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I. INTRODUCTION 

Integrals of strongly oscillatory or singular functions appear in many branches of mathematics, 

physics, and other applied and computational sciences. The standard methods of numerical inte- 

gration often require too much computation work and cannot be successfully applied. Therefore, 

for problems with singularities, for integrals of strongly oscillatory functions and others, there are 

a large number of special approaches. In this paper, we give an account on some special--fast and 

efficient--quadrature methods, as well as some new approaches. Also, we give a few applications 

of quadrature formulas in telecommunications and physics. Such methods require a knowledge 

of orthogonal polynomials (cf. [1]). 

Let Pn be the set of all algebraic polynomials P (5 0) of degree at most n and let dA(t) 

be a nonnegative measure on R with finite support or otherwise, for which the all moments 

/~v = fn tv dA(t) exist for every u and #0 > 0. Then there exists a unique system of orthogonal 

(monic) polynomials lr~(.) = Irk(. ; dA), k = 0, 1 . . . .  , defined by 

7rk(t) = t k + lower degree terms, (Irk, ~ )  ---- II~kll~k~, 

where the inner product  is given by 

(f' g) = In f(t)g(t) dA(t), (f ,  g E L2CR) = L2(R; dA)) 

and the norm by I[f]] = V ~ ,  f)" 
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20 G.V. MILOVANOVI6 

Such orthogonal polynomials {~rk} satisfy a three-term recurrence relation 

7rk+l(t) = (t -- Otk)Trk(t ) -- 13kTrk_l(t), k >> O, 
(1.1) 

7to(t) = 1, Ir-l(t)  -- 0, 

with the real coefficients C~k and 13k > 0. Because of orthogonality, we have that  

( t r k , - k )  13k = 

The coefficient/30, which multiplies It_ 1 (t) = 0 in three-term recurrence relation may be arbitrary. 
Sometimes, it is convenient to define it by 13o = fR dA(t). 

The n-point Gaussian quadrature formula 

n 

fRf ( t  ) dA(t) = ~ A~f(ru) + Rn(f), (1.2) 

has maximum algebraic degree of exactness 2 n - l ,  in the sense that  Rn( f )  = 0, for all f E P?n-1. 
The nodes r~ = rv (n) are the eigenvalues of the symmetric tridiagonal Jacobi matrix Jn(w), given 
by 

a o  0 

V ~  ~2 "'" 
°o. ° . .  

0 ~ /Z . -  1 C~n-1 

= 

while the weights A~ = A (n) are given in terms of the first components vu,1 of the corresponding 
normalized eigenvectors by Av = 130v~,1, v = 1 , . . . ,  n, where/30 = fR dA(t). There are well-known 
and efficient algorithms, such as the QR algorithm with shifts, to compute eigenvalues and eigen- 
vectors of symmetric tridiagonal matrices (cf. [2]). A simple modification of the previous method 
can be applied to the construction of Ganss-Radau and Gauas-Lobatto quadrature formulas. 

The paper is organized as follows. Section 2 discusses the methods for oscillatory functions, 
including the standard methods, the product rules, as well as some complex integration methods. 
Section 3 is dedicated to applications of quadratures in some problems in telecommunications 
and physics. 

2.  I N T E G R A T I O N  O F  O S C I L L A T I N G  F U N C T I O N  

In this section, we consider integrals of the form 

I(L K) -- I(f(.), K(.; x)) = w(t)I(t)K(t; x) dr, (2.1) 

where (a, b) is an interval on the real line, which may be finite or infinite, w(t) is a given weight 
function as before, and the kernel K(t; x) is a function depending on a parameter z and such that  
it is highly oscillatory or has singularities on the interval (a, b) or in its nearness. Usually, an 
application of standard quadrature formulas to I ( f ;  K) requires a large number of nodes and too 
much computation work in order to achieve a modest degree of accuracy. A few typical examples 
of such kernels are as following. 

1 ° Oscil latory kernel K(t; x) = e ~xt, where x = w is a large posit ive parameter. In this class, 
we have Fourier integrals over (0, + c o )  (Fourier transforms) 

fO °° 
F(I; w) = t"f(t)e ~t dt, (# > -1 )  
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or Fourier coefficients 

ek( / )  = ak ( / )  + ibk( / )  = ~ .f(t)e ikt dt, (2.2) 

where w = k 6 N. There are also some other oscillatory integral transforms like the Bessel 

transforms 

fo tI ,~(x) = t"f(t)I-I(~ ~) (cot) dt, (m  = 1, 2), (2.3) 

where ~o is a real parameter and I-I~'~)(t), m = 1, 2, are the Hankel functions (see [3]). 
Also, we mention here a type of integrals involving Bessel functions 

f0 c° t 2 
Iu( f ;  w) = e -  Ju(oJt)f (t 2) t u+l dr, u > -1 ,  (2.4) 

where o~ is a large positive parameter. Such integrals appear in some problems of high 
energy nuclear physics (cf. [4]). 

2* Logarithmic singular kernel K(t;  z) = log It - x l ,  where a < z < b. 
3* Algebraic singular kernel K( t ; z )  = It - z l  ~ ,  where a > - 1  and a < z < b. 

Also, we mention here an important case when K(t;  x) = 1/( t  - z),  where a < x < b and the 
integral (2.1) is taken to be a Canehy principal value integral. 

In this section, we consider only integration of oscillatory functions. 

2.1. A S - m m a r y  of  Standard Methods  

The earliest formulas for numerical integration of rapidly oscillatory function are based on the 
piecewise approximation by the low degree polynomials of f (x)  on the integration interval. The 
resulting integrals over subintervals are then integrated exactly. A such method was obtained by 
Filon [5]. 

