ON NON-NORMAL NUMBERS

вү

C. M. COLEBROOK AND J. H. B. KEMPERMAN

(Communicated at the meeting of September 30, 1967)

1. Introduction

Let $s \ge 2$ be an integer, to be kept fixed. A real number $0 \le x \le 1$ is said to be normal to the base s when its expansion

$$x = \cdot x_1 x_2 x_3 \ldots = \sum_{c=1}^{\infty} x_c s^{-c}, \qquad (x_c \in \{0, 1, \ldots, s-1\}),$$

to the base s is such that each possible block of digits occurs with its "proper" frequency. More precisely, for each k=1, 2, ... and each of the s^k blocks $A = (a_1, ..., a_k)$ consisting of k digits $0 \le a_i \le s-1$, the occurrence of $(x_{c+1}, ..., x_{c+k}) = A$ happens with an asymptotic frequency s^{-k} , (c=0, 1, ...).

Let K denote the additive group of real numbers modulo one. Further C(K) will denote the collection of all complex-valued continuous functions on K. It will be convenient to think of $f \in C(K)$ as a continuous function on the reals of period 1.

A sequence of points $\{u_j\}$ in K is said to have the asymptotic distribution ν when

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n f(u_j) = v(f) = \int_K f \, d\nu \text{ for each } f \in C(K).$$

Here, v denotes a probability measure on K, (that is, a nonnegative measure of total mass 1). As was shown by WALL (see [5]), a number $x \in K$ is normal to the base s if and only if the corresponding sequence $\{s^jx\} = \{x, sx, s^2x, \ldots\}$ in K is uniformly distributed; that is, when $\{s^jx\}$ has the Lebesgue measure λ on K as its asymptotic distribution. More generally, a number $x \in K$ will be said to be v-normal when the sequence $\{s^jx\}$ has the asymptotic distribution v. Here, v denotes a probability measure on K, necessarily invariant under the (many to one) transformation $x \to sx$ of the additive group K onto itself. The set of all such measures v on K will be denoted by I(s).

¹) The second author's contribution was supported in part by the National Science Foundation, Grant GP-5801.

¹ Series A

Naturally, it is quite possible that the sequence $\{s^{j}x\}$ has no asymptotic distribution at all. In general, for each $x \in K$, let V(x, s) denote the collection of all accumulation points (in the weak*-topology) of the sequence of probability measures $\{v_1, v_2, \ldots\}$ defined by

$$\nu_n(f) = \frac{1}{n} \sum_{j=0}^{n-1} f(s^j x), \qquad f \in C(K).$$

As is easily seen, V(x, s) is a non-empty closed and connected subset of I(s). Conversely [2], given any closed and connected non-empty subset V of I(s), there always exists a number $x \in K$ such that V(x, s) = V. In particular, given $v \in I(s)$, there always exists a number $x \in K$ which is v-normal to the base s, (that is, $V(x, s) = \{v\}$), a result due to PJATECKII– SHAPIRO [6].

The question arises what can be said about the behavior of x with respect to several bases. The ultimate goal would be to characterize those sequences $\{V_s; s=2, 3, \ldots\}$ for which there exists at least one $x \in K$ such that $V(x, s) = V_s$ for all s.

The bases r and s are said to be equivalent $(r \sim s)$ if there exist integers m, n and $s_1 \ge 2$ with $r=s_1^m$ and $s=s_1^n$ (otherwise, $r \nsim s$). If so then V(x, r) and V(x, s) are strongly related, in fact, both uniquely determine the set $V(x, s_1)$. In particular, see [7], if $x \in K$ is normal to one base then also to every equivalent base.

Conjecture. Let $\{s_1, s_2, ...\}$ be a given sequence of mutually non-equivalent bases. For each q = 1, 2, ..., choose V_q in an arbitrary manner as a non-empty closed and connected subset of $I(s_q)$. Then one can find at least one number $x \in K$ such that $V(x, s_q) = V_q$ for all q.

