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a b s t r a c t

We deal with a special class of games against nature which correspond to subsymbolic
learning problems where we know a local descent direction in the error landscape but not
the amount gained at each step of the learning procedure. Namely, Alice and Bob play a
gamewhere the probability of victory growsmonotonically by unknown amounts with the
resources each employs. For a fixed effort on Alice’s part Bob increases his resources on the
basis of the results of the individual contests (victory, tie or defeat). Quite unlike the usual
ones in game theory, his aim is to stop as soon as the defeat probability goes under a given
threshold with high confidence. We adopt such a game policy as an archetypal remedy to
the general overtraining threat of learning algorithms. Namely, we deal with the original
game in a computational learning framework analogous to the Probably Approximately
Correct formulation. Therein, a wise use of a special inferential mechanism (known as
twisting argument) highlights relevant statistics for managing different trade-offs between
observability and controllability of the defeat probability.With similar statistics we discuss
an analogous trade-off at the basis of the stopping criterion of subsymbolic learning
procedures. As a conclusion, we propose a principled stopping rule based solely on the
behavior of the training session, hence without distracting examples into a test set.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

When we run learning algorithms on subsymbolic systems such as neural networks, usually we are not able to strictly
identify the effects of given free parameter changes on the goal function we want to minimize. Rather, we incrementally
optimize a statistic about this function taken on the training set (e.g. the sum of square errors) expecting that a companion
optimization occurs in the goal function (e.g. the same function averaged on the input/output probability distribution). If the
statistic gets to a plateau we wonder if it is the best we may obtain; then we must either stop or keep expecting to further
improve the goal function. Continuing the training in the second case may indeed generate both overfitting phenomena and
obvious waste of computational time. We study the general task of learning in these conditions through a special learning
problem constituted by a match between two people who must regulate the prospective efforts in the single contest with:
(a) the constraint of not knowing the reward of any effort increment, apart from the fact that it is non-negative; (b) the
restriction of receiving a three-valued error measure as contest feedback; and (c) the commitment of avoiding unnecessary
efforts, i.e. exceeding the adversary’s, that would result in a penalty. In greater detail Bob and Alice (B and A for short) are
playing the following game.

Game_1. The game consists in a series of contrasts between B and A on random instances s drawn from a setS (huge, but finite
and discrete) with the following properties:
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• on each s B may (i) win, (ii) lose, or (iii) tie with respect to A;
• each player owns an integer parameter, let us call them strength γB and γA respectively, which can take a finite number of
values. According to the relation defeat C tie C victory, for a fixed value of γA the increment of B’s strength does not diminish
his contest results. Both for minimum γA and whatever γB, and for maximum γB and whatever γA B always either wins or ties.
With each pair of strengths with intermediate relationships among them, the contest results depend on the single instances;
• the two players have different roles:
· A maintains her strength at a fixed point;
· B increases his strength by one unit whenever he loses;

• B’s goal is to find (learn) the minimal strength that will let him lose in the future with a probability below a small threshold.
His strategy is to achieve this with a good confidence level. That means he will keep playing the game until he achieves this
confidence.

We underline the peculiarity of B’s goal. On the one hand, the monotony of the contest results concerns the single
instances, so that with a same pair of strengths 〈γA, γB〉 B may win with some instances, tie with others and lose with
the remaining ones. On the other, he does not aim at beating A in any future contest. Less ambitiously, he wants to lose
in the future with low probability — an option which could allow him a smaller strength than with the former goal. Since
contests are based on random instances whose distribution law is not considered by B’s strategy, we will see that also the
values assumed by losing probability must be dealt with in terms of random variables. This shifts the solution of the game
into a problem of learning a suitable strength for B directly from the results of the contests carried out.
Learning as a tool for winning a game has been considered by many authors, most working in the field of economic

research but some in neural network contexts too. The general idea is to enrich the family of Nash equilibria [1] thanks to
the adaptivity of the strategies to the actual contests history. This can be achieved either by using beliefs model algorithms
(such as Bayesian [2] and calibrated learning [3]) or by updating schemes that do not make any assumptions on the game
structure [4,5]. Learning may be viewed as a game against nature [6] per se, where one of the opponents does not adapt
his playing strategy to the contest evolution, so that the solution may lie in an extended Nash equilibrium among the
reward/punishment agents of the reinforcement learning paradigm [7,8].
Game_1 belongs to the class of games against nature since B’s behavior does not affect A’s strategy. The single contest

is in line with the monotone game thread [9], as a player’s strength increment does not narrow his winning instance set.
The peculiarity of our match lies however in the fact that the evaluation of B’s actions is made through the construction of
confidence intervals for the losing probability rather than in terms of optimizing the expected value of a utility function [6].
To fix ideas we might frame this game in a market competition where two factories produce similar goods (e.g. cars). At
each new issue a single competitor chooses particular gadgets to be embedded in its model (e.g. a GPS or some enhanced
safety devices) with the aim of attaining a degree of success more or less on par with its rival’s. The monotone effort–
effect mechanism characterizing the players, together with the impossibility of giving it a quantitative description, may be
exemplified by an approximate solution of a knapsack problem [10] where skillful algorithms improve the approximation
degree with the amount of involved computational resources [11]. It fits the original learning task where for instance the
identification of neural network parameters for computing any specific function is a computationally hard problem [12] that
we try to solve with consistent statistics [13]. It also fits our figuration of themarket competitionwhere a knapsack problem
may underlie the inclusion of gadgets in the product budget.
We manage the game on distribution-free random instances. This is a common framework for learning algorithms that

matches some unpredictability of the market solicitations and reactions as well. Through our game we frame the original
subsymbolic learning problemwithin amodified version of the well-known Probably Approximately Correct (PAC) learning
framework [14]. Indeed primary goal of the game is to compute a confidence interval for the expected value R of a loss
function L(s) for a given strength γB on the basis of a statistic drawn from a set of examples. Each example is made of pairs
〈s, λ(s)〉, where s is an instance of the knapsack problem and the label λ(s) is set to 1 if B loses, otherwise to 0. The loss
function L(s) coincides with this label, so that R, as the mean of a Bernoulli variable, equals the probability that B loses in a
subsequent contest. A distinguishing feature of this learning problem lies in the fact that the available labeling of instances
changes over time, in the sense that, like in an on-line strategy, a losing instancemay change into a tying or evenwinning one
as B’s strength increases. Therefore, as a further facility Bmay ask for the labels of the examples also in correspondence with
the subsequent strength values he takes. Thismotivates the request for some changes in the probabilistic context supporting
the learning problem (thementioned changes on the PACmodel) and new inference tools offered by theAlgorithmic Inference
framework [15–17].
We solve the learning problemunderlying the game in both batch and on-linemodalities. In the formerwe simply answer

the question: ‘‘How long must a game last for B to be confident of having reached the opponent’s ability, except for a very
small losing probability?’’. We check easily that this length is polynomial in the characteristic size of the competition. In the
second modality we follow the single track of our game so as to decide when to stop the game satisfactorily. The analysis
of the random sequence of instances continuing those processed during the game highlights operational conditions giving
rise to wide confidence intervals for the defeat probability even after a long game.We deepen the dynamics of the processes
underlying these games in terms of collected statistics and the efficiency of B strategy. Returning to subsymbolic learning
processes, we discuss similar dynamics basing on the course of the cost function minimized in a training session. So we get
dynamical features for deciding to stop the session without necessity of a testing phase.
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The paper is organized as follows. In Section 2 we discuss our statistical framework, introducing the twisting argument
and reformulating the PAC learning problem in this framework. In Sections 3 and 4 we solve the game inference problem
in the two (batch and on-line) modalities. In Section 5 we discuss solutions and their extension to the original learning task
with the help of numerical experiments. The last section is devoted to outlooks and concluding remarks.

2. The statistical framework

In this section we will briefly sum up the inference approach we use to accomplish a learning task. Nevertheless this
section takes up almost one third of the article. The point is that we use a really new statistical framework to face the above
game, where no fixed probability distribution is assumed in advance for the results of the contests, neither in the relaxed
hypothesis that this distribution remains unknown. This perspective is not new per se, since it dates back to Laplace [18],
Fisher [19], Tukey [20] and in more recent times De Finetti [21]. We reread it in terms of the Algorithmic Inference theory
[15] in order to finalize results to the learning problem. Readers already acquainted with this theory may skip this section;
those wanting to learn about the subject matter in greater depth may refer to the book [15].
Right from the start, the object of our inference is a string of data x (possibly of infinite length) that we partition into a

prefixwe assume to be known at present (and therefore call sample) and a suffix of unknown future datawe call a population.
Here, the terms sample and population have the same meaning as in classical statistical frameworks, from which we also
draw the usual notations. Therefore, by default capital letters (such as U, X) will denote random variables and small letters
(u, x) their corresponding specifications; the sets the specifications belong to will be denoted by capital gothic letters
(U,X), while strings of these specifications are in boldtype (u, x). With these notations, a sample {x1, . . . , xm} is a set of
specifications of the random variable X , where m is denoted as the size of the sample. A population from X is a sample of
possibly infinite size representing a set of X specifications that we may expect to observe in the future.
All these data share the feature of being independent observations of the same phenomenon. Therefore without loss

of generality we assume these data to be the output of some function gϑ having input from a set of independent random
variables U uniformly distributed in the unit interval — effectively, themost essential source of randomness. The probability
integral transformation theorem [22] ensures that at least one gϑ always exists for every random variable X; it consists of
the inverse of the X cumulative distribution law for X continuous with obvious extensions for X discrete.

