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Much of topology can be done in a setting where open sets have “fuzzy 
boundaries.” To render this precise, the paper first describes &-monoids, 
which are used to measure the degree of membership of points in sets. Then 
L- or “fuzzy” sets are defined, and suitable collections of these are called 
L-topological spaces. A number of examples and results for such spaces are 
given. Perhaps most interesting is a version of the Tychonoff theorem which 
gives necessary and sufficient conditions on L for all collections with given 
cardinality of compact L-spaces to have compact product. 

There seems to be use in certain infinite valued logics [4], in constructive 
analysis [l], and in mathematical psychology [8] for notions of proximity 
less restrictive than those found in ordinary topology. This paper develops 
some basic theory for spaces in which open sets are fuzzy. First, we need 
sufficiently general sets of truth values with which to measure degree of 
membership. The main thing is to get enough algebraic structure. 

DEFINITION. A cl,-monoid is a complete lattice L with an additional 
associative binary operation x such that the lattice zero 0 is a zero for *, 
the lattice infinity 1 is an identity for *, and the complete distributive laws 

= V (a * bi), and 
&I 

PI 

hold for all a, bi EL, and all index sets I. 

* Most of this research was supported by Office of Naval Research contracts 
Nonr 222(85) and Nonr 656(08) during 1966. We also wish to thank Saunders 
Mac Lane for several valuable suggestions. 
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RecallthatO~Lisa~~ofor~iffO~u=u*O=Oforalla~L.Notethat 
* is not assumed commutative. The term “closg” was used in [3, 4, 51, but 
has been replaced at the suggestion of Saunders Mac Lane so as to conform 
with standard terminology for ordered monoids. Actually, the phrase “integral 
cl-monoid” would be even more standard, but it seems too long. Since any 
completely distributive lattice is a cZ,-monoid with c = A, the closed unit 
interval 0 = [0, 11, the finite chains [K] = (0, I,..., K - l> for k E P (the set 
of positive integers), and all completely distributive Boolean algebras, are 
cl,-monoids. In particular the classical truth set 2 = (0, l} is a cZ,-monoid 
with the usual ordering. [I is also a cl,-monoid with * ordinary multiplication, 
and this is perhaps the most typical example. The set of all two sided ideals 
of a ring with unit is a cZ,-monoid with t “ideal multiplication,” i.e., A * B 

is the ideal generated by {a . b / a E A, b E B}. The set N of nonnegative 
integers ordered by “is divisible by” with * ordinary multiplication is a 
cl,-monoid (a v b turns out to be greatest common divisor). It is not hard 
to check that a product of cl,-monoids is a cl,-monoid, so that 0” and [K]” 
are cl,-monoids for any n E P. 2 is a sub-cl,-monoid of any cl,-monoid with 
0 # 1. The set of all open subsets of any topological space forms a completely 
distribute lattice (recall that any upper complete lattice is lower complete; 
in this example &El Ai turns out to be (n., A$, that is, the infinimum is the 
interior of the intersection). In particular, the open subsets of 0 with the 
usual topology form a cl,-monoid (with * = A) in which the distributive 
laws (D) hold, but their duals (replace V by A) fail. The following is needed 
for our main theorem. 

LEMMA. For a, b elements of a cl,-monoid L, a * b < a A b. 

Proof. u~l,sol~b=(uvl)*b=u*bv1*b,thatisb=(u*b)vb, 
and, therefore, a * b < b. Similarly u * b < a. 0 

Actually, we can consider complete monoidal categories with a suitable 
distributive law as truth sets, and essentially all the material of this paper 
goes through (see the Appendix). 

DEFINITION. An L-set A on a set X is a function A: X-+L. X is called 
the carrier of A, L is called the truth set of A, and for x E X, A(x) is called 
the degree of membership of x in A. 

Although the definition makes sense for any sort of L, we shall always 
assume L is a cl,-monoid so as to get a nice algebra of L-sets. Let YX denote 
the set of all functions from X to Y, and let a, denote the constant function 
on X with value a, for a E Y. Then the class of all L-sets on X is a cl,-monoid 
under the pointwise lattice and semigroup operations, with zero 0, 
and identity lx. For, the class of L-sets on X is Lx, which is (isomorphic to) 
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the X-fold product of L with itself, IJ 5EX L, , where L, = L; and any product 
of cl,-monoids is another. To be explicit about the operations, let Ai be 
L-sets on X for i E I; then vie1 Ai is the L-set on X defined by 

for x E X. 