At the present, we are a far way from proving or disproving our conjecture. The strongest known result in this direction is the following result due to SCHMIDT [7], [8]. Choose A and B as arbitrary sets of integers > 2such that $a \not\sim b$ whenever $a \in A$ and $b \in B$. Then one can find at least one number $x \in K$ which is normal to each base $a \in A$ and simultaneously non-normal to each base $b \in B$.

In particular, there exists a number x which is non-normal to a given base s and simultaneously normal to each base $r \not\sim s$, see [7]. For s=3this result is due to CASSELS [1]. It is the purpose of the present paper to prove the following related result.

Theorem 1.1. Given the integer $s \ge 2$ and the number $x \in K$ one can always find a number $z \in K$ such that

(1.1)
$$V(z, r) = V(x, r) \text{ for each } r \sim s,$$

while

(1.2) $V(z, r) = \{\lambda\}$ for each $r \not\sim s$.

As an immediate consequence we have:

Theorem 1.2. Let $s \ge 2$ be a given integer and $v \in I(s)$ a given probability measure on K. Then there exists a number $z \in K$ which is v-normal to the base s and simultaneously λ -normal to each base $r \nleftrightarrow s$.

Proof. Choose first $x \in K$ such that $V(x, s) = \{v\}$, and then apply Theorem 1.1.

Our proof of Theorem 1.1 is closely related to the proof of SCHMIDT [7]; see also [8] and [9].

2. Preliminaries

Let $x \in K$ be a given number, $s \ge 2$ a given base. As is easily seen, there exists a unique integer $s_1 \ge 2$ such that $r \sim s$ if and only if $r = s_1^m$ for some positive integer m. In proving Theorem 1.1, we may as well assume that $s = s_1$ in which case (1.1) is equivalent to

(2.1)
$$V(z, s^m) = V(x, s^m)$$
 for all $m = 1, 2, ...$

A sufficient condition for (2.1) is that

(2.2)
$$\lim_{n\to\infty} n^{-1} \sum_{j=0}^{n-1} (f(s^{jm}z) - f(s^{jm}x)) = 0, \text{ for } f \in C(K); m = 1, 2, ...$$

Let

(2.3)
$$x = \sum_{c=1}^{\infty} x_c s^{-c}, \quad z = \sum_{c=1}^{\infty} z_c s^{-c}, \quad (x_c, z_c \in \{0, 1, ..., s-1\}).$$

Let further N(n) denote the number of c=1, ..., n with $z_c \neq x_c$. A sufficient condition for (2.2) is that

(2.4)
$$N(n) = o(n) \text{ as } n \to \infty,$$

as follows easily from the uniform continuity of the $f \in C(K)$. Consider a fixed sequence $\{\varepsilon_c; c=1, 2, ...\}$ such that

(2.5)
$$\begin{cases} \varepsilon_c = +1 \text{ if } 0 \leq x_c \leq s-2, \\ = -1 \text{ if } x_c = s-1. \end{cases}$$

Next, let $\{d_c\}$ be a fixed sequence satisfying

(2.6)
$$0 < d_{c+1} \leq d_c \leq \frac{1}{2}; \quad \lim_{e \to \infty} d_c = 0,$$

(c=1, 2, ...). Finally, let $y_1, y_2, ...$ be *independent* random variables, y_c having the distribution defined by

(2.7)
$$y_c \in \{0, \varepsilon_c\}, \quad Pr(y_c = \varepsilon_c) = d_c.$$

Lemma 2.1. The number $z \in K$ defined by

(2.8)
$$z=x+y, \quad y=\sum_{c=1}^{\infty}y_cs^{-c}$$

satisfies condition (2.1) with probability 1.

Proof. Let $z_c = x_c + y_c$. By (2.5) and (2.7), we have that $z_c \in \{0, 1, ..., s-1\}$ for all c. Moreover, $\sum_{c=1}^{\infty} z_c s^{-c} = z$, thus, we have the situation (2.3) with $z_c - x_c = y_c \in \{0, \varepsilon_c\}$. It suffices to show that (2.4) holds with probability 1, equivalently, that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{c=1}^n|y_c|=0 \text{ with probability 1.}$$

This follows immediately from $E(|y_c|) = d_c \rightarrow 0$ and the following classical criterion due to KOLMOGOROV, see [4] p. 238, 253, 259.

