ON NON-NORMAL NUMBERS

BY

C. M. COLEBROOK and J. H. B. KEMPERMAN

(Communicated at the meeting of September 30, 1967)

1. Introduction

Let $s \geqslant 2$ be an integer, to be kept fixed. A real number $0 \leqslant x<1$ is said to be normal to the base s when its expansion

$$
x=\cdot x_{1} x_{2} x_{3} \ldots=\sum_{c=1}^{\infty} x_{c} s^{-c}, \quad\left(x_{c} \in\{0,1, \ldots, s-1\}\right)
$$

to the base s is such that each possible block of digits occurs with its "proper" frequency. More precisely, for each $k=1,2, \ldots$ and each of the s^{k} blocks $A=\left(a_{1}, \ldots, a_{k}\right)$ consisting of k digits $0 \leqslant a_{i} \leqslant s-1$, the occurrence of $\left(x_{c+1}, \ldots, x_{c+k}\right)=A$ happens with an asymptotic frequency s^{-k}, ($c=0,1, \ldots$).

Let K denote the additive group of real numbers modulo one. Further $C(K)$ will denote the collection of all complex-valued continuous functions on K. It will be convenient to think of $f \in C(K)$ as a continuous function on the reals of period 1.

A sequence of points $\left\{u_{j}\right\}$ in K is said to have the asymptotic distribution ν when

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(u_{j}\right)=v(f)=\int_{K} f d v \text { for each } f \in C(K) .
$$

Here, v denotes a probability measure on K, (that is, a nonnegative measure of total mass 1). As was shown by Wall (see [5]), a number $x \in K$ is normal to the base s if and only if the corresponding sequence $\left\{s^{j} x\right\}=\left\{x, s x, s^{2} x, \ldots\right\}$ in K is uniformly distributed; that is, when $\left\{s^{j} x\right\}$ has the Lebesgue measure λ on K as its asymptotic distribution. More generally, a number $x \in K$ will be said to be ν-normal when the sequence $\left\{s^{j} x\right\}$ has the asymptotic distribution v. Here, v denotes a probability measure on K, necessarily invariant under the (many to one) transformation $x \rightarrow s x$ of the additive group K onto itself. The set of all such measures ν on K will be denoted by $I(s)$.

[^0]Naturally, it is quite possible that the sequence $\left\{s^{j} x\right\}$ has no asymptotic distribution at all. In general, for each $x \in K$, let $V(x, s)$ denote the collection of all accumulation points (in the weak*-topology) of the sequence of probability measures $\left\{\nu_{1}, \nu_{2}, \ldots\right\}$ defined by

$$
\boldsymbol{v}_{n}(f)=\frac{1}{n} \sum_{j=0}^{n-1} f\left(s^{j} x\right), \quad f \in C(K)
$$

As is easily seen, $V(x, s)$ is a non-empty closed and connected subset of $I(s)$. Conversely [2], given any closed and connected non-empty subset V of $I(s)$, there always exists a number $x \in K$ such that $V(x, s)=V$. In particular, given $\nu \in I(s)$, there always exists a number $x \in K$ which is v-normal to the base s, (that is, $V(x, s)=\{v\}$), a result due to PjateckiiShapiro [6].

The question arises what can be said about the behavior of x with respect to several bases. The ultimate goal would be to characterize those sequences $\left\{V_{s} ; s=2,3, \ldots\right\}$ for which there exists at least one $x \in K$ such that $V(x, s)=V_{s}$ for all s.

The bases r and s are said to be equivalent $(r \sim s)$ if there exist integers m, n and $s_{1} \geqslant 2$ with $r=s_{1}{ }^{m}$ and $s=s_{1}{ }^{n}$ (otherwise, $\left.r \nsim s\right)$. If so then $V(x, r)$ and $V(x, s)$ are strongly related, in fact, both uniquely determine the set $V\left(x, s_{1}\right)$. In particular, see [7], if $x \in K$ is normal to one base then also to every equivalent base.