2.1. The twisting argument

We will refer toM = (U, gϑ ) as a sampling mechanism and to gϑ as an explaining function. This function is precisely the
object of our inference. Let us consider, for instance, the sample mechanismM = (U, gp), where U is the above uniform
random variable and

gp(u) =
{
1 if u ≤ p
0 otherwise (1)

maps from U specifications to specifications of a Bernoulli random variable X of mean p. As can be seen from Fig. 1, this
function can be used to obtain both sample and population items of x, and with a given sequence for u we obtain different
binary strings depending on the height p of the threshold line. This is the true reason why we may infer something about
unseen population from an observed sample. Thus for each fixed k and p̃ it is easy to derive the following implication chain(

k̃p ≥ k
)
⇐ (p < p̃)⇐

(
k̃p ≥ k+ 1

)
(2)

where k is the number of 1 observed in a sample of size m, and k̃p, as a specification of the random variable K̃p, counts
the number of 1 in the sample if the threshold in the explaining function switches to p̃ for the same specifications of U . The
consequent bounds on the probability

P
(
K̃p ≥ k

)
≥ P (P < p̃) = FP (̃p) ≥ P

(
K̃p ≥ k+ 1

)
(3)

characterize the cumulative distribution function (c.d.f.) FP of the parameter P, having denoted with P(A) the probability of
the event A. In our statistical framework indeed the above height p is a specification of a continuous random variable P in
[0, 1]. This variable represents the asymptotic (M → +∞ in Fig. 1) frequency of 1 in the population that is compatible,
as a function of a suffix of the U sample, with the number k of actually observed 1 over the m bits in the X sample. In
words, the implications in (2) say that a raising of the threshold line that increments the number of 1 in the population
cannot decrement the number of 1 in the sample and vice versa. Eq. (3) comes straight from marginalizing [13] the joint
U ’s distribution in respect to the population when we deal with sample statistic K̃p and to the sample when we deal with
population parameter P.1

1 This is the true connection with the Kolmogorov probabilistic framework. We start from the probability space (Ω,Σ, P), where Ω is the unitary
segment,Σ the related sigma-algebra and P is uniformly distributed onΩ . On this space we define the random variable U , the rest comes from functions
of this variable.
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Fig. 1. Generating a set of Bernoulli variable specifications {x1, . . . , xm+M }. Horizontal axis: index of the specifications; vertical axis: both u (lines) and x
(bullets) values. The bold vertical line separates a sample of size m from a population of sizeM . The horizontal dashed line of height p realizes a mapping
from U to X through (1).

Note the asymmetry in the implications. It derives from the fact that:

• raising the threshold parameter in gp cannot decrease the number of 1 in the observed sample, but
• we can recognize that such a raising occurred only if we really see a number of 1 in the sample greater than k.

We will refer to any expression similar to (2) as a twisting argument, since it allows us to exchange events on parameters
with events on statistics.

2.1.1. Confidence interval for the parameter of a Bernoulli variable
Relations shown in (3) enable us to compute confidence intervals for P. In our inference scenario indeed, in place of a

specific random variable as given, we refer to a family of random variables with free parameters whose distribution law is
discovered through a twisting argument. For short, we denote this family as a given random variable, say X , yet with random
parameters.

Definition 1. Given a randomvariablewith a free parameter L and a real number 0 ≤ δ ≤ 1, (li, ls) is called a 1−δ confidence
interval for L if

P(li < L < ls) = 1− δ. (4)

The quantity δ is called the confidence level.We denote as tail symmetric a confidence interval such that P(L > li) = P(L < ls).

Lemma 2. Let X denote a random variable distributed according to a Bernoulli law of mean P, {x1, . . . , xm} a sample and
k =

∑m
i=1 xi the number of 1 in it. A tail symmetric confidence interval of a level less or equal δ for P is (li, ls) where li is the

δ/2 quantile of the Beta distribution of parameters k and m− k+1, and ls is the analogous 1− δ/2 quantile for parameters k+1
and m− k.

Proof. Consider the probability relation (3). Since K̃p follows a Binomial distribution law of parametersm and p̃, it reads

m∑
i=k

(
m
i

)̃
pi(1− p̃)m−i ≥ FP (̃p) ≥

m∑
i=k+1

(
m
i

)̃
pi(1− p̃)m−i. (5)

Having introduced the Incomplete Beta function Iβ as the c.d.f. of the random variable Zh,r following a Beta distribution of
parameters h and r [23], that is

Iβ(h, r) ≡ P(Zh,r ≤ β) = 1−
h−1∑
i=0

(
h+ r − 1

i

)
β i(1− β)h+r−1−i

the above bounds can be written as

Ĩp(k,m− k+ 1) ≥ FP(̃p) ≥ Ĩp(k+ 1,m− k).

Eq. (4) can be solved by dividing the probability measure outside (li, ls) in two equal parts in order to obtain a two-sided
interval symmetric in the tail probabilities. Getting

∆I = Ils(k+ 1,m− k)− Ili(k,m− k+ 1)

as a lower bound to FP (ls) − FP (li) = P(li < P < ls), we obtain the extremes of the interval as the solutions li and ls of the
system of equations

Ils(k+ 1,m− k) = 1− δ/2 (6)
Ili(k,m− k+ 1) = δ/2. � (7)
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Fig. 2. Generating 0.9 confidence intervals for the mean P of a Bernoulli variable. φ = k/m: frequency of 1’s in the sample; ψ = h/M: frequency of 1’s in
the population;m = 20 andM = 200. Stepwise lines: 〈φ,ψ〉 trajectories; curves: course of the confidence interval extremes.

We visualize the implications substantiating the twisting argument (2) and appreciate their probabilistic consequences
in Fig. 2. In order to draw one of the stepwise lines filling the picture, let us consider a string of 20 + 200 unitary uniform
variables representing, respectively, the randomness source of a sample and a population of Bernoulli variables. Then
according to the explaining function (1) we compute a sequence of Bernoullian 220 bits long vectors with p rising from
0 to 1. The upper-left corners of the steps in the questioned lines have coordinates k/20 and h/200, accounting the pairs of
1’s frequencies in the sample and in the population, respectively, that jointly occur in the above vectors. By repeating this
experiment 20 times (each time using different vectors of uniform variables) we obtained the bundle of lines in figure. Then
we drew on the same graph the solutions li and ls of Eqs. (6)–(7) that we obtained with δ = 0.1 and k ranging from 0 to
20. As we can see, for a given value of k the intercepts of the above curves with a vertical line with abscissa k/20 determine
an interval containing almost all intercepts of the steps with the same line. A more intensive experiment would show that,
in the approximation of h/200 with the asymptotic frequency of ones in the suffixes of the first 20 sampled values, on all
samples (and even for each sample if we draw many suffixes of the same one), almost 100(1 − δ)% of the step upper-left
corners fall within the analytically computed curves. This represents the operational counterpart of Definition 1, since the
asymptotic frequencies are the specifications of the random parameter P characterizing the Bernoulli variable X as a suffix
of the observed sample and (1− δ) is the questioned probability of finding it within the confidence interval (li, ls).

2.1.2. Toward more complex random variables
An extension of (2) to a generic samplingmechanism (U, gϑ ), where gϑ explains a sequence of randomvariables X having

a free parameter ϑ , may be stated as follows. Denoting x = {x1, . . . , xm} a specific sample of X , let u = (u1, . . . , um) be
a m-ple of values in [0, 1] such that gϑ (u) = (gϑ (u1), . . . , gϑ (um)) = (x1, . . . , xm). We look for a statistic T such that if
T (x1, . . . , xm) = t then

(T (gϑ̃ (u)) ≥ t + µ1)⇐ (ϑ < ϑ̃)⇐ (T (gϑ̃ (u)) ≥ t + µ2) (8)

for almost every x and suitable constants µ1, µ2 ≥ 0 with µ1 ≤ µ2.
In the following we will simply refer to the property T constituted by the number of sample elements satisfying a given

condition, as the target of our inferencewill be the probabilitymeasure of the support of special Boolean functions. However,
in a more general perspective elsewhere we suggest working with sufficient statistics [15].
In order to extend the proposed inference model to the measure of the mentioned Boolean domains, consider a random

variable Y in a space (explained by a proper sampling mechanismM); for any fixed subset c ⊂ , we may refer to the
random variable X ′ = 1 if Y ∈ c else 0. This is another way of explaining a Bernoulli variable whose behavior is identical to
that of X introduced through (1), provided that P(U ≤ p) = P(Y ∈ c).
The situation is different if c too is unknown. In this case we have two ways of moving p to p̃ in (2) starting from an

assigned shape h (call it hypothesis) to c. We can both raise the probability of falling into h and enlarge h. To extend right
implication in (2) we focus on the second way. Thus, for a whatever fixed parameterization of Y distribution law, we obtain
a similar picture as in Fig. 1 for X ′ considering an expanding sequence B(h) = (B1, B2, B3, . . . s.t. Bi ⊆ Bi+1,∀i) of subsets of
pivoted around h in the sense that h belongs to B(h). For the mere sake of simplicity, in Fig. 3 we assumed Bi to have the

same circular shape as h, since this shape is immaterial. Moving from one element of B(h) to another corresponds to raising
or lowering the threshold line in Fig. 1, with identical implication chain in regard to the number of 0 and 1 in sample and
population (namely, if the number of 1 observed in the sample increases, then the number of analogous elements in the
population will increase). Now, let us refer h to the set of uniformly distributed variables in input to the function explaining
Y (for instance assume = R2 and a pair (U1,U2) generating the coordinates (gϑ1(U1), gϑ2(U2)) of Y ). In this framework we
can reconsider the circle sequence in the picture in Fig. 3 as mappings of the same h with changes of parameters (ϑ1, ϑ2)
increasing P(Y ∈ h). Thus, if we put together the two ways of augmenting p = P(Y ∈ h), the condition p < p̃ implies the
existence of a domain of exactlymeasure p̃ including h.
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Fig. 3. A nested sequence of domains Bi (dashed circles) in R2 having a given domain h (plain circle) among its elements.

To operationally exploit these arguments we are left with the problem of: (i) how to recognize that h is the pivot of
a sequence having among its elements a B̃i of measure p̃ including h (right implication in (8)), and (ii) how to relate the
necessary condition to a property of the sample (left implication in (8)).