Lemma 2.2. Let $\{U_j\}$ be a given sequence of complex-valued independent random variables such that $|U_j| \leq 1$. Then

$$\lim_{n o\infty}rac{1}{n}\sum_{j=1}^n E(U_j)=0 ext{ implies that } \lim_{n o\infty}rac{1}{n}\sum_{j=1}^n U_j=0,$$

with probability 1. (The converse is obvious.)

From now on, the random variable z=x+y will be as in (2.8). For each base r, let D_r denote the set of numbers which are non-normal to the base r. In view of Lemma 2.1, it suffices to prove that for each fixed base $r \not\sim s$ we have $z \notin D_r$ with probability 1. At first sight, this might seem like an easy problem since the set D_r has Lebesgue measure zero. However, also the support S_y of the random variable y (and hence $S_z=x+S_y$) is a set of Lebesgue measure 0. For $s \ge 3$ this assertion is rather obvious $(y_c$ having only two possible values); if s=2 the assertion can easily be deduced from Lemma 2.1 and the fact that D_s has Lebesgue measure zero. For a related result, see [3].

Let us introduce the random variables

(2.9)
$$U\{w\} = e^{2\pi i w z} = e^{2\pi i w (x+y)}, \quad (w=0, \pm 1, \pm 2, ...), U\{-w\} = \overline{U\{w\}}.$$

Lemma 2.3. Suppose that, for each choice of the base $r \nleftrightarrow s$ and each choice of the positive integer h, we have

(2.10)
$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n}U\{hr^{j}\}=0, \text{ with probability } 1.$$

Then z satisfies (1.2) with probability 1.

Proof. Consider a fixed base $r \not\sim s$. By (2.9) and (2.10),

(2.11)
$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n f(r^j z) = \int_K f \, d\lambda$$

with probability 1, whenever f is a trigonometric polynomial

$$f(v) = \sum_{h=-H}^{H} b_h e^{2\pi i h v}.$$

By WEYL'S [10] criterion (the trigonometric polynomials being dense in

C(K) with the supremum norm), we have with probability 1 that (2.11) holds for each $f \in C(K)$, in other words, that $V(z, r) = \{\lambda\}$.

The random variables $U_j = U(hr^j)$ (j = 1, 2, ...) occurring in (2.10) are clearly *not* independent. Thus, Lemma 2.2 is of no use in establishing results of the type (2.10). Instead, we shall use:

Lemma 2.4. Let $\{U_j\}$ be a sequence of complex-valued random variables such that $|U_j| \leq 1$. Suppose further that there exist constants C and $\gamma > 1$ such that

(2.12)
$$E\left(\left|\frac{1}{n}(U_1+\ldots+U_n)\right|^2\right) \leq C (\log n)^{-\gamma} \text{ for all } n=1, 2, \ldots$$

Then $\lim_{n\to\infty} \frac{1}{n} \sum_{j=1}^{n} U_j = 0$ with probability 1.

Proof. Choose the positive constants η and δ such that $\eta + \delta < \gamma - 1$, and put $1 + \eta + \delta = \alpha \gamma$, thus, $0 < \alpha < 1$. Let further $n_k = 1 + [\exp k^{\alpha}]$, $(k = 1, 2, ...), n_k \uparrow + \infty$. Let A_k denote the event defined by

$$\left|\frac{1}{n_k}(U_1+\ldots+U_{n_k})\right|^2>k^{-\eta}.$$

Then, using (2.12),

$$Pr(A_k) \leqslant k^{\eta} E\left(\left|\frac{1}{n_k} (U_1 + \ldots + U_{n_k})\right|^2\right) \leqslant k^{\eta} C (\log n_k)^{-\gamma} \leqslant Ck^{-1-\delta}.$$

It follows that $\sum Pr(A_k) < \infty$ so that (with probability 1) A_k will happen for only finitely many k. In particular,

$$\lim_{k\to\infty}\frac{1}{n_k}(U_1+\ldots+U_{n_k})=0,$$

with probability 1. This yields the stated assertion since $|U_j| \leq 1$ and $n_{k+1}/n_k \to 1$.