If V _C Lx, it will be convenient for us to write V% for VCEV C. Similarly 
A c B is defined pointwise by (A t B) (x) = A(x) c B(x), and A < B iff 
A(x) < B(x) for all x E X. In this latter case, we say B contains A. It is 
sometimes convenient to write X for 1, and $ for 0, , for obvious reasons. 
The reader should think of Vi Ai and Ai A, for A, E Lx as the union and 
intersection of the sets Ai . (See the Appendix for justification.) 

More generally (as remarked in [3]) if 9 is any equational class of general 
algebras and L E 9, then Lx E 9, since Lx is nTz.x L, as before, and any 
equational class is closed under products (see Cohn [l] or Linton [7] who 
also treats infinitary operations). For example, if L is a Boolean algebra, so is 
Lx, and all the laws of Boolean algebra are valid for L-sets; or when L is a 
cl,-monoid, the foregoing lemma applies to L-sets.l 

We now have all the notation we need to give the main concept of this 
paper (L is assumed to be a cl,-monoid). 

DEFINITION. An L-topological (or just L-) space is a pair (X, CQ such that 
X is a set, CPG _C Lx, and 

(1) %‘c@* V%EE, 

(2) A,BE@+A*BEQ~, 

(3) ox, lxE@. 

It should be noted that 2-topological spaces are just the ordinary topological 
spaces. Moreover, the axioms imply that G? is a cl,-monoid. Elements of a 
are called open sets, and Gl? is called an L-topology for X. Any sub-cl,-monoid 
of LX is an L-space; in fact, the L-spaces on X could be more compactly 
defined2 as the sub-cl,-monoids of Lx (it is required that the inclusion pre- 
serve v and *, but not necessarily A; more generally, we require the same of a 
cl,-monoid homomorphism). Let us give one example now (others will occur 

i This observation that the L-sets on X satisfy the same equational laws that L 
does gives very short proofs of many results in the literature, especially in BROWN, J. G., 
A note on Fuzzy sets, Information and Control 18 (1971), 32-39, and DELUCA, A. AND 

S. TERMINI, Algebraic Properties of Fuzzy Sets, preprint from Laboratorio di 
Cibernetica de1 C.N.R., Napoli, Italy, 1970. 

2 This observation is also valid when L = 2 and seems to illuminate even the 
classical case: a topology on X is a sub-cl,-monoid of 2x. 
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later). Let X = L = 0, and let a be all monotone (nondecreasing) functions 
to (0, +] u {I}, plus the function 0,. This class is closed under V and * 
(in OX), but not under A (in lx), although a has an infimum of its own. 

Most of the concepts of ordinary topology generalize. For example, the 
interior of B ELM is V {A E CZ 1 A < B}; then infimum in GZ is given by 
interior of infimum in Lx. G: C 02 is a cover iff V%Z = lx , and (X, a) is 
compact iff every open cover has a finite subcover. a C Q! is a basis iff each 
A E G? is of the form V% for some %? CB!, and Y C a is a subbasis iff 
9* = (S, * ...*S,ISi~SP,n~lP} is a basis. Any YCLx serves as a 
subbasis for a unique L-topology on X, said to be generated by 9, namely 
02 = {VU 1% C y*> U (0, , lx}; the proof of condition (2) for 0Z requires a 
generalization (ViEI ai) * (VjEJ bj) = ViiplxJ ai * bj of the distributive law 
for L, but this generalization is actually equivalent to the original (see [3]). 
A function f :  X, + X2 is continuous for topologies ai on Xi iff 
A, E G& * f-l(A,) E Oil , where f-l(&) (x1) = A,( f(xi)) for xi E X1 defines 
the inverse image of A, under f. It is easy to verify that the continuous image 
of a compact set is compact (the image of A E Lxl, also written A < Xl , 
under f: Xi + X, , is defined by f(A) (x2) = V {A(q) /f(q) = x2> for 
x2 E X,). Here one uses the more general notion 9? C a covers A E Lx iff 
VU > A, so that A is compact iff every cover of A has a finite subcover. 
The fact that f-‘(f(A)) > A is also needed. 