2.2. A special perspective on probabilistic learning

2.2.1. Inferring rectangle measures
Let us move from the unidimensional case of Fig. 1 to a bidimensional case like in Fig. 4(a).
Here again we give label 1 to the single coordinate uj, j = 1, 2 (each ruled by a corresponding uniform random variable

Uj) if it falls below a given threshold pj, label 0 otherwise. Moreover we give to the point ai of coordinates (u1, u2) a label
equal to the product of the labels of the single coordinates. Thus the probability pc that a point A falls in the open rectangle c
bounded by the coordinate axes and the twomentioned threshold lines (for shortwewill henceforth refer to these rectangles
as b_rectangles) receiving label 1 is p1p2. Let us complicate the inference scheme in the two ways mentioned in the previous
section.

(1) We move from Uj to the family of uniform random variables Wj in [0, ϑ] explained by the function w = ϑu with
ϑ ∈ (0,+∞).

(2) We maintain the same labeling rule but do not know c , i.e. the thresholds p1 and p2. Rather, on the basis of a sample
ofW , within the class of b_rectangles containing all 1-labeled sample points yet excluding all 0-labeled sample points
(consistent b_rectangles as statistics),wewill identify itwith amaximal one (call it h), i.e. a one that cannot be included in
another element of the class (hence having edges just before a pair of 0-labeled points closest to the axes’ origin). Letting
p′1 and p

′

2 be the length of these edges, we presently look for the probability ph = p
′

1p
′

2/ϑ
2 representing the asymptotic

frequency with which future points w (with coordinates (w1, w2) generated with the above sampling mechanism for
any ϑ) will fall in h.

To exploit the above arguments about the abstract B(h) sequence we must realize that this sequence is actually pivoted
around the hypothesis h we have built through our algorithm. Said in other words, we may imagine a whole family of B
sequences, each pivoted on a possible rectangle. In some sequences the domain B̃i of measure p̃ will include the pivot in
other ones is included by it. Thus we need witnesses that for our actual h computed from the actual sample the pivot is
included in B̃i. But this happens if two special points – in Fig. 4(a) exactly the marked negative w preventing the rectangle
expanding on the left and the marked negativew preventing the rectangle expanding on the up – are included in B̃i. Indeed,
having one point binding the h vertical edge is not sufficient for ensuring that the h horizontal edge does not trespass the B̃i
contour, and vice versa. Thus let us enrich the family of sequences having for each rectangle and each possible pair of witness
points the pivot constituted by the union of the rectangle with these points. In respect to the sequence pivoted on our actual
rectangle and witnesses we have that if 2 or more negative points are included in B̃i for sure the witness points are among
them. Hence a twisting argument reads:

(ph < p̃)⇐
(
k̃p ≥ k+ 2

)
(9)

where k is the number of 1-labeled points, k̃p is still a specification of a Binomial random variable of parametersm (sample
size) and p̃, accounting for the sample points contained in B̃i.
From the left, let us consider the family of b_rectangles. As ϑ is free, (ph < p̃) requires that theremust be an enlargement

of h whose measure for a proper ϑ exactly equals p̃. But since both edges of h are bounded by a negative point, this
enlargement must contain at least one point more than h itself. Formally(

k̃p ≥ k+ 1
)
⇐ (ph < p̃) . (10)

Putting together the two pieces of twisting argument, we obtain the corresponding bounds on probabilities as follows:

P
(
K̃p ≥ k+ 1

)
≥ P (Ph < p̃) = FPh (̃p) ≥ P

(
K̃p ≥ k+ 2

)
. (11)
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Fig. 4. Generating 0.9 confidence intervals for the probability Ph of a b_rectangle in = [0, 1]4 from a sample of 30 elements. (a) The drawn sample
and one of its possible labelings in a two-dimensional projection; points inside circles are deputed sentinels. (b) Points: courses of the frequency φ and
probability ph of falling inside a b_rectangle with a lattice of labeling functions. Plain curves: trajectories described by the confidence interval extremes for
the actual four-dimensional case. Dashed curves: trajectories described by the confidence interval extremes computed from Lemma 2.

Generalizing our arguments to an n-dimensional space, Lemma 2 extend to the following:

Lemma 3. Let = Rn, ((Yi, Xi), i = 1, . . . ,m, . . .) be an infinite sequence of pairs of randomvariables drawn from the Cartesian
product space × {0, 1}. Let us assume that for each specification of the sequence a b_rectangle c exists in such that

xi =
{
1 if yi ∈ c
0 otherwise

(12)

for each i, and h denote a maximal b_rectangle with respect to the sample constituted by the first m elements in the sequence. For
k =

∑m
i=1 xi, a tail symmetric confidence interval of level δ for Ph = P(Y ∈ h) is (li, ls) where li is the δ/2 quantile of the Beta

distribution of parameters k+ 1 and m− k, and ls is the analogous 1− δ/2 quantile for parameters k+ n and m− k− n+ 1.

Proof. It is easy to realize that in this more general case at most n witness points are necessary, for whatever probability
distribution on Y 2: so we just rewrite (11) in terms of a Beta distribution law after substituting 2 with n in the right
implication threshold:

Iα(k+ 1,m− k) ≥ FPh (α) ≥ Iα(k+ n,m− k− n+ 1) (13)

and use the same arguments as in Lemma 2. �

We extended the experiment shown in Fig. 2 to the new framework as follows. We consider 20 sampling histories. Each
sample is made of m = 30 labeled points wi of a four-dimensional continuous unitary cube . We chose this dimension to
mark the drift from theBernoulli variable,whereas the rectangle in Fig. 4(a) represents just a projection in a two-dimensional
space. To consider a non-flat probability distribution, the sampling mechanism of the jth coordinate of w has explaining
function g(u) = uj.3 Then, to figure out a wide set of possible labeling mechanisms (12), we stored the labels attributed to
sample points from all b_rectangles within the unitary hypercube with vertices in a grid of edge 1/10 on each dimension.
Then we forgot the source figures and for each labeling computed a maximal consistent b_rectangle h, and we drew the
graph in Fig. 4(b). Namely, for each sample and each labeling according to the above rectangles we reported on the graph
the actual frequency φ and the probability ph (analytically computed on the basis of the rectangle edges) of having a point
in belonging to the guessed maximal hypothesis. On the same graph we also reported the curves describing the course of
the tail symmetric 0.9 confidence interval for Ph with the observed frequency of falling inside the rectangle h according to
Lemma 3with n = 4. Finally, for the sake of comparisonwe also drew the curves obtained from Lemma2 for a pure Bernoulli
variable. In spite of some apparent unbalancing in the figure, the percentages of points wi falling out of upper and lower
bound curves are approximately equal, 3.32% and 3.67% respectively. Thus they satisfy the 5% upper bounds (corresponding
to δ/2, where δ is the confidence level of the interval) used for drawing these curves. The analogous percentages, 16.2% and
0.28%, denote the inadequacy of the curves drawn for the Bernoulli distribution.

2 The interested reader can see a more detailed proof in [24,25].
3 Hence we adopt a different sampling mechanism than the one used for simply introducing our first learning problem. This is not a drawback as the
claim of Lemma 3 is distribution-free.
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2.2.2. Learning a concept class
Definition 4. For a given space X, a concept is a Boolean function c : X 7→ {0, 1}. A set of concepts defines a concept class C.

By abuse of notation we will refer to a concept either as a function c or as the support of it.4

Definition 5. Having fixed a spaceX, consider a randomvariable X and a concept c on it. An example Z of c is a pair (X, c(X)).
This means that an example associates to an x ∈ X a label c(x)whose value is 1 if x belongs to c and 0 otherwise. Vice versa
another concept h on X is consistent with an example z = (x, c(x)) of c if h(x) = c(x). The function h is consistent with a
set of examples if it is consistent with all its elements.

Given X and general properties that define a class C of concepts on it, we consider the learning task of inferring from a set
of examples the concept c in C underlying their labels. Actually we are satisfied with identifying in a set H a concept that
we call hypothesis h, approximating c well. As mentioned before, to appreciate how close h is to c we refer to the probability
distribution on X. We do not know it explicitly, but we observe the examples, and with a compatible distribution we will be
questioned about c(x) on new inputs. Our answer will be wrong on those points that either belong to c and not to h (thus we
will answer 0 using h(x)while the correct answer is c(x) = 1) or belong to h and not to c (and our answer will be h(x) = 1
in place of c(x) = 0). The set of these points denotes the symmetric difference c ÷ h between c and h, and we quantify the
approximating capability of h through the probability Uc÷h = P (c ÷ h) of this region.
A learning algorithm is a procedureA to generate a family of hypotheses hm with their respective Uc÷hm converging to 0

in probability with increasing size m of the example set given in input to the procedure [14]. For instance, in Fig. 5(a) the
set X of the experimental outcomes coincides with the Cartesian plane; the learning task is to identify one particular circle
c within the concept class C of all possible circles in the plane. This might be a mathematical model for identifying the site
and the emission range of a source of radiating pollution, such as noise, X-ray and so on, in a flat homogeneous region. The
set of examples might be identified with a set of monitoring stations taking label 1 if pollution is detected above a given
threshold. We are concerned with the probability that say, a Mr. John Smith is exposed to radiation.
We formally frame this task as follows.