Conjecture. Let $\left\{s_{1}, s_{2}, \ldots\right\}$ be a given sequence of mutually non-equivalent bases. For each $q=1,2, \ldots$, choose V_{q} in an arbitrary manner as a nonempty closed and connected subset of $I\left(s_{q}\right)$. Then one can find at least one number $x \in K$ such that $V\left(x, s_{q}\right)=V_{q}$ for all q.

At the present, we are a far way from proving or disproving our conjecture. The strongest known result in this direction is the following result due to Schmidt [7], [8]. Choose A and B as arbitrary sets of integers >2 such that $a \nsim b$ whenever $a \in A$ and $b \in B$. Then one can find at least one number $x \in K$ which is normal to each base $a \in A$ and simultaneously non-normal to each base $b \in B$.

In particular, there exists a number x which is non-normal to a given base s and simultaneously normal to each base $r \nsim s$, see [7]. For $s=3$ this result is due to Cassels [1]. It is the purpose of the present paper to prove the following related result.

Theorem 1.1. Given the integer $s \geqslant 2$ and the number $x \in K$ one can always find a number $z \in K$ such that

$$
\begin{equation*}
V(z, r)=V(x, r) \text { for each } r \sim s \tag{1.1}
\end{equation*}
$$

while

$$
\begin{equation*}
V(z, r)=\{\lambda\} \text { for each } r \nsim s \tag{1.2}
\end{equation*}
$$

As an immediate consequence we have:

Theorem 1.2. Let $s \geqslant 2$ be a given integer and $v \in I(s)$ a given probability measure on K. Then there exists a number $z \in K$ which is ν-normal to the base s and simultaneously λ-normal to each base $r \propto s$.

Proof. Choose first $x \in K$ such that $V(x, s)=\{\nu\}$, and then apply Theorem 1.1.

Our proof of Theorem 1.1 is closely related to the proof of Schmidt [7]; see also [8] and [9].

2. Preliminaries

Let $x \in K$ be a given number, $s \geqslant 2$ a given base. As is easily seen, there exists a unique integer $s_{1} \geqslant 2$ such that $r \sim s$ if and only if $r=s_{1}{ }^{m}$ for some positive integer m. In proving Theorem 1.1, we may as well assume that $s=s_{1}$ in which case (1.1) is equivalent to

$$
\begin{equation*}
V\left(z, s^{m}\right)=V\left(x, s^{m}\right) \text { for all } m=1,2, \ldots \tag{2.1}
\end{equation*}
$$

A sufficient condition for (2.1) is that
(2.2) $\lim _{n \rightarrow \infty} n^{-1} \sum_{j=0}^{n-1}\left(f\left(s^{s m} z\right)-f\left(s^{s m} x\right)\right)=0$, for $f \in C(K) ; m=1,2, \ldots$

Let

$$
\begin{equation*}
x=\sum_{c=1}^{\infty} x_{c} s^{-c}, \quad z=\sum_{c=1}^{\infty} z_{c} s^{-c}, \quad\left(x_{c}, z_{c} \in\{0,1, \ldots, s-1\}\right) \tag{2.3}
\end{equation*}
$$

Let further $N(n)$ denote the number of $c=1, \ldots, n$ with $z_{c} \neq x_{c}$. A sufficient condition for (2.2) is that

$$
\begin{equation*}
N(n)=o(n) \text { as } n \rightarrow \infty \tag{2.4}
\end{equation*}
$$

as follows easily from the uniform continuity of the $f \in C(K)$.
Consider a fixed sequence $\left\{\varepsilon_{c} ; c=1,2, \ldots\right\}$ such that

$$
\left\{\begin{align*}
\varepsilon_{c} & =+1 \text { if } 0 \leqslant x_{c} \leqslant s-2 \tag{2.5}\\
& =-1 \text { if } \quad x_{c}=s-1
\end{align*}\right.
$$

Next, let $\left\{d_{c}\right\}$ be a fixed sequence satisfying

$$
\begin{equation*}
0<d_{c+1} \leqslant d_{c} \leqslant \frac{1}{2} ; \quad \lim _{c \rightarrow \infty} \quad d_{c}=0 \tag{2.6}
\end{equation*}
$$

