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1.  Introduction

Let s>2 be an integer, to be kept fixed. A real number O<z<1is
said to be normal to the base s when its expansion

0
T= L1203 ... = Y X8C,
c=1

(2ce E{O, i,..., S~1}).

to the base s is such that each possible block of digits occurs with its
“proper” frequency. More precisely, for each k=1, 2, ... and each of the

sk blocks A =(ay, ..., ax) consisting of k digits 0 <a;<s—1, the occurrence
of (%ci1, ..., Zerr)=A happens with an asymptotic frequency s-F,
(c=0,1,...).

Let K denote the additive group of real numbers modulo one. Further
C(K) will denote the collection of all complex-valued continuous functions
on K. It will be convenient to think of f € C(K) as a continuous function
on the reals of period 1.

A sequence of points {u;} in K is said to have the asymptotic distri-
bution » when

lim % il flu =s(f) = [ {d» for each feC(K).
n—>00 j=
Here, v denotes a probability measure on K, (that is, a nonnegative
measure of total mass 1). As was shown by WALL (see [5]), a number
x € K is normal to the base s if and only if the corresponding sequence
{six}={z, sz, s%, ...} in K is uniformly distributed; that is, when {s/x}
has the Lebesgue measure 4 on K as its asymptotic distribution. More
generally, a number x € K will be said to be y-normal when the sequence
{s’xz} has the asymptotic distribution ». Here, » denotes a probability
measure on K, necessarily invariant under the (many to one) transfor-

mation ¥ — sz of the additive group K onto itself. The set of all such
measures » on K will be denoted by I(s).

1) The second author’s contribution was supported in part by the National
Science Foundation, Grant GP-5801.
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Naturally, it is quite possible that the sequence {s’} has no asymptotic
distribution at all. In general, for each = € K, let V(x, s) denote the col-
lection of all accumulation points (in the weak*-topology) of the sequence
of probability measures {»1, »e, ...} defined by

g Hstz),  feC(K).

S|~

va(f) =

As is easily seen, V(z, s) is a non-empty closed and connected subset
of I(s). Conversely [2], given any closed and connected non-empty subset
V of I(s), there always exists a number € K such that V(z,s)=V. In
particular, given v € I(s), there always exists a number x € K which is
v-normal to the base s, (that is, V(x, s)={»}), a result due to PsaTECKII-
SHAPIRO [6].

The question arises what can be said about the behavior of x with
respect to several bases. The ultimate goal would be to characterize those
sequences {¥Vs; s=2, 3, ...} for which there exists at least one x € K such
that V(z, s)="V, for all s.

The bases r and s are said to be equivalent (r ~ s) if there exist integers
m, n and 81> 2 with r=s™ and s=s;" (otherwise, r +~ s). If so then V(z, r)
and V(z, s) are strongly related, in fact, both uniquely determine the set
V(z, s1). In particular, see [7], if x € K is normal to one base then also
to every equivalent base.

Conjecture. Let {1, 2, ...} be a given sequence of mutually non-equivalent
bases. For each ¢=1, 2, ..., choose V, in an arbitrary manner as a non-
empty closed and connected subset of I(sy). Then one can find at least
one number z € K such that V(z, s;)=7V, for all q.

At the present, we are a far way from proving or disproving our con-
jecture. The strongest known result in this direction is the following result
due to ScamipT [7], [8]. Choose 4 and B as arbitrary sets of integers > 2
such that ¢ ~ b whenever a € 4 and b € B. Then one can find at least
one number z € K which is normal to each base @ € 4 and simultaneously
non-normal to each base b € B.

In particular, there exists a number  which is non-normal to a given
base s and simultaneously normal to each base r +~ s, see [7]. For s=3
this result is due to CasseLs [1]. It is the purpose of the present paper
to prove the following related result.

Theorem 1.1. Given the integer s>2 and the number x € K one can
always find a number z € K such that

(1.1) V(z,r)=V(x, r) for each r ~ s,
while
(1.2) V(z, r)={4} for each r ~ s.

As an immediate consequence we have:
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Theorem 1.2. Let s>2 be a given integer and v € I(s) a given proba-
bility measure on K. Then there exists a number z € K which is v-normal to
the base s and simultaneously A-normal to each base r ~ s.

Proof. Choose first x € K such that V(z,s)={r}, and then apply
Theorem 1.1.

Our proof of Theorem 1.1 is closely related to the proof of ScamiDT [7];
see also [8] and [9].