Definition 6. For fixedm ∈ N, a labeled sample is a set

zm = {(xi, bi), i = 1, . . . ,m}

where bi are Boolean variables and xi ∈ X. Given a zm and a concept class C, assume that for everyM ∈ N and every (labeled)
population zM generated with the same samplingmechanismM of zm a c exists in C explaining both sample and population
labels, i.e. such that zm+M = {(xi, c(xi)), i = 1, . . . ,m + M}. For a set Zm of zms sharing C, we call learning algorithm an
algorithmA : Zm 7→ H, where H is a concept class (possibly different from C) that we specifically call class of hypotheses,
which

• for any zm ∈ Zm;
• for some pair5 of parameters ε, δ > 0; (denoted henceforth as accuracy parameters)

computes a function, that we denote as hypothesis h, such that the confidence interval (0, ε) for the measure Uc÷h of the
symmetric difference between h and the explaining functions of populations compatible with zm has at least confidence
1− δ (see Fig. 5(a)).
In formulas:

P(Uc÷h ≤ ε) ≥ 1− δ. (14)

It is evident that the probability measure of the symmetric difference is a random variable, too. The way of interpreting its
randomness represents the divide between conventional approaches and our own.
Coming back to the initial example of localizing a polluted region, we assume in the conventional approach that the

inhabitants distribution law is available (at least in terms of the list from which to randomly pick a sample, say the local
telephone directory) and that a circle c exists delimiting the polluted region. Then we extract a sample – the monitoring
stations – receiving labels from it and must approximate c with another circle h computed on the basis of the observed
labeled points. To address the computation, we may assume for instance the consistency constraint of h giving the same
labels as c to the sampled points. Since h is a function of the random sample, it is a random variable itself, having
specifications in h0, h1, . . . as in Fig. 5(b), whose probability law derives from the sample’s. In the figure h0 is consistent
with the points drawn therein, while we may assume the other hypotheses consistent with other sets of sampled points
each.
In our perspective we dually consider that a circle h is computed on the basis of the observed data (for instance with

the same consistency constraint) and we assume that a circle c will exist satisfying the same constraints on both the actual
and future observations. Since we can have plenty of different observation histories we can have a lot of different circles,

4 i.e. the set of points x ∈ X such that c(x) = 1.
5 Elsewhere a tighter request is that for every (ε, δ) anm0 exists such that for everym > m0 the claim of the definition holds.
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Fig. 5. Algorithmic and conventional inferences in computational learning.X: the set of points belonging to the Cartesian plane; bullets and diamonds as in
Fig. 4(a). Line filled region: symmetric difference between candidate concept and hypothesis. (a) Algorithmic inference framework. h: the circle describing
the sample according to a learning algorithm; ci: possible circles describing the population. (b) The corresponding conventional learning framework. c: a
concept from the class of circles; hi: hypotheses approximating c .

like c0, c1, . . . as in Fig. 5(a), as well. However, the fact that both c and h must give the same labels to the actual sample
allows us to probabilistically describe the family of possible c ’s in terms of thementioned error probability, provided that no
exceptional demographic phenomenonmakes the sites of the new requests on the pollution state heterogeneous in respect
to the monitoring stations (i.e. provided that the sampling mechanism is the same). Thus all concepts must be consistent
exactly with the points drawn in Fig. 5(a). From an operational point of view, the difference between the two approaches
lies in the fact that in the former we look for a c that labels every point of a fixed population zM and try to discover it (rather,
its approximation h) in spite of samples’ variability (as specifications of Zm). Here we assume a dual perspective: for fixed
sample zm we can have different populations (as specifications of ZM ), hence different c ’s explaining them.

2.2.3. Sentry points
Like in the rectangle case study, we relate the measure of the symmetric difference to the number of points falling inside

it plus those outside it necessary for witnessing the inclusion of c ÷ h into a domain Biε of measure ε within a sequence
B(c ÷ h) as in Section 2.1.2, for a possibly very small ε. We dually characterize the functionality of these points – which
we call either sentinels or sentry points and frontier as a whole – in terms of preventing a given concept c from being fully
included by another conceptwithinC. Like sentinels of a fortress, they are located in such sites that, given his own topological
constraints, an invader may never elude them all in surrounding the town-walls. Namely, they are assigned by a sentineling
function S (whose formal definition is given in [24]) to each concept of a class in such a way that:

• they are external to the concept c to be sentineled and internal to at least one other including it,
• each concept c ′ including c has at least one of the sentry points of c either in the gap between c and c ′ or outside of c ′
and distinct from the sentry points of c ′, and
• they constitute a minimal set with these properties.

The frontier size of the most expensive concept to be sentineled with the least efficient sentineling function, i.e. the
quantity DC = supS,c #S(c), is called detail of C, where S spans also over sentineling functions on subsets of X sentineling in
this case the intersections of the conceptswith these subsets. Moving to symmetric differences, for another setH of concepts
let us consider the class of symmetric differences c÷H = {c÷h ∀h ∈ H} for any c belonging toC. The detail of a concept class
Hw.r.t. c is the quantity Dc,H = Dc÷H. Vice versa, for a fixed hwe consider an augmented sentineling functionality against the
entire class Cwhere to each h is assigned aminimal set of points necessary to sentinel any c÷h, for any c ∈ C against c÷H.
Let us denote by D(C,H)h the cardinality of the sentry set of h, and define the overall detail of the class C÷ H = ∪c∈Cc ÷ H as
the quantity DC,H = suph∈H{D(C,H)h}.

Example 7. • With reference to Fig. 6(a), {x1, x2, x3} is a candidate frontier of c0 against c1, c2, c3, c4. All points are in the
gap between a ci and c0. They avoid inclusion of c0∪{x1, x2, x3} in c3, provided that these points are not used by the latter
for sentineling itself against other concepts. Vice versawe expect that c1 uses x1 and x3 as its own sentinels, c2 uses x2 and
x3, and c4 uses x1 and x2 analogously. Point x4 is not allowed as a c0 sentry point since, like some diplomatic seat, should
be located out of any other concepts just to avoid that it is occupied in case of c0 invasion.
• DC is 1 if the elements of C are oriented half-lines on R, and 2 if they are segments on the same set.
• The class C of circles in R2 has detail DC = 2, as visible in Fig. 6(b).
• DC is d4/3ke if the concepts are convex polygons on R2 having exactly k edges (Fig. 6(c) shows a worst case frontier for
the case k = 5; see [25] for the general case proof).
• The class of monotone clauses [26] has detail 1. Each clause (vi+vj+· · ·+vk) is sentineled by the point x of the Boolean
hypercube whose ith component is 0 if vi is an addend in the clause, 1 elsewhere.
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Fig. 6. (a) A schematic outlook of sentineling functionality. c0: concept sentineled against c1, c2, c3, c4; {x1, x2, x3}: c0 frontier; (b) Two points x1 , x2 outside
c are sufficient to prevent a larger circle not containing them from including it; (c) seven points do the same in a pentagon in the worst case.

Remark 8. Note that the class we want to sentinel in the task in Fig. 5 is constituted by symmetric differences between
circles. In this respect examples are all negative points in case of consistent hypotheses; some of these will act as sentry
points. The worst case is when either c ⊆ h or vice versa. In both cases it is a matter of sentineling a circle again, thus also
the detail DC,C of this class equals 2.

As in the case of other class complexity indices [27], the detail of a class C is a parameter extremely meaningful but
difficult to compute. The interested reader can find further examples in [24,25]. For a general framing, our index proves of
the same order of the well-known Vapnik–Chervonenkis dimension of a concept class [24].

2.2.4. A twisting argument for learning
Let us focus onUc÷h distribution law. The related statistic kuc÷h counts the number of actual sample points falling in c÷h,

and kε the analogous number for an enlargement Biε ⊇ c ÷ h of measure ε. The sentry points within the labeled sample
actually witness, in a number of at most D(C,H)h , the inclusion of c ÷ h in Biε as in (9). Considerations on left implication in
(8) are the same as in (10). Thus we specify (8) as follows:(

kε ≥ kuc÷h + 1
)
⇐ (uc÷h < ε)⇐

(
kε ≥ kuc÷h + D(C,H)h

)
. (15)

The companion probability chain reads:

Iε(kuc÷h + 1,m− kuc÷h) ≥ FUc÷h(ε) ≥ Iε(kuc÷h + D(C,H)h ,m− kuc÷h − D(C,H)h + 1). (16)

Themain lessonwe draw from the above discussion is thatwhenwewant to infer a functionwemust divide the available
examples in two categories, the relevant ones and the mass. As in a professor’s lecture, some, the former, fix the ideas, thus
binding the difference between concept and hypothesis. The latter are redundant; but if we produce a lot of examples we
are confident that a sufficient number of those belonging to the first category will have been exhibited. A series of results
[24,28] allows us to state a relation between the two categories’ sizes.

2.2.5. Learning modalities
A main difference in learning Boolean functions in a symbolic or subsymbolic way lies in the consistency of the

hypotheses. In the formermodality, as you know the shape of the target concepts youmaymanage for hypotheses compliant
with the labels of the examples, apart a few controlled exceptions you may decide for sake of computational costs. If you
may change such hypotheses in an incremental way with the number of processed examples you speak of on-line learning
[29]. As a result, you have lemmas like the following:

Lemma 9 ([24]). For

• a space X and any probability measure P on it 6;
• any concept classes H and C on X;
• any fairly strongly surjective7 functionA : {zm} 7→ H;
• a labeled sample zm from X× {0, 1};
• any pair 0 < ε, δ < 1;

if

• for any infinite suffix zM of zm a c ∈ C exists computing the example labels of the whole suffix;
• h = A(zm) has detail D(C,H)h = µh and misclassify th points of zm;
• m ≥ max{ 2

ε ln(1/δ) ,
5.5(µh+th−1)

ε
};

6 With analogous notation as exposed at the beginning of Section 2.1.1, it constitutes an a posteriori description of the population, via the sampling
mechanismM rather than an a priorimeasure defined over a σ -algebra on X.
7 A usual regularity condition representing the counterpart of a well-behaved function request [28]. For formal definitions see [24].
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then

P (Uc÷h ≤ ε) ≥ 1− δ.8 (17)

Proof (Sketch). The claim follows from inverting relations between probabilities and their quantiles in (16) as in Lemmas 2
and 3. Now we are interested in confidence intervals bounded only on the right. Moreover we add to the sentry points
also the mislabeled points that by construction fall in c ÷ h (see [25] for a more detailed discussion on almost consistent
hypotheses). �

Remark 10. Lemma 9 supplies an upper bound to the size of whatever labeled sample that is necessary to guarantee
accuracy ε and confidence 1 − δ to the learning task. Thus, denoting t an upper bound on th, we obtain the analogous
inequality

m ≥ max
{
2
ε
log
1
δ
,
5.5(DC,H + t − 1)

ε

}
. (18)

This equation denotes that the task of learning C through A has polynomial sample complexity in some characteristic
parameter of the problem if DC,H and t are polynomial in this parameter.