Consider the Fourier integral on the finite interval 

I ( f ;  w) = f(~c)e ~ dx 

and divide tha t  interval [a,b] into 2N subintervals of equal length h = ( b -  a ) / (2N) ,  so that  
z~ = a + kh, k = 0 , 1 , . . . ,  2N. The Filon's construction of the formula is based upon a quadratic 
fit for f ( z )  on every subinterval [xg.k-2, z2k], k = 1 , . . . ,  N (by interpolation at the mesh points). 
Thus, 

f(z) ~ Pk(x) = Pk(:r2k-I + hi) = 0k(t), (2.5) 

where t E [-1, 1] and Pk 6 7>2, k = 1,..., N. It is easy to get 

I 1 
dpk(t) = f2k-X + ~(f2k - f2k-9.)t + ~(f2k - 2f2k-X + f2k-2) t  2, 

where f r  - f ( z r ) ,  r = 0 , 1 , . . . ,  2N. Using (2.5), we have 

N z2~ N 1 

k=l 2k-2 k=l 1 

where 8 = ~h. Since 

/~ ~k(t)e ~°t dt = A/2k-2 + Bf2k-, + C.f2k, 
1 
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where 

i.e., 

we obtain 

1/1 f A = V = 5 1 (t~ - t) e °' dt, B = (1 - t ~) e °' dr, 
1 

A = (82 - 2) sin 8 + 28 cos 8 
8a 

4 
B = ~ (sin 8 - 8 cos 8), 

+ i 8 cos 8 - sin 8 
02 

I(f;o~) ~ h { is  (e~af(a)  - e'wb f(b)) + flE2N + 7E2N-1}, 

with c~ = (8 2 + 0 sin 0 cos e - 2 sin 2 0)/0 3, fl = 2(0(1 + cos 2 o) - sin 2 0)/0 3, 7 = 4(sin 0 - o cos 0)/0 3, 
and 

N N 

E2N = Euf(Z2k)e iwz2k, E2N-1 = Z f(X2k-1)e~x2k-'' 
k=0 k=l 

where the double prime indicates that  both the first and last terms of the sum are taken with 
factor 1/2. The limit 0 --* 0 leads to the Simpson's rule. The error estimate was given by [6,7]. 

Improvements of the previous technique have been done by Flinn [8], Luke [9], Buyst and 
Schotsmans [10], Tuck [11], Einarsson [12], Van de Vooren and Van Linde [13], etc. For example, 
Flinn [8] used fifth-degree polynomials in order to approximate f ( x )  taking values of function 
and values of its derivative at the points x2k-2, X2k-1, and x2k, and Stetter [14] used the idea 
of approximating the transformed function by polynomials in 1/t. Miklosko [15] proposed to use 
an interpolatory quadrature formula with the Chebyshev nodes. 

The construction of Ganssian formulae for oscillatory weights has also been considered 
(cf. [16-19]). Defining nonnegative functions on [-1, 1], 

~k(t) = ~ ( l + c o s k ~ 0 ,  vk(t) = 1 ( 1 + s i n k e r ) ,  

the Fourier coefficients (2.2) can be expressed in the form 

a k ( / )  = 2 / ( ~ ) U k ( 0  dt - f ( . t )  dt 
1 1 

Now, the Gaussian formulae can be obtained for the first integrals on the right-hand side in these 
equalities. For k = 1(1)12 Gautschi [16] obtained n-point Gaussian formulas with 12 decimal 
digits when n = 1(1)8, n = 16, and n = 32. We mention, also, that for the interval [0, +oo) and 
the weight functions Wl(t) = (I + cost)(1 + t) -(2n-l+a) and w2(t) = (I + sint)(1 + t) -(2"-I+'), 

n = 1(1)10, s = 1.05(0.05)4, the n-point formulas were constructed by Krilov and Kruglikova [20]. 
Quadrature formulas for the Fourier and the Bessel transforms (2.3) were derived by Wong [3]. 
Other formulas are based on the integration between the zeros of cos mx or sin mx (cf. [21-25]). 

In general, if the zeros of the oscillatory part of the integrand are located in the points xk, 
k = 1,2,...,m, on the integration interval [a,b], where a < xl < x2 < ... < xm _< b, then we 
can calculate the integral on each subinterval [xk,xk+1] by an appropriate rule. A Lobatto rule 
is good for this purpose (see [21, p. 121]) because of use the end points of the integration subin- 
tervals, where the integrand is zero, so that more accuracy can be obtained without additional 

computation. 
There are also methods based on the Euler and other transformations to sum the integrals over 

the trigonometric period (cf. [26,27]). 

and 
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2.2 .  P r o d u c t  In t eg ra t ion  Rules  

Consider the integral (2.1) with a "well-behaved" function f on (a, b). The main idea in the 
method of product integration is to determine the adverse behaviour of the kernel K in an analytic 
form. 

Let Irk(. ), k = 0, 1 , . . . ,  be orthogonal polynomials with respect to the weight w(t) on (a, b), 
and let A~ and Tv (v = 1 , . . . ,  n) be Christoffel numbers and nodes, respectively, of the n-point 
Gaussian quadrature formula (1.2). Further, let Ln(f; .) be the Lagrange interpolation polynomial 
for the function f ,  based on the zeros of Irn(t), i.e., 

rt 
L.(f; t) = ~ f(~)l.(t),  

b'~-I 

where £u ( t ) = ~r,~ ( t ) / ( ( t - vv )lr~ ( Tu ) ) , u = 1 , . . . ,  n. Expanding it in terms of orthogonal polyno- 
mials {try}, we have 

n--1 

Ln(f;  t) = Z a~rv(t), 
v-~O 

where the coefficients av, v = 0 ,1 , . . .  ,n - 1, are given by 

1 1 fab a~ = ~ (L , ( I ;  .), ~r~) = ~ w(t)L,~(f; t)~rv(t) dr. 