Combining the Lemmas 2.3 and 2.4, we have

Lemma 2.5. Suppose that, for each choice of the base $r \not\sim s$ and each choice of the positive integer h, one can find constants C and $\gamma > 1$ such that

$$(2.13) \quad \frac{1}{n^2} \sum_{j=1}^n \sum_{k=1}^n |E(U\{h(r^j - r^k)\})| \leqslant C \ (\log n)^{-\gamma} \qquad \text{for all } n = 1, 2, \dots$$

Then z satisfies (1.2) with probability 1.

Thus, also in view of Lemma 2.1, it suffices for the proof of Theorem 1.1 to exhibit at least one sequence $\{d_e\}$ for which the conditions of Lemma 2.5 are fulfilled.

3. Upper bound on E(U).

Here, and further on, w will denote an integer. We have

$$U\{w\} = e^{2\pi i w z} = e^{2\pi i w x} e^{2\pi i w y},$$

where x is a real constant. Further, $y = \sum_{c=1}^{\infty} y_c s^{-c}$ with the y_c as independent random variables. In fact, for θ real,

$$\begin{split} |E(e^{2\pi i\theta_{\boldsymbol{v}_c}})| &= |(1-d_c) + d_c \, e^{2\pi i\theta_{\boldsymbol{v}_c}}| = [1-4d_c(1-d_c)\,\sin^2\pi\theta]^{\frac{1}{2}} \quad \leqslant \\ &\leqslant \quad \exp \, [-2d_c(1-d_c)\,\sin^2\pi\theta] \leqslant \, \exp \, [-d_c\,\sin^2\pi\theta]] \end{split}$$

since $\varepsilon_c = \pm 1$ and $0 < d_c < \frac{1}{2}$. We conclude that

$$|E(U\{w\})| = |\prod_{\sigma=1}^{\infty} E(\exp(2\pi i w s^{-c} y_c))| \leq \exp\left[-\sum_{\sigma=1}^{\infty} d_c \sin^2 \pi w s^{-c}\right].$$

This in turn yields

$$|E(U\{w\})| \leq \exp\left[-\sum_{c=1}^{\infty} t_c \dot{\phi}(ws^{-c})\right],$$

where

$$t_c = d_c \sin^2 \pi s^{-2},$$

while ϕ denotes the function on the reals defined by

(3.2)
$$\begin{cases} \phi(\theta) = 1 \text{ if } s^{-2} \leqslant \theta - [\theta] \leqslant 1 - s^{-2}, \\ = 0, \text{ otherwise,} \end{cases}$$

(with $[\theta]$ as the integral part of θ). Observe that $\phi(\theta) = 0$ when θ is an integer and also when $|\theta| < s^{-2}$. Moreover, $\varphi(\theta) = \varphi(-\theta)$; $\varphi(\theta+1) = \varphi(\theta)$.

Let us further introduce

(3.3)
$$\Phi(w) = \sum_{c=1}^{\infty} \phi(ws^{-c}) = \sum_{c=-\infty}^{+\infty} \phi(ws^{-c})$$
, thus, $\Phi(sw) = \Phi(w) = \Phi(-w) \ge 0$.

Assuming w > 0, consider the expansion

(3.4)
$$w = \ldots w_2 w_1 w_0 = \sum_{c=0}^{\infty} w_c s^c, \qquad w_c \in \{0, 1, \ldots, s-1\},$$

with only finitely many w_c non-zero. Observe that

$$ws^{-c} - [ws^{-c}] = \sum_{j=1}^{c} w_{c-j}s^{-j} = 0 \cdot w_{c-1}w_{c-2} \dots w_0,$$

hence, $\phi(ws^{-c}) = 1$ when the pair of digits (w_{c-1}, w_{c-2}) is good in the sense that it is distinct from both pairs (0, 0) and (s-1, s-1), (a terminology due to Schmidt). Consequently, if w > 0 then $\Phi(w)$ is not smaller than the number of good pairs (w_{c-1}, w_{c-2}) in the expansion (3.4) of w to the base s, $(c=1, 2, ...; w_c=0 \text{ if } c < -1)$.