In the second modality – for instance dealing with a neural network but with our game as well – you simply stretch the
hypothesis in a direction that decreasesmonotonically the symmetric difference between hypothesis and concept (at least in
the best case). In this modality you have an essentially on-line learningwith no consistency guarantee on the partial sample.
Thus the true label you rely on tells you in which examples you win (by computing a correct label) and in which ones you
lose (mistaking the label) with no exact connection between their position in X and the concept shape. In the companion
Game_1 this lack of information is enhanced by the fact that you really do not know themembership function of the example
to the concepts but only these comparative win/lose labels. This scenario proves easier to treat in our framework where the
concept to be learned is a synthesis of future observation story rather than an a priori entity as in the conventional one
sketched in Fig. 5(b).

3. Dimensioning the batch size for winning with high probability

Let us fix for themoment themonotone competition to lie in finding a solution to the knapsack problem [10] asmentioned
in Section 1: given a set of objects, each characterized by aweight and a profit, findwithin subsets of themwhose totalweight
does not exceed the capacity of a knapsack the one maximizing cumulative profit. As well known, this problem belongs
to the NP-hard complexity class [30]. Therefore to avoid operational traps due to exponentially long computations, both
competitors adopt polynomial-time approximation schemes (PTAS) [31]. In particular we assume for the moment that B
implements the Sahni algorithm [11]. In the following we will refer to the following notations:

Definition 11. An instance for the 0–1 knapsack problem is a 4-ple s = 〈n,W , Z, b〉, where

• n ∈ N;
• W = {w1, . . . , wn} ∈ Nn;
• Z = {z1, . . . , zn} ∈ Nn;
• b ∈ N is such thatwi ≤ b for each i ∈ {1, . . . , n} but

∑n
i=1wi > b.

Given a knapsack instance s, an ordered n-ple x = 〈x1, . . . , xn〉 ∈ {0, 1}n is called a feasible solution for s if
∑n
i=1wixi ≤ b,

and g(x1, . . . , xn) =
∑n
i=1 xizi is called its value. Denoted with Sol(s) the set of all the feasible solutions for s, a solution of

the knapsack problem on smaximizes g over Sol(s), i.e. is an n-ple

〈x∗1, . . . , x
∗

n〉 = arg max
〈x1,...,xn〉∈Sol(s)

g(x1, . . . , xn)

where arg(f (x)) = x.
Denoted with g∗ and ĝ the values of an optimal solution and approximate solution, respectively, η = g∗−ĝ

g∗ is the
approximation degree. For given η, Sahni algorithm gets approximate solutions in a time polynomial in the number n of
the objects.

8 This bound looks more favorable by a a factor 1/ log ε than the usual one in the literature [28] based on Vapnik–Chervonenkis dimension [27]. This
occurs since the two bounds refer to slightly different notions of confidence interval, as mentioned earlier (see Fig. 5).
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Fig. 7. Partitions of the instance spaceS in Game_1 for different strengths of B, when A has strength γA , with γ ′ < γ < γA . White balls: instances onwhich
B does not lose when γB = γ . Gray balls: instances on which B loses when γB = γ .

From an operational perspective, identified the assignments 1 or 0 to xi with the facts: ‘‘the ith object is filled or not in
the sack’’, and denoted γ the ceiling of 1/η, Sahni algorithm enumerates all the feasible solutions composed of at most γ
objects and then completes them with a greedy routine. This routine [32] fills the knapsack with the unused items sorted
in decreasing order of zi/wi ratio while

∑n
i=1wixi ≤ b. The approximate solution is one within these solutions which has

maximum value.
We assume a sequence T of knapsack instances to be submitted to the two competitors A and B. The latter plays with

a strength γB = γ : the one who fills the bag more efficiently wins; if both get the same value they tie. For the sake of
simplicity, let us assume for a moment that A too uses the same algorithm with unknown strength parameter γA. A so
defined competition meets the monotonicity requirements fixed in the Introduction: on each s, B can tie, lose or win with
respect to A, and the domain h of instances on which B does not lose monotonically increases with γB (see Fig. 7).

Definition 12. For a given instance space S, a γB-NL domain is the set of all the instances in S on which B does not lose
whenever his strength is γB. Its complement is denoted γB-L domain.

With same notation as in Definition 11, the parameter γ is an integer ranging from 0 to n, where the contour line of the
γB-NL domain with γB = γA exactly contains S. Actually with γB < γA B never wins and with γB = γA B always ties. Thus
the balls in any γB-NL domain in Fig. 7 refer to instances where B always ties with strength γB. With a strength greater than
γA B could either win or tie but his strategy never reaches such a value for γB. If we restate the game in terms of a learning
task, the goal of B is to learn the γA-NL domain, hence a concept c coinciding with S. But, as B is satisfied when the losing
probability is less than a given ε, his hypothesis h is either the entireS or a domain inside it like in Fig. 7. Thus the symmetric
difference c ÷ h is reduced to the domain h̄ = S− h. We recognize easily that:

Fact 13. The detail of the class of symmetric differences between hypotheses and concepts in Game_1 is 1.

Proof. For any domain h among the set of n+1 nested γB-NL domains corresponding to the possible values of γ as in Fig. 7,
consider the set of the complementary γB-L domains. A single point representing an instance outside the γh-L domain h̄ and
internal to next (γh − 1)-L domain sentinels the expansion of h̄. �

Theorem 14. In Game_1 having a knapsack problem on at most n objects as competition and using the Sahni approximate
algorithm, B learns his strength γB with accuracy ε and confidence 1 − δ after playing a number m of instances of the problem
such that

m ≤ max
{
2
ε
log
1
δ
,
5.5(n− 1)

ε

}
. (19)

Proof. Let us assume that at the beginning of the game γB = 0 (for sake of simplicity), and that the result of our learning
task is a strength γB = γ . This means that during the game γ losing instances have been submitted to B. As an extreme case
let us assume that all γ instances are inside h̄ (actually, the true constraint is that the first losing instance smust lie outside
the 0-NL domain, the second outside the 1-NL domain, etc.). In this case the right implication in (15) becomes(

uh̄ < ε
)
⇐ (kε ≥ γ + 1) (20)

which reads: ‘‘Given that the game ended with strength γB = γ , we acknowledge that Uh̄ is less than ε because a domain
Biε of measure ε exists in a nested sequence pivoted around h̄ containing from the sample points both the above γ points
and a further one outside h̄ representing the sentinel of h̄’’. Since having the γ points all inside h̄ is less probable than the
necessary condition of having the first losing instance s outside the 0-NL domain, the second outside the 1-NL domain, etc.,
we can assume the probability of the rightmost event in (20) as a lower bound to P(Uh̄ < ε). Moreover, since we do not
knowwhat the learnt strength γB will be, we further bound from below this probability by substituting γ with its maximum
value n− 19 in the above probability:

P
(
Uh̄ < ε

)
≥ P (Kε ≥ n) . (21)

9 Actually with γB = nwe are sure that Uh̄ = 0 with no need of a further sentry point.
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By inverting this inequality we obtain the claim.10 �

We extend these results to the whole family of monotone games considered in the definition of Game_1 as follows.

Theorem 15. In Game_1 having as competition any search problem such that:

• a set Sol(s) of solutions is defined on each problem instance s,
• a total order relation D can be stated between solutions of any such set,
• a family of solving algorithmsA exists such that for eachA:
. a strength parameter γ exists which in each Sol(s) makes A computing one item x for each value of γ such that for each
pair γ ′, γ ′′ : γ ′ > γ ′′ ⇒ x′ D x′′,
. γ ranges in a finite set of values whose number is a polynomial q in the instance length n,
. on maximum γ eachA computes the same solution,

• A and B use an ownA each,
• B beats A, if xB D xA,

on a randomly drawn instance S, B beats A with probability 1− ε with a confidence 1− δ after a number of contests polynomial
in n, 1/ε, 1/δ. If both competitors use a sameA polynomial in n and γ (i.e. running on a single s in a time that is polynomial in
these parameters), then the learning task has polynomial computational complexity. If such A is polynomial only in n, but A is
allowed a polynomial computer time, then the learning task’s computational complexity is still polynomial.

Proof. If we substitute nwith q(n) then (21) holds also for the search problems in the claim since the proof of this relation
is completely independent of:

• the instance spaceS and the distribution law defined on it;
• the approximation algorithm used by B, provided that it is monotone in a strength parameter;
• the approximation algorithm chosen by A, provided that for maximum γB B always either wins or ties.

Consequently, (19) holds as well after the mentioned substitution. Thus we have an upper bound for m that in turn is
polynomial on a polynomial in n. Hence the upper bound is definitely polynomial in n. With the same argument of the
polynomial collapse we trivially obtain the computational complexity results in the claim. �

Note that the Sahni algorithm is not polynomial in γ . Thus we need the polynomial bound on A running time to have
a feasible game. We remark that other approximation algorithms, such as the one based on the rounding technique [33],
which are available for the knapsack problem, are polynomial even in γ . With the mentioned algorithms we must however
impose a polynomial discretization of the strength parameter that is originally a continuously valued parameter.

4. Guiding a single game

Let us remain for the moment with instances of a knapsack problem and Sahni algorithm for solving them. According to
the results in the previous section we can definitely draw a sample (i.e. a set of contests) of sizem satisfying (19) to be sure
that:

if we repeat this strategy (playm contests, increase the strength whenever lose) again and again,
then
• whatever sample items occur in the single trial,
• whatever population items occur as their continuation, hence
• provided a same sampling mechanismM underlies both,
the asymptotic frequency of hitting the Uc÷h ≤ ε target is≥ 1− δ.