2. Preliminaries

Let x € K be a given number, s>2 a given base. As is easily seen, there
exists a unique integer s;>2 such that r ~ s if and only if r=sm for
some positive integer m. In proving Theorem 1.1, we may as well assume
that s=s; in which case (1.1) is equivalent to

(2.1) V(z, sm)=V(x, sm) for all m=1, 2, ...

A sufficient condition for (2.1) is that

n—00 7

n—1
(2.2) lim n-1 (f(stmz) —f(s'mx)) =0, for feC(K); m=1,2, ...
=0
Let
(2.3) T= 3 Xe8C, Z= D 287, (e, 2e€ {0, 1, ..., 8—1}).
c=1

c=1

Let further N(n) denote the number of ¢=1, ..., n with z,#x,. A sufficient
condition for (2.2) is that

(2.4) N(n)=o(n) as n — oo,

as follows easily from the uniform continuity of the f e C(K).
Consider a fixed sequence {ec; c=1, 2, ...} such that
S €c=+1 if 0<xc<8—'2,

2.5
Next, let {d.} be a fixed sequence satisfying

(2.6) O0<denn<de<it; lim de=0,

c—> 00

(c=1,2,...). Finally, let yi, g2, ... be tndependent random variables, y.
having the distribution defined by '

(2.7) yc € {0, Ec}, Pr(ycz(‘:c):dc.
Lemma 2.1. The number z € K defined by
(2.8) z=x+Y, Y= 2 Ye§°
c=1

satisfies condition (2.1) with probability 1.
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Proof. Let ze=x:+y.. By (2.5) and (2.7), we have that z. € {0, 1,
s—1} for all ¢. Moreover, Z zc8~¢=z, thus, we have the situation (2. 3)

with z.— 2=y, € {0, &}. It sufﬁces to show that (2.4) holds with proba-
bility 1, equlvalently, that

lim 1 z lye] = 0 with probability 1.

n—>00 c=1
This follows immediately from E(|y.|)=d. — 0 and the following classical
criterion due to KorLmMoGgorov, see [4] p. 238, 253, 259.

Lemma 2.2. Let {U;} be a given sequence of complex-valued inde-
pendent random variables such that |U;j|<1. Then

lim = 3 E(U;) = 0 implies that lim = 3 U, =
n—>00 =1 n—>00 i=1
with probability 1. (The converse is obvious.)

From now on, the random variable z=z+y will be as in (2.8). For each
base r, let D, denote the set of numbers which are non-normal to the base r.
In view of Lemma 2.1, it suffices to prove that for each fixed base r ~ s
we have z ¢ D, with probability 1. At first sight, this might seem like
an easy problem since the set D, has Lebesgue measure zero. However,
also the support S, of the random variable y (and hence S;=z+38y) is
a set of Lebesgue measure 0. For s>3 this assertion is rather obvious
(ye having only two possible values); if s=2 the assertion can easily be
deduced from Lemma 2.1 and the fact that D; has Lebesgue measure
zero. For a related result, see [3].

Let us introduce the random variables

(2.9) U{w} = e2riwz = g2riw(z+y), (w=0, 41, 42, ...), U{—w}=U{w}.
Lemma 2.3. Suppose that, for each choice of the base r ~ s and each
choice of the positive integer h, we have
(2.10) lim 1 > U{hr7} = 0, with probability 1.
n—>00 j=1

Then z satisfies (1.2) with probability 1.

Proof. Consider a fixed base r ~s. By (2.9) and (2.10),

(2.11) lim © z f(riz) = j'fdl,
n—>00 1=1
with probability 1, whenever f is a trigonometric polynomial
(/v) z bhezﬂihﬂ

h=—-H

By WEyv’s [10] criterion (the trigonometric polynomials being dense in
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C(K) with the supremum norm), we have with probability 1 that (2.11)
holds for each feC(K), in other words, that V(z, r)={4}.

The random variables U;=U(hr?) (j=1, 2, ...) occurring in (2.10) are
clearly not independent. Thus, Lemma 2.2 is of no use in establishing
results of the type (2.10). Instead, we shall use:

Lemma 2.4. Let {U;} be a sequence of complex-valued random variables
such that |Uj| <1. Suppose further that there exist constants C and y>1 such
that

2
> <C (log n)~* for all n=1,2, ...

1
(2.12) E(’E(U1+...+Un)
Then lim = 3 U; = 0 with probability 1.
n—>00 i=1

Proof. Choose the positive constants # and 6 such that n+d<y—1,
and put 14#9+d=wnp, thus, O0<a<l. Let further nx=1+ [exp k*],
(k=1,2,...), ng ! + oo. Let Ay denote the event defined by

2
> k.