Since the degree of L.(/;-)r~(.) _< 2n - 2, we can apply Gaussian formula (1.2), and then 

1 n 

(2.6) 

because of L , ( f ; r k )  = f(rk) for each k = 1, . . .  ,n. 
Putting L , ( f ;  t) in (2.1) instead of f i  t) we obtain 

I ( f  , K) = Q, ( f ;  x) + RPR( f  ; x), 

where 
~a b 

Q.(l;x) = ~(t)L.(l;t)g(t;x)dt, 

i .e. ,  
n - 1  [b  

Q.(I; ~1 = ~ a~ jo ~( t l~( t lg( t ;  ~1 dt (2.71 
v.~O a 

and R~R(f ;  x) is the corresponding remainder. By b~,(x) we denote the integrals in (2.7), 

b 
b,,(x) = f ,  w(t)~rv(t)K(t; x) dr, u = O, 1 , . . . ,  n - 1. ( 2 . 8 )  

Finally, we obtain so-called the product integration rule 

n - 1  

Q,~(f; x) = ~ avbuCx), (2.9) 
v~O 

where the coefficients av and by(x) are given by (2.6) and (2.8), respectively. 
of (2.9) is 

n 
Q.(/; x) = ~ A~(x)I(.k), 

k--1 

Another form 

(2.10) 
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where 
n--1 

1 
hk(X) = A4 Z ~Tr~(~ '4 )b~(x) ,  k = 1 , . . . ,  n. 

~'=0 I I  vii  

As we mentioned on the beginning of this section, it is very important in this method to have 
by(x) in an analytic form. It is very convenient if we have a Fourier expansion of the kernel 
K(.; x) in terms of orthogonal polynomials lh,, 

K(t; x) = E Bv(x)lr~(t). 
I/=O 

Because of (2.8), we see that Bv(x) = b~(x)/lllr~[I ~. 
Let K,(.;  x) be the best L2-approximation of K(.; x) in P , -1 ,  i.e., 

n-1 b,(x) ~r,(t). (2.11) 
Kn(t; x) = Z I1~,112 

We can see that the product integration rule (2.9), i.e., (2.10), is equivalent to the Gaussian rule 
applied to the function f( . )K,( . ;  x). Indeed, since A4(x) = A4K,(r4; x), we have 

1% 

= = Q , , ( / ;  

k = l  

In some applications K,(vk; x) can be computed conveniently by Clenshaw's algorithm based on 
the recurrence relation (1.1) for the orthogonal polynomials Try. 

In some cases, we know analytically the coefficients in an expansion of (2.11). Now, we give 
some of such examples. 

In [28, p. 560], we used 

1 .k 2~rr(2A + k) 
-  -I/2 dt =, 

where C'~(t) (A > -I/2) is the Gegenbauer polynomial of degree k. Taking this exact value of 
the integral, we find the following expansion of e i'~t in terms of Gegenbauer polynomials, 

K(t; w) = e i~` .~ F(A) Z i4(k + A)J4+x(w)C~(t), 
k=0 

where x 6 [-1, 1]. In this case, (2.10) reduces to the product rule with respect to the Gegenbauer 
weight. 

In some special cases, we get: 

(1) for A = 1/2, the method of Baldavalov-Vasil'eva [29]; 
(2) for A = 0 and A = 1, the method of Patterson [30]. 

An approximation by Chebyshev polynomials was considered by Piesseus and Poleunis [31]. 
Taking the expansion 

+oo k 
• k ( 0 ) / 2 )  _ ,.. 

e~t  "~ e-(~/2P 2_, '  ~ n4~) ,  Itl < +oo, 
k=O 

where Ark is the Hermite polynomial of degree n, we can calculate integrals of the form 

+oo ° e -t2 e~t f ( t ) dr. 
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In a similar way, we can use the expansion 

+oo (ico)k 
e~t2 ~ ~ k122~(~--~)k+I/2 H2k(x), Itl < +o0. 

k----0 " 

Consider now the integral Iv(f; co) given by (2.4), which can be reduced to the following form 

1 f0 +°° -- e-t  J,, (covq) :f(t)t ~/2 dt I~(l;co) 

where we put the oscillatory kernel in the brackets. Using the monic generalized Laguerre poly- 
nomials L~(t), which are orthogonal on (0,-boo) with respect to the weight t"e -t, we get the 
expansion 

(-- I )k (CO /2) 2k 

Thus, in this case the coefficients (2.8) become 

bk(co) = (-I)' (2) ~+2' e-(~/2) ' . 

In 1979, Gabutti [4] investigated in details the case v = 0. Using a special procedure in D- 
arithmetic on an IBM 360/75 computer he illustrated the method taking an example with f(t) = 
sin t and co -- 20. 

At the end, we mention that it is possible to find exactly l~(f;co) when f(t) = e iat. Namely, 

1 1 [ 
I v ( e i a t ; c o ) : 2 ( 2 ) ~ ' ( 1 - i a ) ~ ' + l e x p  1 - i a J  

The imaginary part of this gives the previous example. An asymptotic behaviour of this integral 
was investigated by Frenzen and Wong [32]. They showed that I0(f; co) decays exponentially like 
e - ~ 2 ,  7 > 0, when f(z) is an entire function subject to a suitable growth condition. Further 
considerations were given by Gabutti [33] and Gabutti and Lepora [34]. 

A significant progress in product quadrature rules (and interpolation processes) was made in 
the last twenty years (see [35-47], and others). 

2.3. Complex  In teg ra t ion  M e t h o d s  

Let 
G = {z E C[ -1  _< Rez _< 1, 0 < I m z  < 6}, 

where r6 = aG (see Figure 1). Consider the Fourier integral on the finite interval 

/:. l ( f ;  co) = .f(x)e ~"  dx, (2.12) 
1 

with an analytic real-valued function f.  

THEOREM 2.1. Let f be an analytic real-valued function in the half-strip of the complex plane, 
-1  < Rez _< 1, Imz >_ 0, with singularities z~ (v = 1,. . .  ,m) in the region G = IF, and let 

t r t  

27ri ~ res z--,~,, { f(z)e ~z } = V + iQ. 
I/----1 
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L 

Figure  1. T h e  con tour  of in tegrat ion.  