Lemma 3.1. We have for each integer w that
(3.5)
$$|E(U\{w\})| \leq \exp[-\beta(w)\Phi(w)].$$

Here, $\beta(w)$ is the function defined by

(3.6)
$$\beta(w) = d_m \sin^2 \pi s^{-2}$$
 when $s^{m-2} \leq |w| < s^{m-1}$, $(m=2, 3, ...; \beta(0) = 0)$.

Proof. Given w > 0, let $m \ge 2$ denote the unique integer such that $s^{m-2} \le w \le s^{m-1}$. Then $c \ge m+1$ would imply that $ws^{-c} \le s^{m-1-c} \le s^{-2}$, hence, $\phi(ws^{-c}) = 0$. Therefore, $\{t_c\}$ being non-increasing,

$$\sum_{c=1}^{\infty} t_c \phi(ws^{-c}) = \sum_{c=1}^{m} t_c \phi(ws^{-c}) > t_m \Phi(w) = \beta(w) \Phi(w),$$

by (3.3). Thus (3.1) implies (3.5).

4. Proof of Theorem 1.1.

Let s be a fixed base and let Φ be as in Section 3; clearly, Φ depends on s. It will be convenient to introduce the following property.

Property A. A function $\omega(x)$ on $[1, +\infty)$ will be said to have Property A when

- (i) $\omega(x)$ tends to $+\infty$ in a non-decreasing manner as x tends to $+\infty$.
- (ii) For each base $r \nleftrightarrow s$ and each positive integer h one can find constants C > 0 and $\gamma > 1$ such that, for all large n,

$$(4.1) \qquad \# \{(j,k): 1 \leq j, k \leq n, \Phi(hr^j - hr^k) \leq \omega(n) \log \log n\} \leq Cn^2(\log n)^{-\gamma}.$$

Lemma 4.1. Let $\omega(x)$ be any function satisfying Property A. Then Theorem 1.1 holds; more precisely, under the choice

(4.2)
$$d_c = \min \{\frac{1}{2}, \eta/\omega(1/c)\}, (c = 1, 2, ...),$$

of $\{d_c\}$ we have with probability 1 that the random number z = x + y satisfies both (1.2) and (2.1). Here, η denotes any positive constant such that $\eta > 1/\sin^2 \pi s^{-2}$.

Proof. Choose $\{d_c\}$ as in (4.2). Let $h \ge 1$ and $r \ge 2$ be given integers such that $r \not\sim s$. It suffices to show that (2.13) holds for some choice of the constants C and $\gamma > 1$. In view of (3.5) and (4.1) it suffices to show that, for some $\gamma > 1$, we have

$$\exp \left[-\beta(hr^n)\omega(n)\log\log n\right] = 0((\log n)^{-\gamma}) \text{ as } n \to \infty.$$

Equivalently, we must have that

(4.3)
$$\liminf_{n\to\infty} [\omega(n)\beta(hr^n)] > 1.$$

Put $K = \eta \sin^2 \pi s^{-2}$, thus, K > 1. By (3.6) and (4.2) we have for *n* sufficiently large that $\beta(hr^n) = K/\omega(\sqrt{m})$. Here, *m* is the integer defined by $s^{m-2} < hr^n < s^{m-1}$. Hence, for *n* sufficiently large we have $\sqrt{m} < n$, thus, $\omega(\sqrt{m}) < \omega(n)$, yielding (4.3). This completes the proof of Lemma 4.1.