If A and B are L-sets with carriers X and Y, we define the product A x B 
on X x Y by (A x B) (x, y) = A(x) * B(y). Arbitrary finite products are 
defined similarly. If (Xi , &) are L-topological spaces for i EI, we define 
their product JJzc, (X, , 6&) to be (X, a), where X = &, Xi is the ordinary 
set product and Gl! is the topology on X generated by the subbase 

Y = {p,‘(A,) 1 Ai E 12~ , i E I}, 

where pi: X---f Xi is the projection onto the ith coordinate. 6Z is the weakest 
topology such that each pi is continuous. 

DEFINITION. Let 01 be a cardinal. We say that the identity 1 in a cl,- 
monoid L is ol-isolated iff whenever / I / < ol,aiELforiEIandai<l,then 
VW ai < 1. 

Here 111 denotes the cardinality of 1. For example, 1 is a-isolated in [K] 
for every 01 (let us say that 1 is absohtely isozated), and 1 is a-isolated in 0 
for every finite 01 (let us say 1 is finitely isolated), but 1 is not w-isolated in 0 
(where w is the cardinality of N, i.e., countable). Also, 1 is a-isolated in 
OJiffcu</JIandol<w,andin[KIJiffol<Ij/. 

THEOREM 1. Let I be a-isolated in L and let I I I < LY. Then the product 
nisi (Xi , G&> of compact L-topoZogicaZ spaces (Xi , C&j is compact. 
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The following converse to Theorem 1 shows it is, in a sense, the best 
possible result. 

THEOREM 2. If 1 is not ol-isolated in L, then there is a collection (Xi , G&> 
for i E I and 1 I / = 01 of compact L-spaces such that the product (X, eC> is 
noncompact. 

Proof. Non-a-isolation gives I with 1 I ( = CY and ai < 1 for i E I such 
that Vi ai = 1. Let Xi = N for i E I, and let 6Yi = (0, (ai)ml , I>*, where 
a, , for a EL and S C Xa , denotes the function equal to a on S and 0 on 
Xi - S, where [n] = (0, l,..., n - I> and where Y* indicates the L-topology 
generated by Y as a subbasis. Then (iY, G&) is compact, as every A E G& 
except 1 is contained in (a& , and (ai)N < 1, so that V C G& is a cover iff 
1 E %. Therefore every cover has {I} as a subcover. 

But (X, a> = nie, (Xi, GYi) is noncompact. Let Ai, denote the open 
L-set p;‘((ai)[,l) E CY, for i E I and n E N; it is given for x E X by the formula 
Ai, = ai if xi < TC, and A&x) = 0 otherwise. (Ai, 1 i E I, n E N} 
is an open cover with no finite subcover. First, V1l Ai, = (cQ)~ since 

Vn (4kl = (6 in (Xi, &), and p,’ preserves suprema,3 so that . 
Vin Ai, = Vi (Vn Ai,) = Vi (a& = 1. Second, no finite subcollection 
{Ain / (i, n} E J>, / J 1 < w, can cover, since VCi,n)EJ Ai, = 0 for any x 
with xi > V {n 1 (i, n) E /} f or any i, and infinitely many such x always 
exist. 0 

Thus, we can state the fuzzy Tychonoff theorem as “Every product of 01 
compact L-spaces is compact iff 1 is a-isolated in L,” but we prefer to break 
the result into two pieces because the techniques of proof are so different. 
Before turning to the proof of Theorem 1, let us discuss some examples. 
Since 0 is finitely but not w-isolated, finite products of compact O-spaces 
are compact, but countable or larger products need not be. For L = P, 
Theorem 2 provides an example of two compact L-spaces whose product 
is noncompact. In fact, for this case we do not need X1 and X, to be countable 
but can take them to be the one point set {O}. Since the classical truth set 2 
has 1 absolutely isolated, Theorem 1 gives the usual Tychonoff theorem, each 
product of compact 2-spaces is compact. This strong result also holds for 
L = [k] for any k E P. However, there are two compact 22-spates whose 
product is noncompact; these spaces must have infinitely many points. 

These examples cover what are probably the most important truth sets. 

