads, as shown in the pull-down assay
(Figure 3A). In contrast, Cdc42 (see Supplemental Fig-
ure S1F at http://ajp.amjpathol.org) was only marginally
affected by long-term morphine treatment; therefore,
we focused on Rac1-GTPase in all of our subsequent
studies.

To further establish the role of Rac1-GTPase in this
process, we examined the effects of morphine on J774
cells expressing constitutively active Rac1. Cells trans-
fected with Rac1-Q61L, in the absence of phagocytic
stimuli, displayed a distinct increase in cell spreading
and actin polymerization, which was absent in the
pcDNA3 control (see Supplemental Figure S1G at http://
ajp.amjpathol.org). These observations are in accordance
with the literature because Rac1-GTPase activation has
been implicated in increased formation of lamellipodia
and membrane ruffling.29 Therefore, it was not surprising
that constitutive activation of Rac1-GTPase resulted in
increased actin polymerization, despite the absence of
phagocytic stimuli.

By using both fluorescence microscopy (Figure 3B)
and fluorometry (Figure 3C), we demonstrate that mor-
phine treatment resulted in inhibition of opsonophagocy-
tosis in control pcDNA3-transfected cells (Figure 3B),
whereas cells transfected with constitutively active Rac1-
GTPase (pcDNA3-EGFP-Rac1-Q61L plasmid) rescued
morphine’s inhibitory effect (Figure 3B). Similarly, the
transfection of constitutively active Rac1-Q61L plasmid
abolished morphine-mediated inhibition of actin polymer-
ization (Figure 3D).

Because Rac1-Q61L expression can also increase
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particle uptake through macropinocytosis, indepen-
dent of FcgR, we examined if our findings are poten-
tially confounded by this process. The role of macropi-
nocytosis was tested by comparison of internalization
of opsonized with unopsonized particles by cells ex-
pressing Rac1-Q61L plasmid. Cells phagocytizing un-
opsonized particles were not affected by long-term
morphine treatment in either Rac-Q61L– or pcDNA3-
transfected cells (Figure 3, C and D). This finding in-
dicates that macropinocytosis is not contributing to
morphine’s inhibitory effect and not confounding our
conclusion that Rac overexpression rescues mor-
phine’s effect on phagocytosis.

Because constitutive expression of Rac1-GTP over-
rode morphine’s inhibition of actin polymerization and
phagocytosis, we conclude that morphine attenuates ac-
tin polymerization by inhibiting Rac1-GTPase activation,
thus leading to inhibition of phagocytosis.

Inhibition of Actin Polymerization by Long-Term
Morphine Treatment Is Mediated by cAMP and
PKA

We have previously shown that morphine up-regulates
cAMP levels in macrophages.30 Therefore, we investi-
gated cAMP as a potential mechanism by which mor-
phine modulates actin polymerization and phagocyto-
sis. As expected, long-term morphine treatment of
macrophage cell line J774 led to a significant increase
in cAMP (Figure 4A). To directly observe the effects of
elevated cAMP, we used DB-cAMP, a cell-permeable
cAMP analog. After a 15-minute incubation with DB-
cAMP (100 �mol/L) before the addition of OPDex
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li treatment (min)