Theorem 1.1 is now obtained by invoking the following result. It implies that any function $\omega(x)$ satisfying $\omega(x) \uparrow +\infty$ and

$$\omega(x) = o(\log x/\log \log x), \text{ as } x \to +\infty,$$

does have Property A. Actually, Lemma 4.2 is much stronger than necessary for our purpose and it would be of interest to find a *simple* proof of the fact that there exists at least one function having Property A.

Lemma 4.2. For each choice of the positive integers h and $r \ge 2$, $r \nsim s$, one can find positive constants C, α and δ such that, for all n = 1, 2, ...,

$$(4.4) \qquad \qquad \# \{(j,k): 1 \leq j, k \leq n, \Phi(hr^j - hr^k) \leq \alpha \log n\} \leq Cn^{2-\delta}.$$

The proof of Lemma 4.2 is analogous to a proof in [7] pp. 665–669. The following is a quick sketch in several steps of a proof of Lemma 4.2 which may be regarded as a simplified version of the implicit proof contained in [7]. Lemma 4.2 will be reduced to:

Lemma 4.3. Let h and $r \ge 2$ be positive integers such that at least one prime divisor p of s is not divisible on r. Then there exist positive constants C, α and δ such that the inequality

$$(4.5) \qquad \qquad \# \{j=1,\ldots,n: \Phi_N(hr^j+u) \leqslant \alpha \log n\} \leqslant Cn^{1-\delta}$$

holds for each choice of the integers $n \ge 1$ and u. Here, the integer N is defined by $s^{N-1} < n < s^N$.

Further, the function Φ_N is defined by

(4.6)
$$\Phi_N(w) = \sum_{\sigma=1}^N \phi(ws^{-\sigma}), \qquad (N=1, 2, ...).$$

If w is a positive integer as in (3.4) then $\Phi_N(w)$ is easily seen to be no smaller than the number of good pairs (w_{c-1}, w_{c-2}) with $1 \leq c \leq N$, $(w_{-1}=0)$. From the properties of the function ϕ ,

$$\Phi_N(-w) = \Phi_N(w) \leqslant \Phi(w).$$

Moreover, $\Phi_N(w+bs^m) = \Phi_N(w)$ as soon as b and m are integers with $m \ge N$. It follows that

(4.7)
$$\Phi(ws^{\lambda}+ys^{\mu}) = \Phi(w+ys^{\mu-\lambda}) \geq \Phi_N(w),$$

provided y, λ and μ are integers satisfying $\mu - \lambda \ge N$.

Step (i). We assert that Lemma 4.2 is a consequence of Lemma 4.3. Namely, applying (4.5) with $u = -hr^k$ and summing over k = 1, ..., n, one obtains (4.4) whenever some prime divisor of s is not divisible on r.

It remains to consider the case that each prime divisor of s is also a prime divisor of r. Let r and s have factorizations

$$r = p_1^{\varrho_1} \dots p_k^{\varrho_k}; \ s = p_1^{\sigma_1} \dots p_k^{\sigma_k} \text{ with } \frac{\sigma_k}{\varrho_k} \leq \dots \leq \frac{\sigma_1}{\varrho_1}$$

and all ϱ_i positive. Then $R = r^{\sigma_1}/s^{\varrho_1}$ is an integer with $R \ge 2$; (if R = 1

then $r \sim s$). Further, p_1 is a prime dividing s but not R. It follows from Lemma 4.3 that

$$(4.8) \qquad \qquad \# \{\lambda = 1, \ldots, m \colon \Phi_M(hr^q R^{\lambda}) \leq \alpha \log m\} \leq Cm^{1-\delta},$$

for each choice of the integers $m \ge 1$ and $q = 0, 1, ..., \sigma_1 - 1$. Here, C, α and δ denote positive constants while $s^{M-1} < m \le s^M$. Thus, $M \sim \log m/\log s$ when m is large.