1
'EC(U1+-.‘+U1LIC)

Then, using (2.12),

2
Pr(Ag)<k"E (InL (Ui+ ...+ Up) ) < k"C(log ng)~? <Ck—179.
k

It follows that > Pr(A4x)<oo so that (with probability 1) 4z will happen
for only finitely many k. In particular,

.1
llm —(U1+---+U7Lk):O,
k—>e0 ng

with probability 1. This yields the stated assertion since |Uj]<1 and
nk+1/nk — 1.
Combining the Lemmas 2.3 and 2.4, we have

Lemma 2.5. Suppose that, for each choice of the base r ~ s and each
choice of the positive integer h, one can find constants C and y>1 such that

(2.13) %z S | B(Uh(ri—r4)})| <C (log )~ for all n=1,2, ...
j=1Fk=1

Then z satisfies (1.2) with probability 1.
Thus, also in view of Lemma 2.1, it suffices for the proof of Theorem 1.1

to exhibit at least one sequence {d.} for which the conditions of Lemma 2.5
are fulfilled.

3. Upper bound on E(U).
Here, and further on, w will denote an integer. We have

U {w} — ez:u‘wz — eZniwa: e2m’w1/,
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(o]
where z is a real constant. Further, y= > y.s—¢ with the y, as inde-

c=1
pendent random variables. In fact, for 6 real,

| B (e27%c)| = |(1 —d) + d €27%%| = [1 — 4d(1 — d) sin2 ]} <
< exp [—2d,(1—d.)sin2 n0] < exp [—d, sin2 =],

sinée,sc= + 1 and 0<dc<}. We conclude that
|B(U{w})| = | TT E(exp(2niws—cyc))| < exp[— 3 d.sin2mws=].
c=1 c=1

This in turn yields
(3.1) [B(U))]| < exp[- 3 top(ws™)],

where
to=d, sin2 ns—2,

while ¢ denotes the function on the reals defined by
$(0)=1 if s2<h—[0]<l—s"2,

(3.2) .
=0, otherwise,

(with [6] as the integral part of 0). Observe that #(6)=0 when 6 is an
integer and also when |0]<s~2. Moreover, @(8)=¢(—0); @(0+1)=gp().
Let us further introduce

(3.3) P(w) = § P(ws—c) = -f’ H(ws—¢), thus, D(sw)=D(w)=D(—w)>0.

c=1 c=—00

Assuming w>0, consider the expansion
(3.4) W=... WeW Wy = Eowcsc, wee{0,1,...,5—1},
o=
with only finitely many w, non-zero. Observe that
ws—¢ — [ws™°] = ﬁ:l We—j8 =0 wWe-1We—3 ... W,
i=

hence, $(ws=¢)=1 when the pair of digits (we—1, we—2) is good in the sense
that it is distinet from both pairs (0, 0) and (s—1, s—1), (a terminology
due to Schmidt). Consequently, if w>0 then @(w) is not smaller than the
number of good pairs (we-1, we—s) in the expansion (3.4) of w to the base s,
(c=1,2,...;we=0 if c<—1).

Lemma 3.1. We have for each integer w that
(3.5) |E(U{w})| <exp [—p(w)P(w)].
Here, B(w) is the function defined by
(3.6) B(w)=dn sinZ?ns—2 when sm2<|w|<sm1, (m=2,3,...;H(0)=0).
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Proof. Given w>0, let m>2 denote the unique integer such that
sm—2<w<sm1, Then ¢>m+1 would imply that ws—¢<sm-1-¢<s-2, hence,
#(ws—)=0. Therefore, {t.} being non-increasing,

S tep(ws=) = 3 toh(w5—) > tn (1) = ) D(w),

c=1 c=1

by (3.3). Thus (3.1) implies (3.5).

4. Proof of Theorem 1.1.

Let s be a fixed base and let @ be as in Section 3; clearly, @ depends
on s. It will be convenient to introduce the following property.

Property A. A function w(z) on [1, +o0) will be said to have
Property A when

(i) o(x) tends to +oo in a non-decreasing manner as x tends to +oo.

(ii) For each base r ~ s and each positive integer » one can find constants
C>0 and y>1 such that, for all large =,

(4.1)  FHA{(¢, k): 1<j, k<n, D(hri — hrk) <w(n) log log n} <Cn2(log n)~".