morphine

MS treatment

0 15
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Figure 2. Long-term morphine treatment of the J774 cells inhib-
its actin polymerization. A: Cells were treated overnight with 1
�mol/L morphine and with CytD (10 �mol/L) 10 minutes before
the addition of OPDex particles. The phagocytic index was as-
sayed using fluorometry, as previously described. B: Confocal
microscopic analysis after long-term morphine (1 �mol/L) and
phagocytosis of OPDex beads (60 minutes), fixation (4% parafor-
maldehyde), permeabilization (0.01% Triton X-100), and staining
for actin using rhodamine phalloidin (Invitrogen), according to
the manufacturer’s instructions. The arrows indicate changes in
lamellipodia; arrowheads, changes in membrane ruffling. The
black-and-white image was inverted from the rhodamine stain.
Scale bar � 10 �m. C: Fluorometric analysis of actin polymeriza-
tion in J774 cells treated with naltrexone and morphine, followed
by 60 minutes of phagocytosis of OPDex beads. D and E: Actin
polymerization in primary macrophages from WT (D) or MORKO
(E) mice treated in vivo with morphine/placebo (72-hour slow-
release pellet) and phagocytosis of HKO E. coli ex vivo. F and G:
J774 cells were treated as previously described, after the addition
of OPDex bead phagocytosis was synchronized by centrifugation
(3minutes at 0.6 g) and analyzed in a time course for phagocytosis
(F) and actin polymerization (G). Each time point was stopped by
the addition of trypan blue, washing, and paraformaldehyde.
Actin polymerization (%) � % actin polymerization index com-
pared with vehicle control (at 0 minutes). Actin polymerization
index � rhodamine (RFU)/DAPI (RFU). Significance was deter-
mined using the Student’s t-test. *P � 0.01, **P � 0.001, and
***P � 0.0001.
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phagocytosis (Figure 4C) of OPDex beads were inhib-
ited in vehicle and morphine treatments, further indi-
cating that morphine is modulating FcgR phagocytosis
via a cAMP-dependent mechanism.

To examine downstream targets of cAMP and their role
in this process, we used H89, a known inhibitor of PKA.
Pretreating J774 cells with H89 (10 �mol/L) 2 hours be-
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Figure 3. Constitutive expression of Rac-1 GTP abolishes morphine-mediated
inhibition of actin polymerization and phagocytosis. A: Analysis of Rac1-GTPase
activation using the pull-down assay. Cells undergoing long-term morphine treat-
ment were exposed to OPDex beads for 30 minutes. Following the manufacturer’s
protocol, they were washed, lysed, and analyzed for Rac1-GTP activation. GDP,
negative control; GTP�S, positive control; densitometry analysis of Rac1-GTP/total
Rac-1 (input) expressed as % control. Top row, pull-down Rac1-GTP; middle row,
Western blot (WB)–total Rac1-input; bottom row, WB loading control for input. The
data shown indicate representative graphs from three independent experiments.
B–D: The J774 cells were transfected with constitutively active pcDNA-EGFP-Rac-1-
GTP or pcDNA3 empty vector control using Fugene reagent (Roche). Second day
cells were treated with morphine overnight (1 �mol/L), and third day cells were
treated with opsonized HKO E. coli (Texas Red conjugated) for 30 minutes (B) or
opsonized or unopsonized dextran bead for 60 minutes (C and D), fixed and stained
with DAPI, and analyzed for phagocytosis using fluorescence microscopy (scale
bar � 10 �m) (B) or quantified for phagocytosis (C) or actin polymerization (D)
using fluorometric analysis. Microscope Nikon EZ-C1 3.90 software. Original mag-
nification, �120. Fluorophore, GFP-Rac1–transfected cells; rhodamine, actin polym-
erization; Texas Red, HKOP E. coli; DAPI, nucleus. Data shown indicate represen-
tative graphs from three independent experiments. Significance was determined
using the Student’s t-test. **P � 0.01, ***P � 0.001.
fore the addition of morphine abolished morphine’s inhib-
itory effect on actin polymerization (Figure 4B) and
phagocytosis of OPDex beads (Figure 4C).

The GLISA assay (Figure 4D) further supports our find-
ing that morphine inhibits Rac-GTPase activation and that
it does so in a naltrexone-reversible manner, indicating
involvement of classic opioid receptors in inhibition of
Rac-GTPase. Furthermore, DB-cAMP treatment of cells
before OPDex phagocytosis led to inhibition of Rac-
GTPase activity in both morphine- and vehicle-treated
cells, as confirmed by the GLISA assay (Figure 4D). In
addition, cells pretreated with H89 (previously described)
displayed an absence of morphine’s suppression of Rac-