In this section our target is to save contests. Thus we are looking for the minimal number of contests that in the actual
game history allow us to assume Uc÷h ≤ ε with a given confidence ≥ 1 − δ. This means that at run time, after the current
contest, B checks (on the basis of statistics on the course of fought contests) whether the above minimum has been reached
or not and in the positive case stops the game. Confidence again concerns the asymptotic frequency of hitting the target in
many replicas of the adopted decision strategy. We study this strategy on an equivalent game, denoted Game_2, that proves
easier to examine:

10 Note the similarity between this proof and the one of k-CNF learnability [14]. There each updating point gnaws a specific part of c− h in order to make
h consistent with it. Here we just push the contour of the NL domain closer to the contour of the whole instance set. We pay the broadness of this strategy
in terms of witnesses in (21): notwithstanding the detail of the L domain class is 1, we burn n points.
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Fig. 8. An instance of Game_2 having ` = 10 and ρ(0) = 2. The vertical axis reports the iteration number, each labeled with the corresponding ∆ρ(t).
Marked balls are denoted by a cross, while bold crosses denote the balls drawn at each iteration. The cursor position is understood before the ball extraction
and eventual updating of it.

Game_2. Consider the atomic partition of the unitary probability mass in a set of balls as in the first row of Fig. 8; let ` be the
number of balls and 1

`
the probability of drawing a ball. Starting the game, the first ρ(0) balls are white while the remaining ones

are gray, and a cursor separates the two sets of balls. At each run t we draw a ball uniformly and replace it after having marked it:
if the ball is white we do nothing more, if it is gray we move the cursor∆ρ(t) balls right, with∆ρ(t) ≥ 0, changing color to the
shifted balls (i.e. the new balls to the left of the cursor become white).∆ρ(t) is not fixed a priori and can change from iteration to
iteration.

There is a strong relation between Game_1 and Game_2: indeed, for a fixed value γA of A strength and at a current
γB strength, we can think of the balls as probability masses associated to knapsack instances, where their number in the
association determines the probability of the instances. We state nothing about its distribution. We simply color the balls
according to their corresponding contest attitude, white if indicative of a B victory or tie and gray otherwise; we assign
contiguous balls to a same instance so that proper shifts of the cursor move an instance completely from the white to gray
section. Drawing a white ball corresponds to an actual round of a non-losing instance for B. In this case both games do
nothing (apart from the ball marking for statistical reasons). Drawing a gray ball corresponds to losing a contest. In this case,
the cursor shift of ∆ρ(t) units right figures the unitary increment of γB. Both moves have the effect of decreasing (by an
unknown quantity11) the probability of drawing losing instances in the game’s run.

Claim 16. Game_1 and Game_2 are equivalent.

Proof. For a given strength γA because of the uniformmonotonicity of the competition, we can partition the instance space
of Game_1 through the γB-NL domains introduced before (see Fig. 7). As the domains are nested we can order the instances
through their contour lines. Moreover, since both S and γB range are finite and discrete, we can discretize the unitary
probability mass in a number ` of equally probable atoms so that each ring between contour lines in Fig. 9 contains exactly
an integer number of these atoms. Finally, we project the atoms on the real line (right side of Fig. 9) such that the order
relation introduced by the contour line is preserved. In this way:

• the first ρ(0) atoms are the projection of the initial γ0-NL domain, where γ0 is the starting strength of B;
• at each unitary increment of γB the enlargement of the NL domain maps into a cursor jump of ∆ρ atoms left-to-right
along the line;

and the equivalence of the two games follows. �

Thus we can represent a history of Game_1 through a history of Game_2, gaining in representation simplicity.

Claim 17. Let us set at ` (unknown and as large as necessary) the number of balls (hence the probability discretization grain) and
denote with K the random variable representing the number of updates of the cursor position. Correspondingly we denote with IK
the set of balls to the right of the cursor (the gray balls) after K updates and with UK its probability measure. In particular, with
Kε we refer to the number of updates when the measure of the gray balls is ε. Given the peculiarity of our game, to focus on a
particular extraction of balls we need to identify not only the balls drawn but also their drawing sequence. However, for any such
specification:

(uk ≤ ε)⇐ (kε ≤ k). (22)

Proof. The statement simply follows from the fact that a left-to-right shift of the cursor expands (or at least does not narrow)
the white section. �

11 Unawareness of `, ρ(0) and∆ρ(t) differentiates this drawing mechanism from Polya’s urn model [34].
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Fig. 9. Strength contour lines partitioning the instance space (left diagram) and their corresponding probability masses projected on the real line (right
graph).

Fig. 10. The actual process giving k updates and the probability measure uk , and a hypothetical one giving ε for a suitable drawing sequence of the same
balls set (for instance in the former the sequence is left to right and vice versa in the latter) and cursor shifting strategy.

Claim 18. Let us denote by k̃ the number of marked balls in Ik, i.e. the marked balls that remain on the right of the cursor after k
updatings (this means that they were gray when sampled and remain gray at the current step of the game). Then for a same set
ofm balls drawn resulting in k updatings in the game specified by the pair 〈ρ(0),∆ρ(t)〉 and corresponding to a given drawing
sequence, consider any drawing sequence and any game whose ρ ′(0) and ∆ρ ′(t) move the cursor so that at t = m it reaches a
position that leaves on the right a probability measure ε ∈ {0, . . . , i

`
, . . . , 1} (see Fig. 10), and denote with k̃ε the analogous of

k̃ in the new game. For any set of sampled balls

(̃kε ≥ k̃)⇐ (uk ≤ ε). (23)

Proof. At the end of sampling, the intersection between the sets of gray balls in the two games (i.e. the set to the right of
the rightmost cursor) includes the same set of marked balls in both games. Hence, the fewer these balls, the fewer gray balls
in general. Therefore

(uk > ε)⇐ (̃kε < k̃). (24)

The claim follows after considering the complementary events. �

Theorem 19. With reference to Game_2 and variables K , UK and K̃ as in Claims 17 and 18, denoting by

• m the number of steps of our game,
• Θε the Binomial variable of parameters m and ε, and Ψε the Binomial variable of parameters k and ε,

we have

P(Θε ≥ k̃) ≥ P(Uk ≤ ε) (25)
P(Uk ≤ ε) ≥ P(Ψε ≥ k̃+ 1). (26)

Proof. (1) From (23) P(K̃ε ≥ k̃) ≥ P(Uk ≤ ε). We can figure the ordered balls in a strip in Fig. 8 as the projection of
a discretized version of the U bars in Fig. 1, where the marked balls represent the extremes of these bars. The cursor
shift between the strips could correspond to the movement of the threshold line. The true difference between the two
inference schemes lies in the fact that the cursormotion is ruled by the sample itself according to our game strategy. This
means that the drawings of gray balls from a domain whose measure is ε are not independent; rather, the probability of
such extraction conditioned by a previous extraction of this kind is less than the unconditioned probability of the same
event. Thus K̃ε is approximated with the Binomial variable of parametersm and ε, expressly to obtain an upper bound.
This inequality extends to the ε’s not belonging to {0, . . . , i

`
, . . . , 1}. Indeed, denoting with ε′ the highest value in this

set less than ε, we have (Uk ≤ ε)⇔ (Uk ≤ ε′), and P(Uk ≤ ε) ≤ P(Θε′ ≥ k̃) ≤ P(Θε ≥ k̃).
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(2) Using relation (22) to fix a lower bound to the Uk c.d.f. is hard because of the mentioned probabilistic conditioning
between the updating balls. Thus we use another strategy. Let us denote eligible set σi the set of balls fromwhich the ith
updating ball is drawn and Zi its index in the whole ball set. Consider the initial set of gray balls and, included in it, the
set of balls to the right of the cursor at the kth update, i.e. σ1 and σk+1, respectively. Here σk+1 represents the set from
which we can extract a further updating ball if we continue the sampling.
If we adopt the simplifying hypothesis that the k updating balls come from k independent extractions from σ1 we

can consider the ordered sequence Z(1), . . . , Z(k) of their indices, called rank order statistics elsewhere [23], and the set of
random segments {(Z(1), Z(2)), (Z(2), Z(3)), . . . , (Z(k),∞)}, called statistically equivalent blocks since the measure of each
block follows the same Beta distribution law of parameters 1 and k [20]. In this model σk+1 is included in the union
of the last k̃ + 1 blocks. Indeed it contains the last k̃ blocks but is contained in the union of the former ones with the
block subsequent to the left to Z(̃k), since we know that the left extreme of this block changed color at one of the k
updatings. Moreover, as discussed in point (1) in the actual process these blocks have a possibly smaller measure due to
its conditioning by the strength updating strategy.
In sum, the probability measure of k̃ + 1 blocks follows a Beta random variable of parameters k̃ + 1 and k − k̃. The

distribution law of Uk is minorized by the above Beta distribution for two reasons:
(a) in regard to the eligible sets, Uk is the measure of the (k+ 1)th one. By definition the unconditioned measure of this
set is less than any conditioned one (provided that the conditioning event includes σk+1). Thus for Ik as in Claim 17
and a ball D randomly drawn

P(Uk ≤ ε) ≥ P(P(D ∈ Ik | D ∈ I0) ≤ ε) (27)

(b) as for Beta distribution, in the first place, the probability that k̃+ 1 statistically equivalent blocks have a probability
measure ≤ ε (i.e. the c.d.f. of these blocks) equals the probability of drawing at least k̃ + 1 gray balls in a region
of measure ε (the rightmost term in (26)). In own turn we proved that the measure of the actual eligible set σk+1
is smaller or equal to the measure of the k̃+ 1 blocks, and an opposite relation holds between the probabilities for
their measures to be less than a given value. Therefore the c.d.f. of the measure of σk+1 conditioned by its inclusion
in σ1 is greater than the c.d.f. of the Beta variable mentioned above:

P(P(D ∈ Ik | D ∈ I0) ≤ ε) ≥ P(Ψε ≥ k̃+ 1). (28)

Thus chaining (27) and (28) we get (26). �

Corollary 20. At any step m of either Game_1 having a competition as in Theorem 14 or Game_2 equivalent to the former such
that the number of strength/ cursor updates is k and the number of remaining defeats/gray marked balls is k̃, the tail symmetric
confidence interval of level less or equal to δ for the probability of a B defeat is (li, ls)where li is δ/2 quantile of the Beta distribution
of parameters k̃ and m− k̃+ 1, and ls is the analogous 1− δ/2 quantile for parameters k̃+ 1 and k− k̃.