$(c=1,2, \ldots)$. Finally, let y_{1}, y_{2}, \ldots be independent random variables, y_{c} having the distribution defined by

$$
\begin{equation*}
y_{c} \in\left\{0, \varepsilon_{c}\right\}, \quad \operatorname{Pr}\left(y_{c}=\varepsilon_{c}\right)=d_{c} . \tag{2.7}
\end{equation*}
$$

Lemma 2.1. The number $z \in K$ defined by

$$
\begin{equation*}
z=x+y, \quad y=\sum_{c=1}^{\infty} y_{c} s^{-c} \tag{2.8}
\end{equation*}
$$

satisfies condition (2.1) with probability 1.

Proof. Let $z_{c}=x_{c}+y_{c}$. By (2.5) and (2.7), we have that $z_{c} \in\{0,1, \ldots$, $s-1\}$ for all c. Moreover, $\sum_{c=1}^{\infty} z_{c} s^{-c}=z$, thus, we have the situation (2.3) with $z_{c}-x_{c}=y_{c} \in\left\{0, \varepsilon_{c}\right\}$. It suffices to show that (2.4) holds with probability 1 , equivalently, that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{c=1}^{n}\left|y_{c}\right|=0 \text { with probability } 1
$$

This follows immediately from $E\left(\left|y_{c}\right|\right)=d_{c} \rightarrow 0$ and the following classical criterion due to Kolmogorov, see [4] p. 238, 253, 259.

Lemma 2.2. Let $\left\{U_{j}\right\}$ be a given sequence of complex-valued independent random variables such that $\left|U_{j}\right| \leqslant 1$. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} E\left(U_{j}\right)=0 \text { implies that } \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} U_{j}=0
$$

with probability 1. (The converse is obvious.)
From now on, the random variable $z=x+y$ will be as in (2.8). For each base r, let D_{r} denote the set of numbers which are non-normal to the base r. In view of Lemma 2.1, it suffices to prove that for each fixed base $r \sim s$ we have $z \notin D_{r}$ with probability 1. At first sight, this might seem like an easy problem since the set D_{r} has Lebesgue measure zero. However, also the support S_{y} of the random variable y (and hence $S_{z}=x+S_{y}$) is a set of Lebesgue measure 0 . For $s \geqslant 3$ this assertion is rather obvious (y_{c} having only two possible values); if $s=2$ the assertion can easily be deduced from Lemma 2.1 and the fact that D_{s} has Lebesgue measure zero. For a related result, see [3].

Let us introduce the random variables

$$
\begin{equation*}
U\{w\}=e^{2 \pi i w z}=e^{2 \pi i w(x+y)}, \quad(w=0, \pm 1, \pm 2, \ldots), U\{-w\}=\overline{U\{w\}} . \tag{2.9}
\end{equation*}
$$

Lemma 2.3. Suppose that, for each choice of the base $r \sim s$ and each choice of the positive integer h, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} U\left\{h r^{\prime}\right\}=0, \text { with probability } 1 \tag{2.10}
\end{equation*}
$$

Then z satisfies (1.2) with probability 1.
Proof. Consider a fixed base $r \nsim s$. By (2.9) and (2.10),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} f\left(r^{j} z\right)=\int_{K} f d \lambda, \tag{2.11}
\end{equation*}
$$

with probability 1, whenever f is a trigonometric polynomial

$$
f(v)=\sum_{h=-H}^{H} b_{h} e^{2 \pi i h v} .
$$

By Weyl's [10] criterion (the trigonometric polynomials being dense in
$C(K)$ with the supremum norm), we have with probability 1 that (2.11) holds for each $f \in C(K)$, in other words, that $V(z, r)=\{\lambda\}$.