Figure 4. Long-term morphine treatment leads to an increase in intracellular
cAMP, resulting in inhibition of actin polymerization and phagocytosis. A:
J774 cells were treated overnight with morphine, washed in PBS, centrifuged,
resuspended at a final density of 1 � 107 cells/mL, and lysed in cell lysis
buffer. The supernatant of lysed cells was analyzed using a cAMP assay kit
(R&D Systems). To determine the effects of the morphine-induced increase
in cAMP and PKA on phagocytosis, cells were treated with DB-cAMP (100
�mol/L) (B–D) for 10 minutes after long-term morphine treatment before the
addition of dextran beads; H89 (10 �mol/L, PKA inhibitor) (B–D) was added
2 hours before long-term morphine treatment. Actin polymerization (B) and
phagocytosis (C) were assessed using fluorometric analysis, and activation of
Rac-GTP (D) was quantified using a GLISA assay (Cytokine, Denver, CO). D:
J774 cells were grown for 3 days to confluence of 70% and treated with
morphine, DB-cAMP, H89, and OPDex beads, as previously described. Sam-
ples were collected (0.7 mg/mL of protein/well) and processed per manu-
facturer’s protocol and assessed for Rac1 activation using Rac1,2,3- GLISA.

Significance was determined using the Student’s t-test. **P � 0.01, and ***P �
0.001.
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GTPase activation, indicating that H89 pretreatment, or
inhibition of PKA, abolishes morphine’s inhibition of Rac-
GTPase activation. Therefore, morphine, through MOR
activation, activates adenylyl cyclase, increases cAMP,
and activates PKA, leading to inhibition of Rac-GTPase
activation, actin polymerization, and subsequent phago-
cytosis.

Inhibition of Actin Polymerization by Long-Term
Morphine Is Mediated by p38 MAPK

p38 MAPK is a modulator of actin polymerization down-
stream of Rac1 and plays an important role in regulation
of macrophage phagocytosis.31 Therefore, morphine
modulation of this pathway may be one of the mecha-
nisms by which morphine treatment leads to inhibition of
actin polymerization and phagocytosis.

To study if long-term morphine treatment modulates
activation of p38 MAPK, J774 cells were pretreated
with 10 �mol/L SB203580 (a p38 MAPK inhibitor) for 4
hours before overnight morphine (1 �mol/L) incuba-
tion. SB203580 was maintained overnight, along with
morphine, followed by OPDex bead treatment for 60 min-
utes the next day. Western blot analysis (Figure 5A) indi-
cates that phagocytosis of OPDex beads increases
phosphorylation of p38 MAPK. Morphine treatment sig-
nificantly reduced, whereas SB203580 further de-
creased, phosphorylation of p38 MAPK in both vehicle-
and morphine-treated cells. Furthermore, DB-cAMP treat-
ment (previously described) reduced p38 MAPK phos-
phorylation, indicating that p38 is downstream and that
morphine treatment, by increasing intracellular cAMP,
leads to inhibition of p38 MAPK. In addition, J774 cells

were assessed for actin polymerization (Figure 5B) and
phagocytosis (Figure 5D), following the same treatment
as previously described. The addition of SB203580 led to
inhibition of actin polymerization (Figure 5B) and phago-
cytosis (Figure 5D). The inhibition of p38 MAPK reduced
phagocytic levels to those of cells treated with CytD (20%
of control, Figure 2A), indicating strong attenuation of
actin polymerization. This highlights the crucial role of
p38 MAPK in actin polymerization and phagocytosis. To
examine if morphine acts through p38 MAPK to inhibit
actin polymerization, we treated cells with anisomycin, a
known activator of p38 MAPK.32 Anisomycin activated
p38 MAPK and overrode morphine’s inhibition of actin
polymerization (Figure 5B) and phagocytosis (Figure 5D).
These findings were further confirmed by transfection of
constitutively active MKK6 [pcDNA3-Flag MKK6(glu)], an
upstream activator of p38 MAPK. As expected, the acti-
vation of p38 MAPK by transfection of constitutively ac-
tive MKK6 overrode the inhibitory effect of morphine on
actin polymerization (Figure 5C) and phagocytosis (Fig-
ure 5E). Taken together, these data indicate that mor-
phine, by inhibiting p38 MAPK phosphorylation, leads to
the inhibition of actin polymerization and macrophage
pathogen internalization.