Proof. Simply by considering the analytical form of the distribution laws ofΘε and Ψε we obtain

Iε (̃k,m− k̃+ 1) ≥ P(Uk ≤ ε) = FUk(ε) ≥ Iε (̃k+ 1, k− k̃). (29)

Then we compute the confidence interval extremes in the same way as in Lemmas 2 and 3. �

Remark 21. An extension analogous of Theorem 14 may be enunciated for Theorem 19 to cover monotone games as in
Theorem 15 in general.

We performed some direct simulations of Game_1 using the format adopted earlier. Here the unitary uniform variables
are used as a source of randomness for extracting the sequencewithwhich instances s of a knapsack problemare picked from
a set S wisely manufactured. According to Corollary 20, the confidence interval upper bounds move from those relative to
the pure Bernoulli case to include, with a given confidence the population parameters. We properly stretched the instances’
distribution in order to exploit this facility through the 300 curves in Fig. 11(a). They refer to initial steps of games each
having an own setS of 45 knapsack instancesmade up of 12 objectswith variously unbalancedweights, profits and capacity.
Each game runs on 10 instances picked at random. A fixes γA randomly within the set {1, . . . , 10}, B plays out his strategy
by increasing γB by 1 on each defeat with respect to A. To gain an overall appreciation of the coverage of the confidence
intervals by the trajectories of Uk, on each move we normalized the extremes of the 90% confidence interval and the actual
uk specification. Namely, on each m we assumed the mean (over the 300 trajectories) of confidence interval centers as the
baseline intercept and the mean of the interval half widths as normalization factor.12 Hence the contour of the confidence
regions collapse to the two black bold lines. To fill the confidence regionwe considered three families of curves coming from
different instances distribution laws and initial B strengths. We colored each family with a different gray tune and plotted
the curves sequentially from form darker to lighter ones. Due to their positioning within the picture the former are mostly
hidden by the other two families.

12 In formulas we map uk into ŭk = ūk +
l̄s−l̄i
ls−li
uk where ā is the sample mean of a for fixedm.
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Fig. 11. Game histories disputed on 10 knapsack contests with n = 12. Horizontal axis: time step m. On the vertical axis: (i) thin lines: uk , different gray
scales correspond to different instance distributions; (ii) bold black lines: 0.9 confidence interval for uk computed through (29); (iii) bold gray line: baseline.
(a) overall pictures of the normalized tracks; (b) dummy training histories with constant strengths.

In greater detail, the 100 black curves refer to equally distributed instances of a game starting with γB = 0. The trend of
uk losing probabilities goes from high values (whose normalized version may be greater than 1 or less than 0 because of
rescaling) at the start of the game to low values at its end denoting a good efficiency of the learning strategies. Things get
worse if the instance distribution is heaped toward the two extremes constituted by easy instances (solvable by B with the
same efficiency as A though using a smaller strength) and hard instances (where B loses as soon as he uses less strength
than A). In these cases γB increments often do not affect the losing probability giving rise to the almost horizontal trend of
the gray curves in the picture: specifically, light gray curves start with γB = 2, meaning a high initial losing probability;
dark gray ones start with γB = 5, yielding the opposite effect. The curves cover nearly the entire confidence region with a
few trespassing over its borders. The reader may expect a proper pairing of further stretched initial strengths with suitable
instance distributions to complete the coverage, apart from a small oversizing of the confidence region, specially on the top,
due to the inequalities in (29). Evidence of this expectation is shown in Fig. 11(b) where, having fixed γA = 10, we report a
dummy training history for each initial B strength between 1 and 9 raising from uniformly distributed instances in S with
0 increment on every defeat.13 Analogous curves coincide with lower and upper bounds when γB = 10 or when on no
instance B ties with γB = 0, respectively.

5. Overcoming indeterminacy and companion overtraining phenomena

5.1. Appreciating the training strategy efficiency

Theorem 19 appears somehow to be an extension of the Perceptron Theorem [35] concealing the same kind of
indefiniteness. As long as your learning algorithm gains monotone improvement of the cost function you get an adequate
solutionwith a number k of updates that scales with the characteristic dimension n of the problem. Apart from the vagueness
of some terms thatwewill discuss shortly, themain point is that youmustworkwith consistent statistics (identifiedwith the
sample cost function to be minimized) in order to realize the monotonicity of the population cost function with the sample
size (i.e. to deal with a Lyapunov function on this variable). This gives a rationale to the search for the best error function
(such as MSE [36], Kullback distance [37], posterior probability [38], etc.), and suggests a pre-eminence of the shape of the
function in respect to the numerical tricks to minimize it. Rather, the latter concern the time complexity, in close analogy to
what mentioned in concern of PTAS algorithms. Then we must define adequacy. Our template game suggests interpreting
it as a feature characterizing solutions that are good enough provided that no real computing device, nature included, may
rely on unlimited computational power (companion of the notion of equivalent hyperplanes in the Perceptron Theorem).
As a new theoretical facility, Corollary 20 deals with the efficiency of the training strategy as well. Because the solutions

of the quantiles li and ls are a function of the two parameters k and k̃ for a given length m of the game history, we draw
the nice three-dimensional graph (which we will call sails’ graph) in Fig. 12 to represent them. The main feature of this pic-
ture is the distinctive presence of: (i) a squeezed region where we would like to locate our confidence interval that would
prove to be tight around low Uk values and (ii) a broad region with no meaningful information about Uk. One great quality
of the picture is that between the upper and lower surfaces we can frame trajectories like those in Fig. 11 with a good ap-
proximation, getting the game timing as fourth implicit coordinate. Actually, the trajectories mentioned refer to the first 10
steps of the game, while Fig. 12 refers to statistics that should be collected after exactly 10 steps. However, from (29) we
see that this discrepancy does not affect the interval upper bounds, while lower bounds with m = 10 are lower than the
analogous bounds computed at run time withm exactly equal to the number of currently fought contests.

13 Not violating, however, the specifications of a monotone game.
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Fig. 12. 0.9 confidence intervals for losing probability. (a) Course of the lower and upper bounds (uk axis) with statistics k and k̃ ranging between 1 and 10.
The lines between the two surfaces represent the game stories of Fig. 11(a);m = 10. (b)–(c) Sections of the picture (a) with the plane k̃ = 2 and k+ k̃ = 6,
respectively.

From a statistical perspective the so filled sails in Fig. 12(a) and their sections in Fig. 12(b) and (c) show that the large
intervals are really spanned by the defeat probability. In addition, we may analyze the individual training histories in terms
of efficiency of the learning strategy employed as follows:

(1) a good training occurs when k̃ goes to zero with increasing k, thus pushing the training trajectory toward the 〈k =
max, k̃ = 0〉 corner of the graph in Fig. 12(a). This denotes that the strength updates tangibly reduce the L domain,14
hence the number of sampled instances remaining in it. The timing of the updates (i.e. their course with the number of
processed instances) depends on the current measure of this domain in a distribution-free way;

(2) while proving common at the beginning of the histories, a persistence of k̃ close to k along a track denotes an almost
stationary L domain. This brings the learning problem close to a simple estimate of the Bernoulli parameter measuring
the probability of the domain. Thewider confidence interval we obtain crossing the sails with the vertical line k̃ ≈ k = c
for any constant c vis à vis the analogous interval coming from Fig. 2 with φ = k̃/m, depends on the updates’ timing.
From (29) the upper bound in Fig. 12 is unable to consider atwhichmoment of the sampling story the pair 〈k, k̃〉 has been
reached, hence whether after the whole m-sized sample has been drawn or not. It conservatively manages a dummy
situation where just k instances have been independently drawn, k̃ of which falling in the losing domain.

The scarce efficiency of the second category of training stories recalls a sort of indeterminacy situations figuring that in
certain gameswe cannot obtain simultaneously for B both a low defeat probability measure and a low confidence interval. We go
thoroughly through this phenomenon as a template of learning difficulties and key point for stressing learning efficiency, as
well. From a logical perspective all steams from the implication direction in (22). Due to the learning dynamics we expect a
greater k, hence a longer list of processed defeats, exactly when the current defeat probability is lower (defeat controllability
perspective). In contrast, as soon as this probability decreases you expect to meet a shorter sequence of losing instances
(defeat observability perspective). The balance between the two arguments determines the wide spectrum of equilibrium
points. We numerically sampled them with trajectories of Fig. 11 that may be suitably reread in these terms. You may start
with high losing probability u0 and draw a few instances, consequently observing a small k and k̃. If the strength increments
are not effective you stay around 〈k, k̃, u0〉 point. Otherwise you lower the losing probability according to the increase in
efficacy. Conversely, you may start with low probability of loss and not observe defeats. Continuing the training story, i.e.
incrementing the training set, in the first case you move close to the k = k̃ diagonal. In the second case you remain in the
area of the axes origin. Intermediate trajectories deviate from the diagonal with the efficacy of the strength. Starting with
still lower initial probabilities you have similar behavior with lower vertical coordinates and a slower timing of the moves
with the instances’ processing.
In any case the losingprobabilities converge to the one connectedwith the final B strength, andboth k̃m and

k
m too. All these

quantities go to 0 for unconstrained γB. But our learning strategymay decide – either voluntarily, since requested confidence
has been reached, or involuntarily, just because of our unawareness – giving either zero or ineffective increments from a
certain γB on (see Footnote 13). Correspondingly, uk tracks a horizontal trajectory. In conclusion Uk really spans any part of
the confidence region with substantially blind training trajectories. A better relation than (29) of uk withm could lower the
confidence region upper bound, but finding this relation may be a hard task in the game problem, that proves unfeasible in
subsymbolic learning, as will be explained in a moment. On the contrary, we may set up a simple cognitive artifice to better
locate points in the graphs, and thereby obtain an indeterminacy lowering. From point (1) we indeed appreciate that we
get better estimate when the difference between k and k̃ is meaningful. We obtain it by playing two games simultaneously:
an effective game, where Bob uses the current strength to compute k̃; and a dummy game, featuring a strength increment
equal to zero, which lets him accumulate k. These statistics are the same as in a virtual gamewhich, starting from 0, moves

