Minimal periods of periodic solutions of some Lipschitzian differential equations

A.A. Zevin ${ }^{\text {a }}$, M.A. Pinsky ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Transmag Research Institute, 49005 Dnepropetrovsk, Piesarzhevsky 5, Ukraine
${ }^{\mathrm{b}}$ Mathematics Department, University of Nevada, Reno, NV 89511, United States

A R T I C L E I N F O

Article history:

Received 5 September 2008
Accepted 30 March 2009

Keywords:

Differential equation
Lipschitz condition
Supremum norm
Periodic solution Delay function
Bound for period

Abstract

A problem of finding lower bounds for periods of periodic solutions of a Lipschitzian differential equation, expressed in the supremum Lipschitz constant, is considered. Such known results are obtained for systems with inner product norms. However, utilizing the supremum norm requires development of a new technique, which is presented in this paper. Consequently, sharp bounds for equations of even order, both without delay and with arbitrary time-varying delay, are found. For both classes of system, the obtained bounds are attained in linear differential equations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is devoted to the following problem: for a given class of autonomous Lipschitzian systems, find a lower bound for the periods of the set of non-constant periodic solutions $x(t)=x(t+T)$, expressed in the Lipschitz constant L. The first such result (Yorke [1]),

$$
\begin{equation*}
T \geq 2 \pi / L \tag{1.1}
\end{equation*}
$$

has been established for the equation

$$
\begin{equation*}
\dot{x}=f(x), \quad x \in \mathrm{R}^{n} \tag{1.2}
\end{equation*}
$$

where the function $f(x)$ satisfies the Lipschitz condition

$$
\begin{equation*}
\left\|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right\| \leq L\left\|x^{\prime}-x^{\prime \prime}\right\| \tag{1.3}
\end{equation*}
$$

with the Euclidean norm. Bound (1.1) is attained in the system $\dot{x}_{1}=L x_{2}, \dot{x}_{2}=-L x_{1}, \dot{x}_{i}=0$ for $i>2$.
Inequality (1.1) was extended (Lasota, Yorke [2]) to Eq. (1.2), which is defined on any Hilbert space and could contain a constant time delay. It remains sharp for Eq. (1.2) in the space with the supremum norm (Zevin [3]). For the case of a general Banach space, Busenberg, Fisher and Martelli [4] proved that $T \geq 6 / L$ and presented an infinite-dimensional system which reaches this bound.

For periodic solutions of the equation

$$
\begin{equation*}
x^{(2 k)}=f(x), \tag{1.4}
\end{equation*}
$$

[^0]$\left(x^{(2 k)}\right.$ defines a $2 k$ derivative of x), Mawhin and Walter [5] established the inequality
\[

$$
\begin{equation*}
T \geq 2 \pi / L^{1 / 2 k} \tag{1.5}
\end{equation*}
$$

\]

This bound is also precise, it is attained in the equation $(-1)^{k} x^{(2 k)}=L x$.
In the first part of this paper, we consider Eq. (1.4), where the function $f(x)$ satisfies the Lipschitz condition

$$
\begin{equation*}
\left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right| \leq L\left|x^{\prime}-x^{\prime \prime}\right| \tag{1.6}
\end{equation*}
$$

with the supremum norm $\left(|x|=\max \left|x_{i}\right|\right)$. Theorem 1 shows that, in this case, the constant 2π in inequality (1.5) remains precise. Note that in paper [4] the following question is posed: "if the period scale of a normed space \mathbf{E} is 2π, is \mathbf{E} necessarily an inner product space?" Theorem 1 gives a negative answer to this question for Eq. (1.4).