To determine whether p38 MAPK is downstream to
Rac1, we transfected J774 cells with constitutively active
Rac1-Q61L plasmid and treated them with SB2035580
before addition of morphine and OPDex beads (previ-
ously described). Cells were analyzed for p38 MAPK
activation by using Western blot analysis (Figure 5F),
whereas phagocytosis (Figure 5G) and actin polymeriza-
tion (Figure 5H) were quantified using fluorometric anal-
ysis. Western blot analysis results (Figure 5F) indicate
that p38 MAPK phosphorylation is significantly increased

Figure 5. Long-term morphine inhibits phagocytosis and actin
polymerization by inhibiting p38 MAPK phosphorylation. A:
Western blot analysis of p38 MAPK activation. The bar graph
indicates densitometry analysis of the blot below comparing the
ratio between phosphorylated p38 and total p38. Densitometry
analysis of the Western blot represents the average of three inde-
pendent experiments. B–E: Graphs indicate fluorometric analysis
of actin polymerization (B and C) after phagocytosis of OPDex
beads (60 minutes) in the J774 macrophage cell line (D and E). B
and D: Cells were treated with SB203580 (4 hours) or anisomycin
(2 hours), followed by overnight morphine treatment and 60
minutes of phagocytosis of OPDex beads. C and E: Cells were
transfected with pcDNA3-FlagMKK6(glu) plasmid using Fugene
reagent (Roche). On day 2, they were treated with morphine and
OPDex beads, fixed, stained, and analyzed using fluorometric
analysis. Cells were transfected with pcDNA-EGFP-Rac-1-GTP or
pcDNA3 empty vector control using Fugene reagent (Roche). On
the second day, cells were treated with SB203580 (4 hours) before
morphine (1 �mol/L) treatment overnight and OPDex beads, as
previously described. On the third day after phagocytosis, cells
were either collected forWestern blot analysis or fixed and stained
for fluorometric analysis (F) of phagocytosis (G) or actin polym-
erization (H). Densitometry analysis (using ImageJ software) rep-
resents the average of three independent experiments. Signifi-
cance was determined using the Student’s t-test. *P � 0.05, **P �
0.01, and ***P � 0.001.
in cells transfected with Rac1-Q61L plasmid in both ve-
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hicle- and morphine-treated cells. Rac1-Q61L overex-
pression overrides morphine-mediated inhibition of p38
MAPK phosphorylation (Figure 5F). Rac1-Q61L transfec-
tion also increased levels of total p38 MAPK, while in-
creasing phosphorylated p38 MAPK. Despite the in-
crease in total p38 MAPK, the densitometric ratio of
phospho-p38/total p38 was unaltered by morphine in
cells transfected with Rac1-Q61L, indicating that consti-
tutive activation of Rac1-GTPase abolishes morphine-
mediated inhibition of p38 MAPK activation.

Furthermore, p38 MAPK inhibitor SB 203580 (10
�mol/L) abolished the Rac1-Q61L–induced increase in
phagocytosis and actin polymerization (Figure 5, G and
H, respectively) in vehicle- and morphine-treated cells,
indicating that p38 MAPK is downstream to Rac1-
GTPase. Taking these findings into consideration, we
conclude that cAMP, by inhibiting Rac1-GTPase, leads to
inhibition of p38 MAPK activation and, therefore, inhibi-
tion of actin polymerization and phagocytosis.

Inhibition of Actin Polymerization by Long-Term
Morphine Is Not Mediated by ERK1/2

We next investigated the role of ERK1/2, another MAPK
that plays a role in phagocytosis. To study the role of
ERK1/2 in morphine’s modulatory pathway, phosphoryla-
tion of ERK1/2 was inhibited by PD98059, a known inhib-
itor of ERK1/2 phosphorylation. Western blot analysis re-
sults (Figure 6A) showed that phosphorylation of ERK1/2
was enhanced with the addition of OPDex beads. Mor-
phine treatment inhibited ERK1/2 phosphorylation, similar
to PD98059-treated cells. Macrophage pretreatment with
10 �mol/L PD98059 (before the addition of morphine and
OPDex beads) led to the inhibition of actin polymerization
(Figure 6B) and phagocytosis (Figure 6C) of vehicle but
not to morphine-treated macrophages. This can be ex-
plained by the fact that morphine already reached max-
imal inhibition of actin polymerization and, therefore, the
additional inhibition of polymerization by PD98059 was
not seen in PD98059� morphine-treated cells. Although
morphine alone inhibits phosphorylation of ERK1/2 (Fig-
ure 6A), the addition of PD98059 does not further poten-
tiate morphine’s inhibition of phagocytosis, indicating that
the mechanism involving ERK1/2 is partially involved in
phagocytosis but is not a part of the major modulatory
pathway. This was further confirmed by the addition of a
known inhibitor of protein phosphatase 2A, calyculin A,33