Suppose that there exist the constants M > 0 and ~ < w such that 

" If(x +i~f)ldx < Me ~6. 
1 

Then 

/~lf(x)coswxdx = p + 2 fo+°°Im [e~ fe ( l  + i~)]  e-t 

r f (x)sinwxdx=Q - 2  +°°Re ei~fo 1 + i  e-tdt, 
1 ~) JO 

where fo(z) and re(z) are the odd and even part in f(z), respectively. 
PROOF. By Cauchy's residue theorem, we have 

6 - 1  

Jr f(z)e~WZ dz = ~o f(1 + iy)e~(l+iY)idy + ~1 f(x +/~)e ~(=+i6) dx 
6 

10 + f ( - 1  + iy)e~(-l+i~)idy +/if;w) 

- -  2,~ ~ res._-~o {S(~)~ "~"} = P +~O. 

Since 

II$l = [/11f(x 4-i~f)e~(=+~6) dx] = e-~6 /~l f(x + i~f)ei~= dx 

/2 < e -~6 I/(x +/~)J dx < Me (~-~°)6 ---, O, (because of (2.13)), 
1 

when ~f --~ +c~, we obtain 

I ( f ; w ) = P + i Q + . - -  e~f  1+~ - e - ~ f  - - 1 + i  e-tdt. 

(2.13) 

Taking f(z) = fo(z) + re(z) and separating the real and imaginary part in the previous formula, 
we get the statement of theorem. | 
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The obtained integrals in Theorem 2.1 can be solved by using Gauss-Laguerre rule. In order to 
illustrate the efficiency of this method we consider a simple example Fourier coefficients (2.2), 
with f i  t) = 1/ ( t  2 -{- e2), $ > 0. 

Since /: c/c(/) = f(~rx)e i/clrz dx, w = klr, 
1 

and 

we get 

e~f (1-{-i~) - e - ~ f  (-1+i~) ~ (-1)/c If (Trq-i~) - f <-Tr+i~)] , 

ck(f)=P-l-iQ-i (-1)/c~o ÷°° [f(~r+i-~)t _fI_vr+i~)le_td t 

In our case, we have 

/(~z) -- ~2z21+ ~2, P + iQ = 2~i res z--,~/. {/(~z)e/c,~ } = i~ ~-/c~ 

and 

we get 

f l r + i ~  - - f  - - I r + z ~  = ( e 2 + T r 2 _ ( t / k ) 2 )  2 + 4 7 r 2 ( t / k ) 2 ,  

e- k ,(-I) k ~o +°° t /k  ak(f) -- ~ T  __ (~2 4. 7[.2 __ (~/k)2) 2 _~_ 47r2(t/k)2 e-t  dr. 

Of course, bk(f) = O. 
In Table 1, we give coefficients for k = 5,10,40 obtained for ~ = 1 in D-arithmetic (with 

machine precision 2.22 x 10-16). Numbers in parentheses indicate decimal exponents. 

T~ble 1. Fourier coefficients ak(f) for f(t) = I/(t 2 + 62), 6 = 1. 

k ak(/) 

5 8.0466954304415(-3) 

10 -2.9016347088212(-4) 

40 -2,1147947576924(-5) 

Table 2 shows relative errors in Gaussian approximation of Fourier coefcients ak(f) for ~ = 1 
and k = 5, 10, 40, when we apply the N-point Gauss-Laguerre rule (GLa). 

Table 2. Relative errors in N-point GLa-approximations of ak(f). 

N 
¢ = 1  e = 0.01 

k = 5  k = 1 0  k = 4 0  k = 2 0  

1 4.7(-3) 
2 1.6(-4) 
3 6.0(-6) 
4 2.6(-7) 
5 1.7(-8) 

10 2.8(-13) 

8.6(-3) 
8.1(-5) 
8.5(-7) 
7.3(-9) 
1.6(-11) 

4.7(-4) 
2.9(-7) 
1.6(-10) 
3.4(-14) 

3.2(-9) 

1.2(-11) 

6.8(-14) 

In the last column of Table 2, we give the correponding relative errors in the case when ~ = 0.01 

and k = 20, where a20(f) = -1.023459866383(-4). 
On the other side, a direct application of N-point Gauss-Legendre rule (GLe) (N = 5(5)40) to 

the integral 
1 /: coskt dr, (2.14) 

ak(f) = ~ . t2 + ~2 
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Table 3. Relative errors in N-point  GLe-approximations of ak(f). 

N 

5 

10 

15 

20 

25 

30 

35 

40 

e = l  

k=5 k - - 1 0  

5.2(1) 1.5(3) 

2.5(1) 2.3(1) 
1.1(0) 2.2(3) 

4 .9( -2)  2.0(2) 

2 .1( -3)  8.8(0) 

9.3(-5) 3.s(-1) 
4.6(-6) 1.7(-2) 
1.8(-7)  7 .3(-4)  

e = 0.01 

k = 40 k ---- 20 

3.0(4) 5.6(7) 

1.4(4) 2.8(4) 
2.4(4) 2.0(7) 

2.6(4) 3.7(3) 

4.1(3) 1.2(7) 

2.5(4) 9.0(4) 

8.9(2) 8.7(6) 

2.1(3) 6.9(4) 

0.5 

-0. c. 

- i  
-3 -2  -1  0 1 2 3 

Figure 2. The case e = 1 and k -- 40. 

gives bed results with a slow convergence (see Table 3). The rapidly oscillatory integrand in (2.14) 
is displyed in Figure 2 for e = 1 and k = 40. 

Consider now the Fourier integral on (0, +co),  

which can be transformed to 

F(f;  w) = f(x)e ~x dx, 

F ( f ; w ) - = w  f e i x d x = F  f ;1 , 

which means that  is enough to consider only the case w = 1. 