In the second part of the paper, we consider the delay equation

$$
\begin{equation*}
x^{(2 k)}(t)=f(x(\tau(t))) \tag{1.7}
\end{equation*}
$$

where $\tau(t)$ is an arbitrary piece-wise continuous function and $f(x)$ satisfies condition (1.6). Theorem 2 provides a sharp lower bound for the periods of solutions of system (1.6) and (1.7). Note that such known bounds relate to the first order delay equation

$$
\begin{equation*}
\dot{x}(t)=f(x(\tau(t))) \tag{1.8}
\end{equation*}
$$

for which rough lower bounds were first obtained by Slomczynsky [6] and Medved [7]. The precise bound, $T=4 / L$ (valid for the both Euclidean and supremum Lipschitz constants L), was found by Zevin [8]. This value is attained in the equation $\dot{x}=L x(\tau(t))$ with the piece-wise constant function $\tau(t)=k T$ for $t \in[k T / 2,(k+1) T / 2), k=0,1, \ldots$

2. Bounds for the periods of solutions of Eq. (1.4)

First we briefly illustrate that the technique, used in [5] to derive bound (1.5) for system (1.4) and (1.3), is not applicable in the case of the supremum norm. Really, condition (1.3) implies the inequality

$$
\begin{equation*}
L^{2}\left(\frac{T}{2 \pi}\right)^{2 k} \int_{0}^{2 \pi}\|v(t)\|^{2} \mathrm{~d} t \geq \int_{0}^{2 \pi}\left\|v^{(k)}(t)\right\|^{2} \mathrm{~d} t \tag{2.1}
\end{equation*}
$$

where $v(t)$ is a function with a zero mean value. Then, required bound (1.5) follows from the known Wirtinger's inequality [9],

$$
\begin{equation*}
\int_{0}^{2 \pi}\|v(t)\|^{2} \mathrm{~d} t \leq \int_{0}^{2 \pi}\left\|v^{(k)}(t)\right\|^{2} \mathrm{~d} t \tag{2.2}
\end{equation*}
$$

However, in the case of the supremum norm, one has in (2.1), instead of $\|v(t)\|$ and $\left\|v^{(k)}(t)\right\|$,

$$
\begin{equation*}
|v(t)|=\max _{i}\left|v_{i}(t)\right|, \quad\left|v^{(k)}(t)\right|=\max _{i}\left|v_{i}^{(k)}(t)\right| \tag{2.3}
\end{equation*}
$$

Since $\left|v^{(k)}(t)\right| \neq d^{k}|v(t)| / \mathrm{d} t^{k}$ for $n>1$, then inequality (2.2) is not applicable. Thus, in the case of the supremum norm, a new approach is required.

First let us establish some preliminary results. Consider the eigenvalue problem

$$
\begin{align*}
& (-1)^{k} \lambda u^{(2 k)}=u \tag{2.4}\\
& u^{(2 i)}(0)=u^{(2 i)}(T / 2)=0, \quad i=0,1, \ldots, k-1,
\end{align*}
$$

where $u \in \mathrm{R}$.
Lemma. The largest eigenvalue of problem (2.4),

$$
\begin{equation*}
\lambda_{0}=(T / 2 \pi)^{1 / 2 k} \tag{2.5}
\end{equation*}
$$

Proof. Problem (2.4) is equivalent to the integral equation

$$
\begin{align*}
& \lambda u=A u \tag{2.6}\\
& A u(t)=\int_{0}^{T / 2} g(t, s, k) u(s) \mathrm{d} s
\end{align*}
$$

where $g(t, s, k)$ is the Green function. This function satisfies the equation $(-1)^{k} u^{(2 k)}=0$ for $t \neq s$, boundary conditions (2.4) and the equality

$$
(-1)^{k}\left[g^{(2 k-1)}(s+0, s, k)-g^{(2 k-1)}(s-0, s, k)\right]=1
$$

Let us show that, for any k,

$$
\begin{equation*}
g(t, s, k)>0 \quad \text { for } t, s \in(0, T / 2) \tag{2.7}
\end{equation*}
$$

Setting $u_{i}=u^{(2(k-i))}$, we reduce the equation $(-1)^{k} u^{(2 k)}=0$ to the form

$$
\begin{align*}
& -\ddot{u}_{1}=0, \tag{2.8}\\
& -\ddot{u}_{i+1}=u_{i}, \quad i=1, \ldots, k-1 .
\end{align*}
$$