The random variables $U_{j}=U\left(h r^{j}\right)(j=1,2, \ldots)$ occurring in (2.10) are clearly not independent. Thus, Lemma 2.2 is of no use in establishing results of the type (2.10). Instead, we shall use:

Lemma 2.4. Let $\left\{U_{j}\right\}$ be a sequence of complex-valued random variables such that $\left|U_{j}\right| \leqslant 1$. Suppose further that there exist constants C and $\gamma>1$ such that
(2.12) $E\left(\left|\frac{1}{n}\left(U_{1}+\ldots+U_{n}\right)\right|^{2}\right) \leqslant C(\log n)^{-\gamma}$ for all $n=1,2, \ldots$

Then $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} U_{j}=0$ with probability 1.
Proof. Choose the positive constants η and δ such that $\eta+\delta<\gamma-1$, and put $1+\eta+\delta=\alpha \gamma$, thus, $0<\alpha<1$. Let further $n_{k}=1+\left[\exp k^{\alpha}\right]$, $(k=1,2, \ldots), n_{k} \uparrow+\infty$. Let A_{k} denote the event defined by

$$
\left|\frac{1}{n_{k}}\left(U_{1}+\ldots+U_{n_{k}}\right)\right|^{2}>k^{-\eta}
$$

Then, using (2.12),

$$
\operatorname{Pr}\left(A_{k}\right) \leqslant k^{\eta} E\left(\left|\frac{1}{n_{k}}\left(U_{1}+\ldots+U_{n_{k}}\right)\right|^{2}\right) \leqslant k^{\eta} C\left(\log n_{k}\right)^{-\gamma} \leqslant C k^{-1-\delta} .
$$

It follows that $\sum \operatorname{Pr}\left(A_{k}\right)<\infty$ so that (with probability 1) A_{k} will happen for only finitely many k. In particular,

$$
\lim _{k \rightarrow \infty} \frac{1}{n_{k}}\left(U_{1}+\ldots+U_{n_{k}}\right)=0
$$

with probability 1 . This yields the stated assertion since $\left|U_{j}\right| \leqslant 1$ and $n_{k+1} / n_{k} \rightarrow 1$.

Combining the Lemmas 2.3 and 2.4, we have
Lemma 2.5. Suppose that, for each choice of the base $r \sim s$ and each choice of the positive integer h, one can find constants C and $\gamma>1$ such that

$$
\begin{equation*}
\frac{1}{n^{2}} \sum_{j=1}^{n} \sum_{k=1}^{n}\left|E\left(U\left\{h\left(r^{j}-r^{k}\right)\right\}\right)\right| \leqslant C(\log n)^{-\gamma} \quad \text { for all } n=1,2, \ldots \tag{2.13}
\end{equation*}
$$

Then z satisfies (1.2) with probability 1.
Thus, also in view of Lemma 2.1, it suffices for the proof of Theorem 1.1 to exhibit at least one sequence $\left\{d_{c}\right\}$ for which the conditions of Lemma 2.5 are fulfilled.
3. Upper bound on $E(U)$.

Here, and further on, w will denote an integer. We have

$$
U\{w\}=e^{2 \pi i w z}=e^{2 \pi i w x} e^{2 \pi i w y}
$$

where x is a real constant. Further, $y=\sum_{c=1}^{\infty} y_{c} s^{-c}$ with the y_{c} as independent random variables. In fact, for θ real,

$$
\begin{aligned}
\left|E\left(e^{2 \pi i \theta y_{c}}\right)\right|=\left|\left(1-d_{c}\right)+d_{c} e^{2 \pi i \theta_{c}}\right|=\left[1-4 d_{c}\left(1-d_{c}\right) \sin ^{2} \pi \theta\right]^{\frac{1}{2}} \leqslant \\
\leqslant \exp \left[-2 d_{c}\left(1-d_{c}\right) \sin ^{2} \pi \theta\right] \leqslant \exp \left[-d_{c} \sin ^{2} \pi \theta\right]
\end{aligned}
$$

since $\varepsilon_{c}= \pm 1$ and $0<d_{c} \leqslant \frac{1}{2}$. We conclude that

$$
|E(U\{w\})|=\left|\prod_{c=1}^{\infty} E\left(\exp \left(2 \pi i w s^{-c} y_{c}\right)\right)\right| \leqslant \exp \left[-\sum_{c=1}^{\infty} d_{c} \sin ^{2} \pi w s^{-c}\right]
$$