In order to calculate F(f;  1) we select a positive number a and put  

K(I;  1) = f (x )e  ~ dx + f (x )e  ~ dx = L~(I) + L2(I), 

where 

~01 ~aa ÷ °° L l ( f ) = a  f(at)e~atdt and L 2 ( f ) =  f(x)eiXdx. 

THEOREM 2.2. Suppose that  the function f (z)  is defined and holomorphic in the reg/on D = 
{z e C ] Re z > a > 0, Im z > 0}, and such that 

A 
If(z)l <- T-~' when Iz] -~ +co, (2.15) 
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R-a 

Figure 3. The contour of integration. 

for some posi t ive constant  A.  Then  

~0 +c~ L2( f )  = ie ia f ( a  + iy)e -~ dy, (a > 0). 

PROOF. Taking 0 < a < R and closed circular contour CR in D (see Figure 3) we get, by 
Cauchy's residue theorem, 

i.z f ( x ) e  i:: dx + [ f ( z )e  ]z=a+(R_a)e, o ( n  - al ie  ia dO + i f ( a  + iy)e  i(a+iu) dy = O. 
dO - a  

Let z = a +  ( R - a ) e  i°, 0 < 0 < Ir/2. Because of (2.15), we have that  [f(z)l < A / ~ / a  2 + (R  - a) 2, 
when R -~ +c~. Using the Jordan's lemma we obtain the following estimate for the integral over 
the arc 

~0 _r A (1 _ e_(R_a)) __, 0, [ z=o+(R-a)e" (R - a)ie '° dO <_ 2" .4a2 + (R - 

when R ~ +oc, and then desired result follows. | 

In the numerical implementation we use the Gauss-Legendre rule on (0, 1) and Gauss-Laguerre 
rule for calculating L t ( f )  and L2( f ) ,  respectively. In order to illustrate the numerical results, we 
consider the integral 

f0 +c° cosx dx  0.70888800613933.. F(cos(,); 1) = 1 + x ---'---~ = "" 

The relative errors in approximations using N-point quadrature rules, with different values of a, 
are shown in Table 4. 

Table 4. Relative errors in N-point Gaussian approximations of F(cos(.); 1). 

N a = l  

10 4.7(-3) 

20 1.2(-2) 
30 2.7(--3) 

40 9.9(-4) 

a = 2  a = 3  a = 4  a = 5  

2.3(-4) 
8.8(-6) 
4.8(-9) 
4.5(-8) 

1.1(-6) 8.4(-5) 

4.9(-8) 1.1(-9) 
1.1(-9) 8.8(-12) 
3.8(-11) 6.3(-14) 

1.3(-4) 

1.5(-8) 
1.2(-12) 

4.1(-15) 
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3. S O M E  A P P L I C A T I O N S  OF Q U A D R A T U R E S  

In this section, we give a few applications of Gaussain quadrature rules in some problems 
in physics and telecommunications, where is very important to calculate integrals with a high 
precision. If we want to have a good quadrature process with a reasonable convergence, then the 
integrand should be sufficiently regular. Furthermore, singularities in its first or second derivative 
can be disturbing. Also, the quasisingularities, i.e., singularities near to the integration interval, 
cause remarkable decelerate of the convergence. 

3.1. I n t e g r a t i o n  o f  t h e  E r r o r  F u n c t i o n  

We consider now an integral which appears in telecommunications (see [48]), 

1/0/: {( )1 P, = ~-~ . . .  erfe c 1 + ~ ek cos Ok dO1. . ,  dora, 
kffil 

where c and ck are positive co~;ant~,  and the error function effc(t) is defined by 

I r+oo 2 
w(t) ---- erfc(t) ---- - ~  Jft e-~: /2 dz. (3.1) 

In our calculation, we used the following approximation (0 _< t < +co): 

erfc(t) = (a lX -}- a2x  2 -b a3 x3 -4- a4 z4 -}- a s z  s) e -t2/2 + ~, (3.2) 

where x = 1/(1 + pt) ,  p = 0.23164189, and le[ _< 0.75 x 10 -~. The coefficients ak are given by 

al  ---- 0.127414796, a2 = -0.142248368, 

a3 = 0.7107068705, a4 = -0.7265760135, 

as = 0.5307027145. 

In order to calculate Pe (the error probability in telecommunications), we put zk = cos 0k 
(k -- 1 , . . . ,  m). Then, we get 

Applying the Gauss-Chebyshev quadrature formula 

erfc c _ _  ckxk  dxm.  
k----1 

+ , 

I __. 

where ~ (v = 1 , . . . ,  n) are zeros of the Chebyshev polynomial Tn(t), i.e., 

(2u - l)z" 
rv = cos 2n ' v = 1 , . . . ,  n, 

s u c c e s s i v e l y  m t i m e s ,  w e  o b t a i n  

where E(n m) 

. . .  e r f c  c 

vl----i umffil kffil 

(3.3) 

7r 
/ ~ ( f )  = 22n-l(2n) ! f(2.)(~), 

is the corresponding error. Notice that  for f E C2n[-1, 1] the remainder g n ( f )  
in (3.3) can be represented in the form 

( -1<~< 1). 

(3.4) 
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In order to estimate E(n m), we take f ( t )  = erfc(a + bt) (z = a + bt, a, b > 0). Then we can find 

b2n d2n- 1 b 2n 2 
f(2n)(t) -~ ~ "  dz--'~-~n_l (e -z`/2) -~- ~e-az ,t/Tr H2n-1(8), 

where s = z/v/2 and H 2 . - l ( s )  is the Hermite polynomial of degree 2n - 1. Then, for the 
remainder term in the Gauss-Chebyshev formula (3.3), we get 

2" 
e H2._ l (v ) ,  rn = P ~ ( f )  = 23._i(2n)! 

where v = (a + b~)/vf2 (-1 < ~ < 1). Since (see [49]) 

]H2n-I(v)I _< lvleV'/2(2n)! 
n! ' 

we conclude that  
v ~b2" ivle-V" < lrKnb 2'~, 

]rnl ~_ 23n_1n-----~. 

not depending on a. By induction, we can prove the following. 