One can readily check that

$$
\begin{equation*}
g(t, s, 1)=(1-2 s / T) t>0 \quad \text { for } t<s, \quad g(t, s, 1)=(1-2 s / T) t-t+s>0 \quad \text { for } t>s \tag{2.9}
\end{equation*}
$$

From (2.8) it is clear that

$$
\begin{equation*}
g(t, s, k)=\int_{0}^{T / 2} g(t, w, 1) g(w, s, k-1) \mathrm{d} w \tag{2.10}
\end{equation*}
$$

so, setting $k=2,3, \ldots$, we obtain inequality (2.7).
Problem (2.7) and, therefore, (2.8) admit the solution

$$
\begin{equation*}
u_{0}(t)=\sin \lambda_{0} t, \quad \lambda_{0}=(T / 2 \pi)^{1 / 2 k} \tag{2.11}
\end{equation*}
$$

By (2.7), the operator A is positive $(A u(t)>0$ on $(0, T / 2)$ for any nonzero $u(t) \geq 0)$. Since $u_{0}(t)>0$ for $t \in(0, T / 2)$, then λ_{0} is the largest eigenvalue of problem (2.8) and, therefore, (2.4) [10, Theorem 2.13].

The following theorem provides a lower bound for the periods of solutions of Eq. (1.4).
Theorem 1. The period of a solution $x(t)=x(t+T) \neq$ const of system (1.4), (1.6) satisfies inequality (1.5).
Proof. Put

$$
\begin{equation*}
y(t)=x(t)-x(-t) \tag{2.12}
\end{equation*}
$$

Clearly, $y(t)=-y(-t)=y(t+T)$, so

$$
\begin{equation*}
y^{(2 i)}(0)=y^{(2 i)}(T / 2)=0, \quad i=0,1, \ldots, k-1 \tag{2.13}
\end{equation*}
$$

In view of (1.4) and (2.7), $y(t)$ satisfies the equation

$$
\begin{equation*}
y^{(2 k)}(t)=p(t) \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
p(t)=f(x(t))-f(x(-t)) . \tag{2.15}
\end{equation*}
$$

The solution of boundary problem (2.13), (2.14) can be represented in the form

$$
\begin{equation*}
y(t)=\int_{0}^{T / 2} G(t, s) p(s) \mathrm{d} s \tag{2.16}
\end{equation*}
$$

where the Green function $G(t, s, k)=(-1)^{k} \operatorname{diag}[g(t, s, k)]$.
From (2.15), (1.6) and (2.16)we have

$$
\begin{equation*}
|p(t)| \leq L|y(t)| \leq L \int_{0}^{T / 2}|G(t, s, k)||p(s)| \mathrm{d} s \leq L A|p(t)| \tag{2.17}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
L^{-1}|p(t)|=A|p(t)|+\delta(t) \tag{2.18}
\end{equation*}
$$

for some $\delta(t) \leq 0$.
As is shown above that the operator A is positive. So, the solution $x(t)$ of the equation $\lambda x=A x+\delta(t)$ with $\lambda>\lambda_{0}$ and $\delta(t) \geq 0$ is positive [10, Theorem 2.16]. Therefore, $x(t)<0$ when $\lambda>\lambda_{0}$ and $\delta(t) \leq 0$. Meanwhile, Eq. (2.18) with $\delta(t) \leq 0$ has the positive solution $|p(t)|$. The obtained contradiction shows that $L^{-1} \leq \lambda_{0}=(T / 2 \pi)^{1 / 2 k}$ which implies inequality (1.5).

3. Bounds for the periods of solutions of Eq. (1.7)

Consider, now, delay differential equation (1.7) where $f(x)$ satisfies condition (1.6) and $\tau(t)$ is an arbitrary piece-wise continuous function. Note that, here, the known technique, based on inequality (2.2), is not applicable, even in the case of an inner product norm, because here the function $v^{(k)}$ depends on t while the function v on $\tau(t)$.