which inhibits protein phosphatase 2–mediated dephos-
phorylation of ERK1/2.34,35 By inhibiting ERK1/2 dephos-
phorylation, calyculin A leads to enhanced ERK1/2 activ-
ity. Enhanced ERK1/2 activation via calyculin A (1 nmol/L)
pretreatment was not able to abolish morphine-mediated
inhibition of actin polymerization and phagocytosis, fur-
ther supporting our previous conclusion that ERK1/2, al-
though modulated by morphine, does not play a major
role in morphine-mediated attenuation of actin polymer-

ization and macrophage phagocytosis.
Discussion

This study shows, for the first time to our knowledge, that
morphine-induced inhibition of FcgR-mediated phagocy-
tosis occurs through attenuation of actin polymerization
by an increase in intracellular cAMP, activation of PKA,
inhibition of Rac1-GTPase, and inhibition of p38 MAPK.
These findings are supported by several lines of evi-
dence. First, we show that long-term morphine treatment
inhibits IgG opsonophagocytosis by inhibiting actin po-
lymerization through a Rac1-GTPase–dependant mech-
anism. Second, morphine modulates macrophage
phagocytic ability and actin polymerization by increasing

Figure 6. Role of ERK1/2 phosphorylation in morphine-mediated inhibition of
phagocytosis and actin polymerization. J774 cells were treated with PD98059 for 4
hours or with calyculin A 2 hours before overnight morphine (1 �mol/L) treatment;
phagocytosis of OPDex beads was conducted the next day, and cells were assessed
via Western blot analysis (A) or fluorometric analysis (B and C) for actin polymer-
ization (B) and phagocytosis (C), as previously described. A: After PD98059, mor-
phine treatment and phagocytosis of OPDex bead cells were collected, and whole
cell lysates were analyzed for ERK1/2 phosphorylation using Western blot analysis.
A densitometry graph was generated using UltraLum software (images generated by
the Omega UltraLum System), and it compares the ratio of phosphorylated ERK1/2
(phosphorylated p44/p42) pixel density/total ERK1/2 (p44/p42). Densitometry anal-
ysis represents the average of three independent experiments. Significance was
determined using the Student’s t-test. *P � 0.01, **P � 0.001, and ***P � 0.0001.
intracellular cAMP, which activates PKA to inhibit actin
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polymerization by inhibiting activation of Rac1-GTPase
and p38 MAPK. Finally, third, overexpression of Rac1-
GTPase rescues morphine’s inhibitory effect on p38
MAPK activation, suggesting that Rac1-GTPase is up-
stream to p38 MAPK.

The prevalence of opioid use extends beyond the drug
abuse population to the clinical setting. Morphine-medi-
ated suppression of innate and adaptive immunity is an
established phenomenon that is often indicated by an
increase in frequency of bacterial infections.4,36,37 Al-
though morphine-mediated immune suppression is well
investigated, the mechanisms involved in the modulation
of innate immunity are not yet fully understood. Macro-
phages play an essential role in bacterial clearance, and
morphine has been implicated in inhibiting their phago-
cytic function.38,39 Because of the important role that
macrophages play in the elimination of pathogens and
the significance of deleterious effects caused by the dis-
ruption of macrophage homeostasis by opioids, we ex-
amined the mechanisms by which morphine modulates
key macrophage functions, such as actin polymerization
and phagocytosis.