14 See Definition 12 in whose respect we dropped the strength prefix γB- for conciseness sake.
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Fig. 13. 0.9 confidence regions for a virtual game. Same notations as in Fig. 12.
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Fig. 14. Courses of the cost function σ with the number ν of training iterations for a subsymbolic learning problem. Pictures (a), (b) and (c) refer to different
settings of the free parameters.

from this value and reaches Bob’s current strength exactly when we compute the confidence interval. Fig. 13(a) shows that
this strategy pushes the great part of the trajectories toward the 〈k = max, k̃ = 0〉 corner. Consequently, by contrasting
the two sections in Fig. 13(b) and (c) with those in Fig. 12(b) and (c), we see a migration of line intersections from broader
to narrower confidence intervals. Thus we obtain a better appreciation of the confidence intervals for the same learning
process if we exploit more information on them and this information is available.

5.2. Subsymbolic learning

The final aim of this paper is to use sails in Fig. 12 as a state diagram of any subsymbolic learning process in order to
draw a fewwell-founded directions for efficiently driving it. To render still more blind the trajectories of the training stories
here we also lack: (i) the knowledge of n as an actual complexity measure of the learning task, and (ii) a clear connection
between the statistics k and k̃ and the distribution law of the goal function uk.
The typical tool for analyzing a training session is the course of the cost function as reported in Fig. 14. We will use the

virtual game strategy for relating features of these graphs to the features of the sails’ graph. In this perspective, k̃ plays the
role of the current cost function statistic σ , for instance the sum of square errors, and k the one of its initial value σ0; uk plays
the goal function τ (for instance the mean square error) that we want to minimize in our learning strategy.
In particular, whenwe learn Boolean functions, under the consideredmonotonicity assumption of the training algorithm,

k and k̃maintain the same semantic (number of mislabeled points with the initial and current hypotheses) and uk coincides
with uc÷h introduced in Section 2.2.2. Thus we have the following corollary.

Corollary 22. Given an algorithm A for incrementally learning a Boolean function c from examples, if the measure uc÷h of the
symmetric difference of c with the function h computed byA is a non-increasing function of the number of processed examples,
then the numbers k and k̃ of mislabeled examples at respectively the beginning and the current status of training are pivots for a
twisting argument on Uc÷h.

Proof. We may map the learning procedure steps into those of the virtual game considered at the end of Section 5.1.
Thanks to Theorem 2, the sole difference with respect to the probabilistic framework of Game_1 is that here we lack the
dimensionality n of the problem. It depends on the training algorithm (see Footnote 10), and does not necessarily coincide
with the dimensionality of the examples. However, in the proof of Theorem 2we have realized that, for whatever n, the two
statistics pivot twisting arguments about Uc÷h. �

Referring to non-Boolean functions we focus on the cost functions σ0 and σ at respectively initial and current learning
time. Time elapses for two reasons, i.e. along two coordinate axes: (i) we process a certain number of examples, and (ii)
we do it thoroughly by iterating a training procedure. In this respect k, i.e. the number of updates or correspondingly the
σ evolution, represents the true internal time of the process.15 The monotonicity assumption of the cost function with the

15 This is why we denote with the symbol uk the defeat probability, being k̃ a special value of k.
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Fig. 15. Same graphs as in Fig. 14 but referred to longer training histories.

number of examples allows us to deal separately with the two coordinate axes. In the game problem we consider explicitly
the first coordinatem shading the other in the learning efficiency. For a given training strategy, looking at the learning tracks
behaviorwemay say that a training session is de facto finishedwhen the 〈 km ,

k̃
m 〉 trajectory gets stuck in an equilibriumpoint,

as mentioned in Section 5.1. Running along the first time coordinate, at that point the testing session starts since the new
instances refer to anunchanging L domain, ergowithnoburning of newwitness points or, equivalently, having (DC,H)h = 1 in
(16) [25]. This looks for a dummy on-line learning strategy where no partition is made in advance on the available examples
between training and testing set. We train the network progressively on the examples being satisfied when no significant
changes occur on σ . Rather, we could actually train the network on the whole training set having for obvious that the best
use of an example is for training a network rather than for testing whether the training set was sufficiently large or not.
The principal use of a test set is however to understand the efficiency of the training strategy, a feature referring to the

second time coordinate that both determines in own turn the above equilibrium point, and is hardly appreciable in advance.
Nevertheless we will still try to get some directions from Fig. 14, hence on the basis of sole training session statistics. In
very broad terms we may say that a training loop has reached an efficient training level when it has pushed the training
trajectories in the left corner, i.e. with k̃ far less than k. But in our subsymbolic strategy we are not able to appreciate how
far k̃ is from k in the Boolean case (lack of n), and which metering to use at all for the statistics in the general case. Hence
we may use the statistics themselves as faithful estimators of the goal function τ and appreciate their variance at any stage
of the training process for locating this stage within the sails’ graph. Namely, for a given number of training iterations we
consider a certain number of runs coming fromdifferent random initializations of the parameters to be learnt, and appreciate
the variance of the cost function16 (or equivalently its square root, i.e. its standard deviation (std)), somehow in line with
the bootstrap philosophy [39]. We see from the sails’ diagram that a favorable feature is represented by an intermediate
value of std. Indeed at one extreme (very high variance) we are in the region with k, k̃ both low, denoting a slow internal
time where any value of uk or the equivalent τ is possible. If this feature occurs after many actual training iterations we
may understand that there is no way of improving the process. We meet the other extreme (very low variance) when the
virtual time has elapsed. This may denote a satisfactory situation if we are in the 〈khigh, k̃low〉 corner, saying that the training
has been successfully accomplished; or it may indicate a bad situation as we are in the 〈khigh, k̃high〉 corner, hence did not
learn anything and do not expect it in the future. As for the scale through which to appreciate std values we observe that in
the expected value of lower bound distribution (29) – which determines the upper bound to the population error – k and k̃
linearly scale. Indeed the expected value of Iε (̃k+1, k− k̃) is k̃+1k+1 . Hence wemay assume the initial value of the cost function
std as our metering unit. Putting together these considerations we may fix the following rule for stopping a training:

Rule 1. Starting from a set ofm examples to learn a function f byminimizing a cost function σ as good pivot for minimizing
a goal function τ :

use all the examples as a training set;
if σ goes satisfactorily fast to 0 with training iterations

then you are OK,
else having reached at a given iteration t a suspicious almost stationary trend of σ ,

repeat the training algorithm many times starting from a different random initialization of the parameters to
be learnt and stopping each time at same iteration t ,
if the variance of the last few values of σ merged between the iterations is moderately large,

then continue the training,
else stop the training.

Far frompretending to provide an exhaustive check of this rule – a task aswide as the province of the rule – Fig. 15 represents
the continuation of the training stories in Fig. 14, giving some evidential support in favor of it. The graphs refer to the solution
through a three-layer perceptron of the MIRRORING problem: reproduce on a set of visible neurons the same state vector of
another set of visible neurons under the constraint that no direct connection exists between the two sets. In particular we
considered training sets made of orthogonal Boolean state vectors of ten bits. At iteration 2000 only the graph in Fig. 15(b)
suggests continuing the training. And in fact it gets better σ values later on. The graph in Fig. 15(a) denotes a definitely higher

16 Theorem 15 suggests that we do not need a huge number of trajectories for appreciating the variance.
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variance due to an initialization of the network weights very far from zero. Hence the connections saturate their adapting
capability in a few cycles. The graph in Fig. 15(c) suffers from an excessively small number of hidden nodes (actually only
one against the three nodes of the network trained in Fig. 15(b)). The networks are well trained (the equivalent k is large)
but cannot avoid a large percentage of mistakes. Note that the actual difference between the std in this case and the first
one is even higher than it appears because of scale change. We must take into account that in graph (c) we start from an
initial high std and decrease it with cycles. The opposite occurs in graph (b).

6. Conclusions

Framing a learning task into stochastic game paradigm lets us stress controllability problems of the learning process
in very severe boundary conditions. We focus on the poor knowledge available in subsymbolic learning algorithms, such
as widespread back-propagation. In this framework we obtained: (i) exact results concerning the problem of learning the
strength parameter of a monotone game, (ii) analogous results for learning a Boolean concept, and (iii) a principled rule for
deciding when to stop a training session.
The main point is that subsymbolic incremental learning algorithms cannot ensure the consistency of the hypotheses.

Rather, they aim for amonotone decrease in the probability of incorrect computing ifwe base ourselves on these hypotheses.
Assuming that this target has been achieved, we use the typical monotone argumentation of Algorithmic Inference for
computing the distribution law of the above probability on instances’ populations that are compatible with the actual set
of examples. This compatibility pivots on two statistics estimating the incremental benefit of the learning strategy with the
processed examples.
As a conclusion, in this paper we give a few directions for getting a reasonable training rule supported by a bulk of

theoretical arguments and a few numerical experiments. Their value lies in the fact that they are independent of the actual
learning task. Further work in this direction will concern:

• rereading ensemble learning techniques [40] in terms of games between teams, and
• exploiting knowledge on strength increase effects for specific learning tasks, for instance in terms of smart statistics
capturing the computational structure of a task, as the joint 〈K , K̃〉 considered in this paper do at an early stage.
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