In proving (4.4), consider a pair of integers j and k with $1 \le j \le k \le n$ and write

$$j = \lambda \sigma_1 + q$$
, $k = \mu \sigma_1 + q'$ with $0 \leq q, q' < \sigma_1$,

 $(0 \leq \lambda, \mu \leq n/\sigma_1 \text{ and } \lambda \leq \mu)$. Then one has

$$hr^{j} - hr^{k} = [hr^{q}R^{\lambda}]s^{\varrho_{1}\lambda} - [hr^{q'}R^{\mu}]s^{\varrho_{1}\mu}.$$

Hence, using (4.7),

$$\Phi(hr^j - hr^k) \ge \Phi_M(hr^q R^{\lambda}) \text{ provided } (\mu - \lambda)\varrho_1 \ge M.$$

The latter is true for all but 0(nM) pairs $1 \le j, \le k \le n$. Applying (4.8) with $m = \lfloor n/\sigma_1 \rfloor$ (thus $M = 0(\log n)$) and summing over q, one obtains a result of the type (4.4).

Step (ii). It remains to prove Lemma 4.3. From now on $h \ge 1$, $r \ge 2$ and p are fixed integers such that p is a prime dividing s but not r. Let o_k denote the order of r modulo p^k , that is, the smallest positive integer with $r^m \equiv 1 \pmod{p^k}$. We assert that, for some positive constant ε ,

$$(4.9) o_k \! \geq \! \varepsilon p^k \text{ for all } k \! > \! 0.$$

First observe that, for $c \ge 1$,

$$a \equiv 1 + qp^{c} \pmod{p^{c+1}}$$
 implies $a^p \equiv 1 + qp^{c+1} \pmod{p^{c+2}}$

unless both c=1 and p=2. Let $p \ge 3$ and consider

$$r^{(p-1)p^j} \equiv 1 + qp^{c+j} \not\equiv 1 \pmod{p^{c+j+1}}.$$

It holds for j=0 with a unique maximal $c \ge 1$ and q prime to p. By induction, it holds for all $j \ge 0$. Hence, $o_{c+j+1} > p^j$ for all $j \ge 0$, proving (4.9) when $p \ge 3$. If p=2 one uses instead

$$2^{2^{1+j}} \equiv 1 + 2^{c+j} \not\equiv 1 \pmod{2^{c+j+1}}$$
.

Step (iii). Define g as the largest integer such that p^{g} divides h. Consider a pair of distinct non-negative integers j_{1} and j_{2} . By (4.9), we have $|j_{1}-j_{2}| \ge \varepsilon p^{k-g}$ as soon as $hr^{j_{1}} \equiv hr^{j_{2}} \pmod{p^{k}}$, hence, as soon as $hr^{j_{1}} \equiv hr^{j_{2}} \pmod{p^{k}}$, consequently, introducing

$$(4.10) N_k(t) = \# \{j = 1, ..., s^k : hr^j \equiv t \pmod{s^k}\},$$

we have the upperbound

(4.11)
$$N_k(t) \leqslant 1 + s^k (\varepsilon p^{k-g})^{-1} \leqslant 1 + (p^g/\varepsilon)(s/2)^k,$$

holding for each choice of the positive integer k and the residue class $t=0, 1, ..., s^k-1$.

Step (iv). For k=1, 2, ..., consider the function Ψ_k with domain $G_k = \{0, 1, ..., s^k - 1\}$ defined as follows. Let $t \in G_k$ have the expansion

$$(4.12) t = t_0 + t_1 s + \ldots + t_{k-1} s^{k-1}, \quad t_i \in \{0, 1, \ldots, s-1\}.$$

Then

$$(4.13) \qquad \Psi_k(t) = \# \{i = 1, \ldots, k-1 : (t_i, t_{i-1}) \neq (0, 0), (s-1, s-1)\}.$$

Consider further the quantity

$$(4.14) M_k(b) = \# \{t \in G_k \colon \Psi_k(t) \leq bk\}$$

where b is a positive parameter. We assert that for each positive number $\rho > \frac{1}{2}$ there exists a positive number $b_0(\rho)$ such that

(4.15)
$$M_k(b) = O(2^{\varrho k})$$
 as $k \to \infty$, as soon as $0 < b < b_0(\varrho)$.