Our results show that morphine treatment in vitro and in
vivo inhibits FcgR-mediated phagocytosis in the primary
peritoneal and J774 macrophage cell lines. Morphine,
through MOR, inhibits actin polymerization and phagocy-
tosis without affecting FcgR expression or cell viability.
This indicates that the point of convergence between
FcgR and MOR occurs further downstream in the signal-
ing cascade. FcgR-mediated phagocytosis is dependent
on actin polymerization and Rac-GTPases that lead to
formation of lamellipodia and membrane ruffles.29 There
are three isoforms of Rac (1, 2, and 3) in mammals, but
little is known about the relative contributions of each
isoform to Rac-dependent responses. We chose to study
Rac1 because it is the most extensively studied isoform;
in addition, it plays an important part in macrophage
phagocytosis.40,41 The roles of Rac2 and Rac3 in phago-
cytosis are not well explored. Rac1 is essential in actin
polymerization and dynamics42,43; any modulation of
Rac1-GTPase alters downstream functions, such as actin
polymerization and phagocytosis. In addition to previous
mechanisms, morphine inhibits actin polymerization via
inhibition of Rac1-GTPase. This was further confirmed by
the observation that overexpression of constitutively ac-
tivated Rac1-GTPase overrode morphine’s inhibitory ef-
fect. We show, for the first time to our knowledge, that
morphine causes inhibition of actin polymerization and
that it does so by inhibiting activation of Rac1-GTPase.
Although Rac1 plays an essential role in macrophage
function and cytoskeletal reorganization, it is also in-
volved in many other mechanisms, such as cell growth,
vesicle trafficking, and epithelial differentiation,42 that
can potentially be modulated by opioids in other model
systems and lead to disruption of homeostasis.

Researchers8,9,30 have correlated long-term mor-
phine-mediated increases in intracellular cAMP to inhibi-
tion of phagocytosis. Our research8,9 supports findings
by Tomei and Renaud, showing that cAMP plays an es-
sential role in morphine-mediated modulation of phago-

cytosis. Our previously published work,30 and this study,
shows that cAMP levels remain elevated after 18 hours of
1 �mol/L morphine treatment and that this increase in
cAMP leads to inhibition of phagocytosis. This study
adds to the current understanding in the field by implying
that a pharmacological increase in cAMP via DB-cAMP
leads to a significant decrease in actin polymerization,
leading to the attenuation of phagocytosis. Furthermore,
inhibition of PKA, via H89, restored activation of Rac1-
GTPase, actin polymerization, and phagocytic rates to
the baseline level, indicating that cAMP acts through PKA
to inhibit Rac1-GTPase activation and, ultimately, actin
polymerization and phagocytosis.

The role of PKA and cAMP on modulation of actin polym-
erization and Rac-GTPase has been controversial. In some
systems, such as endothelial cells, activation of PKA inhibits
Rac1-GTPase activity, leading to inhibition of endothelial
cell migration in vitro and angiogenesis in vivo.44 cAMP-
mediated Rac1-GTP inhibition has also been observed in
thyroid cells,45 and in THP-1 monocyte cell line, in which
lipoxins, via elevation of cAMP, lead to inhibition of Rho and
Rac GTPases.46 In addition, several groups have shown
that cAMP inhibits Rac-GTPase in serum-induced cell mi-
gration, by inhibiting the formation of lamellipodia at the
leading edge of migrating fibroblasts47 or by disrupting
cytoskeletal dynamics.48–50 Our data show that DB-cAMP
inhibits Rac-GTPase, whereas the PKA antagonist, H89,
rescues morphine-mediated inhibition of Rac-GTP activa-
tion, indicating that, in our model system, elevation of cAMP
may be a major player in inhibiting Rac activation. The
positive and negative roles of PKA-cAMP in GTPase signal-

Figure 7. Mechanistic diagram of morphine-mediated inhibition of actin polym-
erization. MOR activation during long-term morphine treatment leads to superacti-
vation of adenylyl cyclase and elevation of cAMP. After activation of FcgR by IgG
OPDex beads, a Rac1-GTP signaling cascade is activated. During phagocytosis in
cells undergoing long-term morphine treatment, an MOR-mediated increase in
cAMP activates PKA to inhibit activation of Rac1-GTPase, which then leads to
inhibition of the downstream signaling cascade. This finally leads to inhibition of p38
MAPK phosphorylation. Therefore, morphine treatment by inhibiting Rac-GTPase
and, therefore, the signaling cascade that follows results in inhibition of actin po-
lymerization, which ultimately leads to inhibition of phagocytosis.
ing, cytoskeletal dynamics, and cell migration have been
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extensively described in the review by Howe.51 Considering
the literature provided herein, there is evidence to prove that
PKA can lead to both activation and inhibition of actin po-
lymerization in multiple cell types and that our model further
supports the cAMP-PKA inhibitory role in these processes.