THEOREM 3.1. For the remainder E (m) in (3.4) the following estimate 

I 1 23n- in, V/-~-e c2 n rn E(nm) <- Z c~¢)~ (3.5) 
k= l  

holds. 
Thus, basing on (3.4) we have a formula for numerical calculation of the integral Pe in the form 

Pe ~' p(n) = 1 . . .  erfc c 1 + Z Ck%,k • (3.6) 
~tm ~I=1 v,~=l k----1 

3.2. S ingu la r  I n t e g r a l s  in Ana lys i s  o f  A n t e n n a s  

A numerical procedure for a class of singular integrals which appear in the analysis of a mono- 
pole antenna, coaxially located along the axis of a infinite conical reflector was given in [50]. 
Namely, the authors considered the integral 

I(a, v) = f a  jr(x)  sin(a - x) dx, (3.V) 
J0 x 

where j~(x) is the spherical Bessel function of the index v, defined by 

jr(x) = --~ k!r(v + k + 3/2)' 
kffiO 

and the index v is a solution of the equation 

Pv(cos 01) = 0, (3.s) 

If the error in (3.2) is such that  161 <_ E, then for the total error in the approximation (3.6) we 
have 

I TI < E + . 

The number of nodes in the Gauss-Chebyshev formula (3.3) should be taken so that  the upper 
bound of the error E (m), given in (3.5), be the same order as E. 



32 G . V .  MILOVANOVI6 

where Pv(cos 8) is the Legendre function of the first kind defined by 

v~ [ e  cos(~ + 1/2)~ 
P~(cos 8) 

-;- J0 ~ W j - - ~  ~ '  (3.9) 

and 81 is the flare angle of the cone. Equation (3.8) has an infinite number of solutions u} (k E N). 
Since 

0, v > 1, 

lim j r (z )  1 
x-.0+ x 3' v = I, 

+c~, v < i, 

we see that the integrand in (3.7) is singular when v < i. This case occurs when 81 > Ir/2. 
Namely, then the first solution of (3.8) is less than I (Vl < I). An analysis of this equation was 
done in [51] (see also [52]). 

The integration problem (3.7) was solved in [50] by extraction of singularity in the form 

a v h a j , ( x )  sin(a - x) - Cv(a)x ~ dx, I(a, v) = C, (a )~-  + 
Z 

where C~(a) = 2 - v - l v ~ s i n a / F ( v  + 3/2). For calculation of the spherical Bessel function the 
authors used a procedure given in [52]. 

We give here an alternative procedure for (3.7) using only Gaussian quadratures. In our 
approach we take an integral representation of the Bessel functions. 

Since 

jr(z)  = V~z~zJv+l/2(z), 

using the following representation for the cylindric Bessel functions (see [53, p. 360, equation 
9.1.20]) 

2(z/2) v fo 1 ( ~) J r ( z ) =  V/-~F (v + 1/2 ) (1 - t2 )v -1 /2cos(z t )d t ,  R e v > -  , 

we find 

and then 

i.e., 

where 

(x/2)v L 1 (1 - t2)" cos(xt) dt jr(x) = 2F(v + 1) 1 

i Z(a, v) = 4rCv + l) sin(a - x) dx (1 - t 2) u cos(xt) dr, 
- 1  

I /_~ O-t2)  v Ov(O d~, 
I(a, u) = 4F(v + 1) 1 

0 a 

After integration by parts, this formula reduces to 

(v > 0). 

2 f a  ~ v 

Changing variables x = a(1 - ~2) (~ >_ 0), we get 

Cv(O = 8 (a~v+l r i 1 
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where 
g(~,t) = cos [a~ 2] cos [at (1 - ~ 2 ) ]  + t s i n  [a~ 2] sin [at (1 - ~2)]. 

Notice that  g(+~, ~:t) = g(~, t). Because of that,  we have 

I(a,v) (a/2)u+l / _  1 //~ 
-- w (~''I) (~C)w(~"°)(t)g(~, t) d~ dr, uP(v+ 1) 1 1 

where w(~'~')(t) = Itl'(1 -t~)" is the generalized Gegenbauer weight. 
The (monic) generalized Gegenbauer polynomials W(~a'a)(t), orthogonal on ( -1 ,  1) with re- 

spect to the weight w(a,~)(t) = Iris(1 - t2) ~, /3 = (p - 1)/2, (~ ,#  > -1 ) ,  were introduced by 
Lascenov [54] (see, also, [55, pp. 155-156]). These polynomials can be expressed in terms of the 
Jacobi polynomials, 

w(~[,~) ( t ) = 

W2(~J~)/ ' ,~ k + l  ' ~ /  ---- 

k! P y ) ( 2 t  ~ - 1), 
( k + a + f l + l ) ~  

k! "rD(¢%#3+1) ( 2 t  2 - 1). 
( k + a + f l + 2 ) k  - ' k  

Notice that  w(a'~)(÷~ = tW(2~ 'f3+1) (t). The coefficients in their three-term recurrence relation 
• " 2k+1 ~,~1 

- pk ~ k -  1 ( t ) ,  k = 0 ,  1 ,  " ' k + l  ~ }  " ' ' '  

w_(7~)(t)  = 0, w0("'~)(t) = 1, 

are known in the explicit form. Namely, 

~2k 

f~2k-  1 ---- 

k(k + a) 
(2k + c~ + fl)(2k + a + fi + 1)' 

(k + ~)(k + a + Z) 
(2k + c~ + fl - 1)(2k + c~ + f~) ' 

for k = 1 , 2 , . . . ,  except when a +/3 = -1 ;  then fll = (fl + 1)/(c~ + fl + 2). Some applications of 
these polynomials in numerical quadratures and least square approximation with constraint were 
given in [56,57], respectively. 