One proof based on Stirling's formula may be found in [7] p. 667. A second proof would be as follows.

Let k be fixed, $m = \lfloor k/2 \rfloor$ so that k = 2m + q with q = 0 or 1. Let f(t) denote the function on G_k defined as in (4.13) but with *i* restricted to the odd integers i = 1, 3, ..., 2m - 1, (so that the pairs counted do not overlap). In particular, $f(t) \leq \Psi_k(t)$. As is easily seen,

$$\sum_{t \in G_k} u^{f(t)} = s^q \prod_{i=1}^m [1+1+u+\ldots+u] = s^q [2+(s^2-2)u]^m.$$

Here, u is an auxiliary variable. Assuming that 0 < u < 1 we have that $\Psi_k(t) \leq bk$ implies $u^{f(t)} \geq u^{bk}$. Hence, by (4.14),

$$M_k(b) \leq (s/u^b)^q [2u^{-2b} + (s^2 - 2)u^{1-2b}]^m$$
 for each $0 < u < 1$.

By choosing b as a sufficiently small number and u=b, the quantity $[\cdot]$ can be brought arbitrarily close to 2, (since $x^{-x} \to 1$ as $x \downarrow 0$). This proves the assertion (4.15).

Step (v). End of proof of Lemma 4.3. It suffices to establish (4.5) for n of the form $n = s^k$, (k = 1, 2, ...). In this case N = k and $\alpha \log n = bk$ where $b = \alpha \log s$.

Observe that $\Phi_k(w)$ is periodic of period s^k . Hence, if $w \equiv t \pmod{s^k}$ with $t \in G_k$ then $\Phi_k(w) = \Phi_k(t) \ge \Psi_k(t)$ by (4.13) and the remark following (4.6). Therefore, by (4.10), the left hand side of (4.5) (with $n = s^k$ and N = k) has the upperbound $\Sigma' N_k(t)$ where we sum over those $t \in G_k$ for which $\Psi_k(t+u) \leq bk$; here t+u is to be interpreted modulo s^k . Moreover, by (4.11) and (4.14), we have the upperbound (independent of u):

$$\sum_{t}' N_{k}(t) \leq M_{k}(b) [1 + (p^{g}/\varepsilon)(s/2)^{k}] = O(2^{-(1-\varepsilon)k} s^{k}),$$

as soon as $0 < b < b_0(\varrho)$, by (4.15). Here, ϱ can be any number with $\frac{1}{2} < \varrho < 1$. Consequently, we have for each $\delta < \log 2/\log s^2$ that (4.5) holds with a suitable constant C (depending on h and r) as soon as $b = \alpha \log s$ is sufficiently small, $0 < \alpha < \alpha_0(\delta)$, where $\alpha_0(\delta)$ is independent of h and r.

The University of Rochester

References

- 1. CASSELS, J. W. S., On a problem of Steinhaus about normal numbers, Colloquium Math., 7, 95–101 (1959).
- 2. COLEBROOK, C. M., On the Hausdorff dimension of certain sets of non-normal numbers, forthcoming.
- 3. KAKUTANI, S., On equivalence of infinite product measures, Ann. Math., 49, 214-224 (1948).
- 4. LOÈVE, M., Probability Theory, second edition, (Princeton, 1960).
- 5. NIVEN, I., Irrational Numbers, Carus Mathematical Monograph no. 11, (New York, 1956).
- PJATECKII-SHAPIRO, I. I., On the laws of distribution of the fractional part of an exponential function, (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 15, 47-52 (1951).
- 7. SCHMIDT, W., On normal numbers, Pacific J. Math., 10, 661-672 (1960).
- Wier die Normalität von Zahlen zu verschiedenen Basen, Acta Arith., 7, 299–309 (1962).
- 9. ——, Normalität bezüglich Matrizen, J. reine angew. Math., 214/215, 227-260 (1964).
- WEYL, H., Über die Gleichverteilung von Zahlen mod 1, Math. Ann., 77, 313– 352 (1916).