Put

$$
\begin{equation*}
\alpha(k)=\frac{1}{y(0.25, k)^{1 / 2 k}} \tag{3.1}
\end{equation*}
$$

where $y(t, k)$ is the solution of the boundary problem

$$
\begin{align*}
& (-1)^{k} y^{(2 k)}(t)=1 \\
& y^{(2 i)}(0)=y^{(2 i)}(0.5)=0, \quad i=0,1, \ldots, k-1 \tag{3.2}
\end{align*}
$$

Theorem 2. The period of any periodic solution $x(t)=x(t+T) \neq$ const of system (1.7), (1.6) satisfies the inequality

$$
\begin{equation*}
T \geq \frac{\alpha(k)}{L^{1 / 2 k}} \tag{3.3}
\end{equation*}
$$

Proof. Putting $p_{*}=\left|p\left(t_{*}\right)\right|=\max |p(t)|$, from (2.17) we have

$$
\begin{equation*}
p_{*} \leq L p_{*} z\left(t_{*}\right) \leq L p_{*} \max |z(t, k)|, \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
z(t, k)=\int_{0}^{T / 2} g(t, s, k) \mathrm{d} s \tag{3.5}
\end{equation*}
$$

From (3.5) it follows that $z(t, k)$ is the solution of the problem

$$
\begin{align*}
& (-1)^{k} z^{(2 k)}(t)=1 \\
& z^{(2 i)}(0)=z^{(2 i)}(T / 2)=0, \quad i=0,1, \ldots, k-1 \tag{3.6}
\end{align*}
$$

From (3.2) and (3.6) we have

$$
\begin{equation*}
z(t, k)=(T)^{2 k} y(t / T, k) \tag{3.7}
\end{equation*}
$$

Since

$$
\ddot{z}(t, k)=-\int_{0}^{T / 2} g(t, s, k-1) \mathrm{d} s<0
$$

then the function $z(t, k)$ is concave. Obviously, $z(t, k)=z((T / 2)-t, k)$, so

$$
\begin{equation*}
\max |z(t, k)|=z(T / 4, k)=T^{2 k} y(1 / 4, k)=[T / \alpha(k)]^{2 k} \tag{3.8}
\end{equation*}
$$

Putting (3.8) in (3.4), we obtain the required inequality (3.3).

4. Discussion

First, let us show that the obtained bounds are precise. Really, bound (1.5) is reached for the equation

$$
\begin{equation*}
x^{(2 k)}=(-1)^{k} L x \tag{4.1}
\end{equation*}
$$

which admits the periodic solution $x(t)=\sin (2 \pi t / T)$ with the period $T=2 \pi / L^{1 / 2 k}$.
In turn, bound (3.3) is reached for the equation

$$
\begin{equation*}
x^{(2 k)}(t)=(-1)^{k} L x(\tau(t)) \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau(t)=T / 4 \quad \text { for } t \in[0, T / 2), \quad \tau(t+k T / 2)=\tau(t)+k T / 2, \quad k=1,2, \ldots \tag{4.3}
\end{equation*}
$$

Really, putting

$$
\begin{equation*}
x(t)=-x(-t)=x(t+T), \quad x(t)=y(t / T) \quad \text { for } t \in[0, T / 2] \tag{4.4}
\end{equation*}
$$

we find

$$
\begin{equation*}
(-1)^{k} x^{(2 k)}(t)=\frac{(-1)^{k} y^{(2 k)}(t / T)}{T^{2 k}}, \quad L x(\tau(t))=L y(1 / 4)=L / \alpha^{2 k}(k) \tag{4.5}
\end{equation*}
$$