The construction of the corresponding Gaussian quadratures is very simple in this case with 
regard to the knowledge of recursion coefficients. Here also, there is a convenience in a number 
of the integrand evaluations. Since the integrand is even, we can get the Gaussian quadrature 

~.(t,,u) of degree of exactness 4N - i, taking only N (positive) points r~"~),...,. N , as zeros of the 

polynomial W,(~'~)(t ~ where c~ =.,/~ = (# - I)/2. Thus, 

1 N f l  ~ ~, x'-" . ( . , , , ) .  : (.,,,)'~ 
w (' '") (t)¢(t) dt = Q ,u)(¢) = z 2 . ,  A k @ kTk ) ,  

i----1 

and we finally get 

1(a,.) ~. IN(a, ~,) = 4(a/2)~+I N N 
.r(. + I) ~ ~ A,B,g(=,, yj), 

i=1  j-----1 

where, because of simplicity, we put 

1 (1,u) = a ( o , v )  ~.(o,v)  
A ~ = A  '~), z k = r ~  , B~ ..~ , Y k = , k  , 
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Table 5. Approximation of I(Ir/2, v) for v = 0.I(0.I)I.0. 

/1 

0. I 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

*/r b e Approximation 17 ( 3 ' )  

9.092660539259 

4.113983342491 

2.470467111313 

1.661658513482 

1.187153595723 

0.879930124888 

0.668250458550 

0.516135176348 

0.403518784385 

0.318309886184 

Table 6. Relative errors in approximations IN(It~2, 
2(1)6. 

u N = 2  N - - 3  N = 4  

0.1 9.2(-3)  1.5(-4) 1.3(-6) 

0.2 8.2(-3)  1.3(-4) 1.1(-6) 
0.3 7.2(-3)  1.1(-4) 9.4(-7)  

0.4 6.5(--3) 9.5(-5) 8.0(-7) 
0.5 5.8(-3) 8.3(-5) 6.9(-7) 
0.6 5.2(-3)  7.3(-5) 5.9(-7) 
0.7 4.6(-3) 6.4(-5)  5.1(-7) 
0.8 4.2(-3)  5.6(-5) 4.4(-7)  

0.9 3.8(-3)  4.9(-5)  3.8(-7)  

1.0 3.4(-3)  4.4(-5)  3.3(-7)  

v) for u = 0.1(0.1)1.0 and N = 

N = 5  N = 6  

7.6(-9) 
6.3(-9) 
5.3(-9) 
4.4(-9) 
3.7(-9) 
3.1(-9) 
2.6(-9) 
2.2(-9) 
1.9(-9) 
1.6(-9) 

3.0(-11) 
2.5(-11) 
2.1(--11) 
1.7(-11) 
1.4(-11) 
1.2(-11) 
9.8(-12) 
8.2(-12) 
6.9(-12) 
5.8(-12) 

for k = 1 , . . . ,  n. This quadrature formula is based on N 2 nodes and gives good approximation 
of the integral I(~r/2, v). The obtained results rounded to 12 decimal places, for a = 7r/2 and 
v = 0.1(0.1)1.0, are displayed in Table 5. We used our quadrature formula for N = 7. All digits 
in approximation I7(Ir/2, v) are correct. 

Table 6 shows the relative errors in approximations IN(~r/2, v) for N = 2(1)6 and again u = 
0.1(0.1)1.0. As we can see, the convergence of approximations is fast and we can take relatively 
small N in order to get a satisfactory result. 

3.3. Calculation of Legendre Functions 

Numerical calculation of the Legendre function of the first order is also possible using Ganssian 
quadratures. We start with Dirichlet-Mehler integral representation (3.9). The functions P~(x) 
satisfy the three-term recurrence relation 

iV Jr 2 )Pv+2( t )  ---~ (2 / /q-  3 ) t P v + l ( t )  - i v  -{- l ) P ~ ( t ) .  (3.10) 

When v is an nonnegative integer, the functions Pv(t) reduce to the Legendre polynomials 
orthogonal on ( - 1 ,  1). 

The integrand in (3.9) is quasi-singular at e = o, i.e., when t = 1. Therefore, we use an 
extraction in the form 

P,,(co, e) = cos [(,., + e) + v l  Z '  cos(,, + ln) - + 1/2)e 
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and then we change variables ~0 = 8(1 - x 2) in order to get an integral on (0,1). Thus, we find 

P~(cosS) 2 [( 1) 8] (sin ~ ) 4 ~ 0 1  = - c o s  u+ K + -  S(O,z) dz, 
7r 7r 

where 
S(8, x) --- (Sx) sin [(u + 1/2) (8 - ~)] sin~ 8z 2 

sinl/2(8-- ~)sinl/2~ ' ~---- 2 ' 

and K is the complete elliptic integral of the first kind. 

Table 7. Maximal absolute errors in calculation of Pv(cosS), 0 ~ 0 ~ 6, 0 ~ v < 2. 

N 

5 

i0 

2~ 6 =  
3 

51r 6 =  
6 

6__~ ~ 6 - -  ~ 
3 2 

8.9(-7) 3.1(-6) 1.7(-4) 1.5(-3) 
4.7(-13) 5.9(-13) 7.1(-11) 1.5(-9) 

For numerical calculation of the integral f~ S(8, x) dx, we use the standard N-point Gauss- 
Legendre quadrature formula transformed before to (0,1), while for the complete elliptic integral 

f 
lr/2 

K(sin c~) -- (1 - sin 2 a sin 2 8 ) -  1/2 dO, 
Jo 

we use the well-known process of the arithmetic-geometric mean (cf. [53, pp. 598-599]). An 
analysis of this quadrature process shows that  we must take N - 20 in the Gauss-Legendre rule 
in order to get the values of Pv(cosS) for 0 < v < 2 and 0 ~ 8 < lr with an absolute error 
less than 10 -1°. Some computational problems can occur when 8 --* qr. By  certain restrictions 
on 8, for example 0 < 8 <_ ~ < 7r, our approximation for Pv(cOsS) gives better  results. The 
corresponding maximal absolute errors in calculation of Pv(cos 8) are given in Table 7. 