3 That inverse images preserve suprema can be shown by a small calculation; it 
also follows from the general category theoretic properties of the constructions 
discussed in the Appendix. 
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We do not have closed sets4 available for proving Theorem 1, and we 
should try to avoid arguments involving points, as the fuzzification of a point 
is an L-set (see [3]). We, therefore, proceed by first generalizing Alexander’s 
theorem on subbases and compactness as in Kelley [6]. This result requires 
Zorn’s lemma, which we state first. A subset {Bi 1 i E 1} of a partially ordered 
set 3 is a chain iff for each i, j E I, either Bi < B, or Bi < Bi . B E 3 is an 
upper bound for a subset {Bi 1 i E 1> of 9 iff B 3 Bi for all i E 1. An element M 
of 9 is maximal iff for no B ES is it true that M < B. 

ZORN’S LEMMA. If each chain in a nonempty partially ordered set has an 
upper bound, then the set has a maximal element. 

THEOREM 3. If Y is a subbase for (X, CT) and every cover of X by sets 
in Y has a finite subcover, then (X, CT) is compact. 

Proof. Let us say %? c Gi! has the finite union property5 (abbreviated FUP) 
iff VVO < 1, for all V, C % such that I%‘,, 1 < w. Then (X, OQ is compact 
iff no V C .G! with FUP is a cover. Let V have FUP, and let 

we now prove from Zorn’s lemma that .%, ordered by inclusion, has a 
maximal member, to be denoted @. S is nonempty since it contains V. Let 
9i E 9 for i E I be a chain. Then clearly %? _C vi 9;i , and it remains to show 
that Ui a!i has FUP. Let ?+?a C (JiBi be finite; then each element of 9$, 
appears first in some Si , and therefore, all of 9,, appears m the largest, say 
2Bm , of this finite set of SYi . Since Bm has FUP, V 93,, < lx . Therefore, 
Ui a3, is an upper bound for the chain g’i , and @? exists. 

If C $ %? but C E @, then no open set containing C belongs to k?. For 
C # @ if 3A, ,..., A,,, E Q! such that C v V%, A, = X, because of maxi- 
mality. Then D 2 C would imply D v Vy=, Ai = X, so we must have 
D $ @ also if D E GT. 

If C,D$@ but C,DE@ then C*D$%?. For CvA=X and 
D v B = X, where A = VE, Ai and B = Vy=, Bi with A,, B, E ad. Then 

(CvA)*(DvB)=X*X=X 

* Closed sets can be had if L has an involutory endomorphism satisfying the 
generalized de Morgan laws; (Vi ai)’ = heni’ and (V, ai)’ = Via<‘. For we can 
define A to be closed iff A’ is open. However, it is in general false that A v A’ = 1~ 
and A h A’ = Ox, so that this notion of closed will not in general be as useful as 
in the Boolean case. In most of the truth sets we considered as examples, a suitable 
operation is a’ = 1 - a. In a Boolean algebra the ordinary compliment will do, and 
closed sets will be more natural. However, not all cl,-monoids admit such endo- 
morphisms. See [4]. 

5 I.e., iff C, ,..., C,, E Q * C, v *.. v C, < lx, for n E p. 
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gives 

(C v A) * (D v B) = [(C v A) * D] v [(C v A) * B] 

=(C*D)v(A*D)v(C*B)v(A*B)=X, 

by distributivity. By the lemma after the definition of cl,-monoid, each of the 
last three terms is <A or ,<B, so that X < (C * 0) v A v B. Therefore, 
(C * D) v A v B = X, and this implies that C * D 4: ‘G?. This result extends 
to Cl )..., C, qk @ and C, ,.,., C,E~implyC,*...cC,4~. 

It now follows that if C, ,..., C,$@?butareopen,andA3C,*~..tC, 
and A E 02, then A q! %?‘. The contrapositive of this says that if A E %? and 
Cl * ... c C, < A for Ci E Gl?, then some Ci E 9, and this is the form we use. 

Now assume that 9’ is a subbasis for (X, a) such that each subfamily of 
9’ with FUP is not a cover, and let V C GZ have FUP. We have to show that 9 
is not a cover. By the preceding, there is a maximal @? I V and having FUP. 
It will suffice to show that k? is not a cover. 