Therefore, for $T=\alpha(k) / L^{1 / 2 k}$, Eq. (4.2) has T-periodic solution (4.4).
As is seen from the proof of Theorem 1, bound (1.5) holds true for the delay equation

$$
\begin{equation*}
x^{(2 k)}(t)=f(x(t-\tau)) \tag{4.6}
\end{equation*}
$$

This bound is reached for the equation

$$
\begin{aligned}
& x^{(2 k)}(t)=(-1)^{k} L x\left(t-\tau_{q}\right), \\
& \tau_{q}=2 \pi q / L^{1 / 2 k}, \quad q=1,2, \ldots
\end{aligned}
$$

which admits the T-periodic solution $x(t)=\sin (2 \pi t / T)$ with $T=2 \pi / L^{1 / 2 k}$.
Bound (3.3) can be extended to the equation

$$
\begin{equation*}
x^{(2 k)}(t)=\sum_{i=1}^{m} f_{i}\left(x\left(\tau_{i}(t)\right)\right) \tag{4.7}
\end{equation*}
$$

where $\tau_{i}(t)$ are arbitrary piece-wise continuous functions, while the functions $f_{i}(x)$ satisfy the Lipschitz condition

$$
\begin{equation*}
\left|f_{i}\left(x^{\prime}\right)-f_{i}\left(x^{\prime \prime}\right)\right| \leq L_{i}\left|x^{\prime}-x^{\prime \prime}\right| \tag{4.8}
\end{equation*}
$$

Really, analogously to the proof of Theorem 2, we find that the periods of non-constant periodic solutions of system (4.7), (4.8) satisfy inequality (3.3) with $L=\sum_{i=1}^{m} L_{i}$.

Note that for a specific system (1.4), the Euclidean and supremum Lipschitz constants have, in general, different values. As a result, the corresponding bounds for the period, provided by inequality (1.5), are different (clearly, the better bound is offered by the smaller constant).

The value $\alpha(k)$ in (3.1) can be easily determined. Taking into account conditions (3.2) for $t=0$, we write the solution of problem (3.2) in the form

$$
\begin{equation*}
y(t, k)=\sum_{i=1,3, \ldots}^{2 k-1} y^{i}(0) \frac{t^{i}}{i!}+\frac{t^{2 k}}{(2 k)!} \tag{4.9}
\end{equation*}
$$

The values $y^{(i)}(0), i=2 k-1,2 k-3, \ldots, 1$ are successively determined by conditions (3.2) for $t=0.5: y^{(2 i)}(0.5)=0$, $i=k-1, k-2, \ldots, 0$. Then the required value $y(0.25, k)$ is found from (4.9). In particular, the corresponding calculations give $\alpha(1)=5.667, \alpha(2)=5.921, \alpha(3)=6.033, \alpha(4)=5.146$.

References

[1] J. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc. 22 (1969) 509-512.
[2] A. Lasota, J. Yorke, Bounds for periodic solutions of differential equations in Banach spaces, J. Differential Equations 10 (1971) 83-89.
[3] A.A. Zevin, Sharp estimates for the amplitudes of periodic solutions to Lipschitz differential equations, Dokl. Math. 78 (6) (2008) 596-600.
[4] S. Busenberg, D. Fisher, M. Martelli, Minimal periods of discrete and smooth orbits, Amer. Math. Monthly 96 (1989) 5-17.
[5] J. Mawhin, W. Walter, A general symmetry principle and some implications, JMAA 186 (1994) 778-798.
[6] W. Slomczynsky, Bounds for periodic solutions of difference and differential equations, Ann. Polon. Math. Ser. 1: Comment. Math. 26 (1986) 325-330.
[7] M. Medved, On minimal periods of functional-differential equations and difference inclusions, Ann. Polon. Math. 3 (1991) 263-270.
[8] A.A. Zevin, Sharp estimates for the periods and amplitudes of periodic solutions to differential equations with delay, Dokl. Math. 76 (1)(2007)519-523.
[9] E.F. Beckenbach, R. Bellman, Inequalities, Springer, New York, 1968.
[10] M.A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1968.

[^0]: * Corresponding author.

 E-mail addresses: zevin@westa-inter.com (A.A. Zevin), pinsky@unr.edu (M.A. Pinsky).