In addition to elevating cAMP, morphine plays an important
role in the modulation of MAPKs. Three MAPK cascades have
been identified in mammalian cells; the well-characterized
MAPK cascade results in the activation of extracellular re-
sponse kinases or ERKs (ERK1/2, also called p42/p44 MAPK).
Opioids have differentially modulated MAPK.52 Because
ERK1/2 and p38 MAPKs may play a role in neutrophil phago-
cytosis,19 we examined their role in morphine’s inhibitory ef-
fects on macrophage phagocytosis and actin polymerization.
Initially, we found that ERK1/2 is involved in the FcgR-mediated
actin polymerization and phagocytic pathway. However, the
role of ERK1/2 in morphine-mediated inhibition of phagocyto-
sis seemed to be minor because the inhibition of ERK1/2 by
PD98059 resulted in inhibition of actin polymerization in vehi-
cle-treated, but not in morphine-treated, cells. Furthermore, the
activation of ERK1/2 by calyculin A was unable to abolish
morphine’s attenuation of actin polymerization, indicating that
ERK1/2 is not involved in the modulatory pathway. On the other
hand, our results indicate that morphine inhibits p38 MAPK
phosphorylation and that inhibition of p38 MAPK by SB203580
leads to a reduction in phagocytosis. The activation of p38
MAPK by anisomycin or overexpression of MKK6 abolished
morphine-mediated inhibition, suggesting that p38 MAPK is
essential for this process. Inhibition of p38 MAPK activation
had a much more detrimental effect on macrophage phago-
cytosis than inhibition of ERK1/2, indicating that, although both
are involved, p38 MAPK plays a more significant role in FcgR-
mediated phagocytic mechanisms.

In the proposed diagram in Figure 7, we depict a
summary of the current literature and our findings. Mor-
phine inhibits Rac1-GTPase through activation of cAMP
and PKA. Rac-GTPase inhibition negatively regulates
p38 MAPK, ultimately leading to decreased actin polym-
erization and phagocytosis. To our knowledge, this study
is the first to propose mechanisms of cross talk between
the MOR and FcgR. Our findings are supported by sev-
eral studies53,54 that suggest cAMP leads to inhibition of
MAPKs, such as p38 and ERK1/2. However, although a
decrease in p38 MAPK is observed after morphine treat-
ment, the effect is antagonized after overexpression of
constitutively active Rac1-GTPase. This result implies
that the inhibition of p38 MAPK observed in our studies is
a consequence of reduced Rac1-GTPase activation and
not the result of a parallel inhibitory pathway activated by
morphine. These data also support our conclusion that
p38 MAPK is downstream from Rac1 and that morphine,
by increasing intracellular cAMP and activating PKA, in-
hibits Rac1-GTP, leading to inhibition of p38 MAPK di-
rectly via inhibition of Rac1-GTPase.

Several groups55 have examined the role of Rac-
GTPases in p38 MAPK activation. p38 MAPK has regu-
lated actin filament formation through the downstream
kinases MAPK-APK2/3 or MAPK-APK5 [PRAK (p38-reg-
ulated/activated kinase)] and subsequently through heat-
shock protein 25/27. To further our understanding of mor-

phine-mediated inhibition of actin polymerization and
phagocytosis, future studies investigating the role of ef-
fectors downstream of p38 MAPK in modulating phago-
cytosis and actin polymerization would be useful.

The significance of our findings presented herein is not
limited solely to macrophage phagocytosis, because
similar modulations of actin may be occurring in different
cell types, resulting in additional deleterious effects, such
as inhibition of leukocyte migration and trafficking. Our
observations emphasize the broad scope of morphine’s
effects on modulation of diverse mechanisms significant
to macrophage function. This study highlights several
essential pathways of morphine’s immunomodulation that
signify the importance and need for discoveries of new
therapeutic agents used in pain management that would
minimize these immunosuppressive effects.
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