When the index v > 2 it is convenient to use three-term recurrence relation (3.10), starting by 
two values P~(cos 8) and P~+l(COS 8), where 0 _< p < 1. One similar procedure was given in [51]. 

3.4. I n t e g r a l s  O c c u r r i n g  in Q u a n t u m  M e c h a n i c s  

Let a and/3 be real parameters such that  a 2 < 4/~, and let w(a,~)(t) be a modified exponential 
weight on ( - c o ,  +co),  given by 

w(~,~)(t) = 
e-t 2 

X[I + at + ~t 2 

Recently, Bandrauk [58] stated a problem I of finding a computationally effective approxima- 
tions for the integral 

r",~ = H, ,~( t ) [ t , ( t )w (''~) (t) dt, (3.11) 

where Hn(t) is the monic Hermite polynomial of degree n. The function t ~-* Hm(t)e -t212 is the 
quantum-mechanical wave function of m photons, the quanta of the electromagnetic field. The 
integral express the modification of atomic Coulomb potentials by electromagnetic fields. The 
integral I~,b ~ is of interest in its own right. It represents the vacuum or zero-field correction. 

Evidently, for a --/~ -- 0, the integral la'~ expresses the orthogonality of the Hermite polyno- 
mials, and/~0 = 0 for m ~ n. 

IThe original problem was stated with the Hermite polynomials Hk(t) ffi 2k/7/k(t), (k >_ 0). 
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In order to compute the recursion coefficients in three-term recurrence relation (1.1) for the 

weight w(a'~)(t) on R, we use the discretized Stieltjes procedure, with the discretization based 
on the Gauss-Hermi te  quadra tures ,  

f_ ~oo P ( t ) w ( ~ ' ~ ) ( t )  dt  = 
O o  /f oo P(t)  e_t~ 

dt 
oo X/1 + a t  +/~t 2 

Z 
V/I + a r ~  + ~ ( r ~ )  2 '  k=l 

where P is an  a rb i t r a ry  algebraic polynomial ,  and  r ~  and A~ are the  paramete rs  of the N - po i n t  

Ganss-I-Iermit~ quad ra tu re  formula. We need such a procedure for each of selected pairs (a,  8). 

The  reeursion coefficients for a = ~ = 1 are shown in Table 8. 

Table 8. Recursion coefficients for the polynomials {Ir/=(. ; w(1,1))}. 

k 

0 -I.13718980227451884899E - 01 

1 -2.98816813129032592761E - 02 

2 -1.85679035713552418458E - 02 

3 -1.11233908951155754459E - 02 

4 -7.92784095565612963769E - 03 

5 -5.94481593708158274332E- 03 

6 -4.61320306236083269485E - 03 

7 -3.77400607804653998726E - 03 

8 -3.10374039370687352784E - 03 

9 -2.65108641700060815508E - 03 

10 -2.26842278846161700443E - 03 

11 -1.98912630996355941798E - 03 

12 -1.74932773647048079346E - 03 

13 -1.56237000002609778848E- 03 

14 -1.40104941875887432738E - 03 

15 -1.26885269546785898765E - 03 

16 -1.15424028426112948617E- 03 

17 -1.05691742533931946106E- 03 

18 -9.71970640332240357136E - 0 4  

19 -8.98019722632390496377E - 04 

~-+ [-Im(t).f'InCt)w(a'~)(t) in 

alpha(k) beta(k) 

1.60766630028944893121E+00 

3.97745941390277354575E- 01 

8.59017858999744830059E - 01 

1.34150020202713424624E + 00 

1.82832224474490311965E + 00 

2.32049028595201023201E+00 

2.81392714298467724481E+00 

3.30922646548235467381E + 00 

3.80522704177833428173E+00 

4.30202508196469245713E + 00 

4.79927392312629547184E + 00 

5.29692873475598728737E + 00 

5.79488527243872611520E + 00 

6.29308070865561292494E + 00 

6.79148342996299101450E + DO 

7.29004317825168070747E+00 

7.78874923730844163954E+00 

8.28756682324525295902E+00 

8,78649067850541708346E+00 

9.28549797716577173470E+00 

The  in tegrand  t (3.11) has m + n zeros in the in tegra t ion  interval  

and  very big oscillations. The  case a = B = 1 and  m = 10, n = 15 is displayed in Figure  4. 

Apply ing  the  corresponding Gauss ian  formulas, wi th  respect to the  weight w(a,~)(t), to Ir~:~ 

we get approximat ive  formulas 

N 

~'ffiffil 

Table 9. Gaussian approximation of the integral l~:~n. 

N 

5 

I0 

15 

20 

2.63168167926273(-1) 

2.83168167926273(-1) 

2.63168167926273(-I) 

2.63188187926273(-1) 

Q1,1 10,15 

-4,0]134148759825(4) 

3.20721013272847(4) 

-2.o6784419769247(4) 

-2,oe~s4419r~924r(4) 



Numerical Calculation of Integrals 37 

40000 

20000 

0 

-20000 

-40000 

-60000 

-8000C 

/1AA 
J v//1 

J 
v 

- 4  - 2  0 2 4 

Figure 4. The case a =/~ = 1 and m = 10, n = 15. 

In  Table 9, we present the  obta ined  results for ~ = ~ = 1 in double precision ar i thmetic  in two 

cases: m = 3, n = 6, and m = 10, n = 15. The  number  of nodes in quadra tu re  formula (3.12) 

was N = 5,10,  15,20. Since the  N-po i n t  Gaussian quadra ture  formula (3.12) has max imum 

algebraic degree of  exactness 2 N  - 1, we see tha t  obta ined results are exact  for every N such 

t h a t  2 N -  1 > m + n .  
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