9’ n @ _C Y and 9’ n @ has FUP, so Y n @ is not a cover. It will, there- 
fore, suffice to prove that v%? < v (9 n 2?). Since 9’ is a subbase, each 
A E @ is of the form viEl Sir * ... * Sini , for ni E P and Sij E 9’. Then 

Sil * ..* * Sin, < A for all i E 1, and by the previous observation, for each 
i E I we must ‘have some j(i) with Sijci) E 9’ n @. It then follows that 

A = v (&, * ... * Sin,) < v &i(i) 9 
z z 

for Sijti) E 9’ n %?, that is, v%? < v9’ n %?. 0 

Proof of Theorem 1. We have (Xi , G&) compact for i E I, / I / < LY, and 
(X, 6Y> = nie, (Xi , 6&j, where GY has the subbasis 

9’ = {p;‘(AJ 1 Ai E G& , i E I>. 

By Theorem 3, it suffices to show that no V C .Y with FUP is a cover. Let 
%? C 9 with FUP be given, and for i E I let Vi = {A E O& 1 p;‘(A) E VI. Then 
each %?* has FUP; for if Vj”=, A, = Ix, , where p;‘(A,) E V, then 
&p;‘(Aj) = I,, since p;‘(l,,) = 1, and p;’ preserves V. Therefore, 
97d is a noncover for each i E I, and there exists xi E Xi such that 
(V’%?J (xi) = ai < 1. Now let x = (xi) E X and Vi’ = {p;l(A) 1 A E 6&} n V, 
Then %? _C 9 implies %? = lJi gi’; and (VU,) (xi) = ai implies (VVi’) (x) = a, , 
since 

= V {A(p,(x)) j p;l(A) E %? and A E 04) = (V wGi) (q). 
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Therefore, 

(Va)(~)=V((V~1’)(~))=Vui<l, 
ieI t 

since 1 is a-isolated in L, each ai < 1, and 1 I 1 < QI. 0 

APPENDIX 

Those already acquainted with categorical algebra6 may find these further 
remarks on matters in footnotes and matters in general, of some interest. 
First, there is a category Sets(L) of L-sets, for any partially ordered set L: 
its objects are L-sets; a morphismf : A + B, where A: X-+L and B: Y--+L 
is a (set) function J X + Y such that A(x) < B(j(x)) for all x E X; and 
composition is just composition of the underlying set functions. It has been 
shown in [5] that a category C is equivalent to Sets(L) for some completely 
distributive lattice L iff C satisfies certain simple axioms. It has also been 
shown that these axioms are plausible assertions about inexact concepts 
(though this argument is part of philosophy rather than mathematics); 
see [5]. It is fairly easy to show that when L is a completely distributive 
lattice, Sets(L) has images, inverse images, unions, intersections, and products 
in the usual categorical sense, and that these universal constructions are 
given by the formulas given in this paper; Sets(L) also has exponentials 
(and is, therefore, Cartesian closed) for these L. These results extend in 
various ways to weaker L. For example, if L is a cl,-monoid, then Sets(L) 
is monoidal with the product using * as multiplication, and this operation 
has a right adjoint; thus, Sets(L) is closed, and in particular there is a distri- 
butive law for multiplication over the usual (categorical) coproduct. That is, 
Sets(L) an instance of the categorical generalization of a cl,-monoid, a 
completely distributive monoidal category. 7 Such categories can be used as 
truth sets for more general species of fuzzy sets. 

There is also a category Cl,-mon of cl,-monoids with their morphisms. 
This category is complete and even has an exponential. For each cl,-monoid 
L, there is a functor EL: Sets -+ (Cl,-mon)op, assigning to a set X the &- 
monoid LX, and to a function .f: X --+ Y the cl,-monoid morphism 
f-?LY-tLX. 

It is amusing, though not particularly important, to notice that the category 
Top(L) of L-topological spaces with continuous maps can be described as the 
full subcategory of the comma category (C1,-mon)OplEL whose objects are 

G Otherwise, see Mac Lane [9] first. 
7 In fact, a cl,-monoid is merely a small completely distributive monoidal category. 
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just the sub-cl,-monoid inclusions. This category has for products the 
construction we have given, provided L is a completely distributive lattice. 
When L is a cl,-monoid, our product renders Top(L) a monoidal category. 
This paper can be described as a determination of the extent of closure under 
multiplication of the subcategory of compact L-spaces, as a function of L. 
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