Lemma 4.1. Let w(x) be any function satisfying Property A. Then
Theorem 1.1 holds; more precisely, under the choice

(4.2) d.=min {}, n/o(/c)}, (c=1,2,...),

of {d.} we have with probability 1 that the random number z=x+y satisfies
both (1.2) and (2.1). Here, n denotes any positive constant such that
7> 1/sin2 ms~2.

Proof. Choose {dc} as in (4.2). Let A>1 and r>2 be given integers
such that r ~ s. It suffices to show that (2.13) holds for some choice of
the constants C and y>1. In view of (3.5) and (4.1) it suffices to show
that, for some y>1, we have

exp [— B(hr*)w(n)log log n]=0((log n)~*) as n — oco.
Equivalently, we must have that

(4.3) lim inf [w(n)B(hr™)]> 1.

Put K =1 sin2zs2, thus, K>1. By (3.6) and (4.2) we have for n suffi-
ciently large that f(hr")=K|w(/m). Here, m is the integer defined by
sm2 < hrn<sm-1, Hence, for n sufficiently large we have ym<mn, thus,
o(ym)<w(n), yielding (4.3). This completes the proof of Lemma 4.1.

Theorem 1.1 is now obtained by invoking the following result. It implies
that any function w(z) satisfying w(x) 1} +oo and

w(x)=o(log z/log log x), as x — +oo,
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does have Property A. Actually, Lemma 4.2 is much stronger than
necessary for our purpose and it would be of interest to find a simple
proof of the fact that there exists at least one function having Property A.

Lemma 4.2. For each choice of the positive integers h and r>2, r ~ s,
one can find positive constants C, « and 6 such that, for all n=1,2, ...,

(4.4) H#{(J, k): 1<j, k<n, D(hr! — hr¥) < x log n} <Cn2-°.

The proof of Lemma 4.2 is analogous to a proof in [7] pp. 665-669.
The following is a quick sketch in several steps of a proof of Lemma 4.2
which may be regarded as a simplified version of the implicit proof con-
tained in [7]. Lemma 4.2 will be reduced to:

Lemma 4.3. Let h and r>2 be positive integers such that at least one
prime divisor p of s is not divisible on r. Then there exist positive constants
C, x and 6 such that the imequality
(4.5) H{=1,...,n: Oy(hri+u)<xlog n}<Cnl-?
holds for each choice of the integers n>1 and w. Here, the integer N is defined
by sN-l<n<sV,

Further, the function @y is defined by
N
(4.6) Dy(w)= > P(ws=), (N=1,2,...).
¢=1

If w is a positive integer as in (3.4) then @y(w) is easily seen to be no
smaller than the number of good pairs (we-1, we—2) With 1<c< N, (w_1=0).
From the properties of the function ¢,

Dy(—w)=Dy(w) < D(w).
Moreover, @ n(w+bs™) =D y(w) as soon as b and m are integers with m > N.
It follows that
(4.7 D(ws* 4 ys*) = D(w + yst~*) > O y(w),
provided y, 4 and p are integers satisfying u—A>N.

Step (i). We assert that Lemma 4.2 is a consequence of Lemma 4.3.
Namely, applying (4.5) with u= —hr¥ and summing over k=1, ..., n, one
obtains (4.4) whenever some prime divisor of s is not divisible on 7.

It remains to consider the case that each prime divisor of s is also a
prime divisor of r. Let r and s have factorizations

o1
er’
and all g; positive. Then R=r%/s%1 is an integer with B>2; (if R=1

r=p1°... pp%; 8=p1°t ... px°% with Z—k < ... <
E



9

then r ~ s). Further, p; is a prime dividing s but not R. It follows from
Lemma 4.3 that

(4.8) # {A=1, ..., m: Oy (hr1R*) <o log m}<Cm'-,

for each choice of the integers m>1 and ¢=0, 1, ..., 01— 1. Here, C, «
and 6 denote positive constants while sM-1 <m < sM. Thus, M ~ log m/[log s
when m is large.
In proving (4.4), consider a pair of integers j and £ with 1<j<k<n
and write
j=2Ao1+q, k=po1+q with 0<q, ¢'<oy,

(0<2, u<n/or and A<u). Then one has
hrd — hrk = [hraR*|s?1? — [hr?’ R*]so1”.
Hence, using (4.7),
D(hri — hrk) > @ p(hreR*) provided (u—A)o1>M.

The latter is true for all but 0(nM) pairs 1<j,<k<n. Applying (4.8)
with m=[n/o1] (thus M =0(log n)) and summing over ¢, one obtains a
result of the type (4.4).

Step (ii). It remains to prove Lemma 4.3. From now on A>1, r>2
and p are fixed integers such that p is a prime dividing s but not r. Let
or denote the order of r modulo p*, that is, the smallest positive integer
with 7 =1 (mod p*). We assert that, for some positive constant e,

(4.9) or>e¢epk for all k>0.

First observe that, for ¢>1,
a = 14 gp°(mod p°*l) implies a? = 1+ gpcti(mod pc+2)
unless both ¢=1 and p=2. Let p>3 and consider
r@-1p7 = 14 gpetd £ 1(mod peti+l).,

It holds for j=0 with a unique maximal ¢>1 and ¢ prime to p. By in-
duction, it holds for all j>0. Hence, 0¢+j+1>p7 for all >0, proving (4.9)
when p>3. If p=2 one uses instead

221+.7 = 1+2c+j ;é ]_(mod 20+,7+1).

Step (iii). Define g as the largest integer such that p¢ divides A. Consider
a pair of distinet non-negative integers j; and js. By (4.9), we have
|91—j2| >ep*—9 as soon as hrit = hriz (mod p*), hence, as soon as hrit = hyz
(mod s*). Consequently, introducing

(4.10) Ni(t)= H {j=1, ..., : i =t (mod s*)},
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we have the upperbound
(4.11) Ni(f) <1+ sk(epk=9)-1 <1+ (po/e)(s/2),

holding for each choice of the positive integer £ and the residue class
t=0,1,...,sk—1.

Step (iv). For k=1,2, ..., consider the function ¥; with domain
Gr={0,1, ..., s¥—1} defined as follows. Let ¢ € Gy have the expansion

(4.12) t=to+tis+...+tg1851, t;€{0,1,...,s—1}
Then

(4.13) Vi(t)y= H {i=1, ..., k—1: (t;, ti—1) # (0, 0), (s— 1, s— 1)}
Consider further the quantity

(4.14) Mp(b)= 4t {t € Gr: Pi(t)<bk},

where b is a positive parameter. We assert that for each positive number
o>% there exists a positive number bo(p) such that

(4.15) Mi(b)=0(2%) as k — oo, as soon as 0<b<bg(g).

One proof based on Stirling’s formula may be found in [7] p. 667. A second
proof would be as follows.

Let &k be fixed, m=[k/2] so that k=2m+q with ¢=0 or 1. Let f(t)
denote the function on Gy defined as in (4.13) but with ¢ restricted to the
odd integers 1=1, 3, ..., 2m—1, (so that the pairs counted do not overlap).
In particular, f(f)<¥i(t). As is easily seen,

m
> wl® =5t T [1+1+u+... +u] =s2[2+(s2—2)u]™.
teGy =1

Here, » is an auxiliary variable. Assuming that 0<u <1 we have that
Yi(t) <bk implies u/®) >ubk. Hence, by (4.14),

Mp(d) < (s/ub)e[2u—2 4 (s2— 2)ul-20]m for each O0<wu<1.

By choosing b as a sufficiently small number and w=»b, the quantity [-]
can be brought arbitrarily close to 2, (since =% — 1 as @ |, 0). This proves
the assertion (4.15).

Step (v). End of proof of Lemma 4.3. It suffices to establish (4.5) for n
of the form n=s¥, (k=1, 2, ...). In this case N=Fk and « log n =0k where
b=«logs.

Observe that @x(w) is periodic of period s*¥. Hence, if w =t (mod s*)
with t € Gy then Dp(w)=Dk(t) > Pi(t) by (4.13) and the remark following
(4.6). Therefore, by (4.10), the left hand side of (4.5) (with n=s* and
N =Fk) has the upperbound X’'Ny(t) where we sum over those ¢ € G for
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which Wg(t+u)<bk; here ¢ +wu is to be interpreted modulo s¥. Moreover,
by (4.11) and (4.14), we have the upperbound (independent of u):

2 Ni(t) < Mi(b)[1+ (p9/e)(s/2)F] = O(2-C -0k s¥),
t

as soon as 0 <b<bo(p), by (4.15). Here, o can be any number with 1 <p<1.
Consequently, we have for each d<log 2/log s? that (4.5) holds with a
suitable constant C' (depending on % and r) as soon as b=« log s is suf-
ficiently small, 0 <& <xg(d), where xo(d) is independent of A and r.

The University of Rochester
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