This in turn yields

$$
\begin{equation*}
|E(U\{w\})| \leqslant \exp \left[-\sum_{c=1}^{\infty} t_{c} \dot{\phi}\left(w s^{-c}\right)\right] \tag{3.1}
\end{equation*}
$$

where

$$
t_{c}=d_{c} \sin ^{2} \pi s^{-2}
$$

while ϕ denotes the function on the reals defined by

$$
\begin{align*}
\phi(\theta) & =1 \text { if } s^{-2} \leqslant \theta-[\theta] \leqslant 1-s^{-2} \tag{3.2}\\
& =0, \text { otherwise }
\end{align*}
$$

(with [θ] as the integral part of θ). Observe that $\phi(\theta)=0$ when θ is an integer and also when $|\theta|<s^{-2}$. Moreover, $\varphi(\theta)=\varphi(-\theta) ; \varphi(\theta+1)=\varphi(\theta)$.

Let us further introduce

$$
\begin{equation*}
\Phi(w)=\sum_{c=1}^{\infty} \phi\left(w s^{-c}\right)=\sum_{c=-\infty}^{+\infty} \phi\left(w s^{-c}\right), \text { thus, } \Phi(s w)=\Phi(w)=\Phi(-w) \geqslant 0 \tag{3.3}
\end{equation*}
$$

Assuming $w>0$, consider the expansion

$$
\begin{equation*}
w=\ldots w_{2} w_{1} w_{0}=\sum_{c=0}^{\infty} w_{c} s^{c}, \quad w_{c} \in\{0,1, \ldots, s-1\} \tag{3.4}
\end{equation*}
$$

with only finitely many w_{c} non-zero. Observe that

$$
w s^{-c}-\left[w s^{-c}\right]=\sum_{j=1}^{c} w_{c-j} s^{-j}=0 \cdot w_{c-1} w_{c-2} \ldots w_{0}
$$

hence, $\phi\left(w s^{-c}\right)=1$ when the pair of digits $\left(w_{c-1}, w_{c-2}\right)$ is good in the sense that it is distinct from both pairs $(0,0)$ and $(s-1, s-1)$, (a terminology due to Schmidt). Consequently, if $w>0$ then $\Phi(w)$ is not smaller than the number of good pairs $\left(w_{c-1}, w_{c-2}\right)$ in the expansion (3.4) of w to the base s, ($c=1,2, \ldots ; w_{c}=0$ if $c \leqslant-1$).

Lemma 3.1. We have for each integer w that

$$
\begin{equation*}
|E(U\{w\})| \leqslant \exp [-\beta(w) \Phi(w)] . \tag{3.5}
\end{equation*}
$$

Here, $\beta(w)$ is the function defined by

$$
\begin{equation*}
\beta(w)=d_{m} \sin ^{2} \pi s^{-2} \text { when } s^{m-2} \leqslant|w|<s^{m-1}, \quad(m=2,3, \ldots ; \beta(0)=0) \tag{3.6}
\end{equation*}
$$

Proof. Given $w>0$, let $m \geqslant 2$ denote the unique integer such that $s^{m-2} \leqslant w<s^{m-1}$. Then $c \geqslant m+1$ would imply that $w s^{-c}<s^{m-1-c} \leqslant s^{-2}$, hence, $\phi\left(w s^{-c}\right)=0$. Therefore, $\left\{t_{c}\right\}$ being non-increasing,

$$
\sum_{c=1}^{\infty} t_{c} \phi\left(w s^{-c}\right)=\sum_{c=1}^{m} t_{c} \phi\left(w s^{-c}\right) \geqslant t_{m} \Phi(w)=\beta(w) \Phi(w)
$$

by (3.3). Thus (3.1) implies (3.5).
4. Proof of Theorem 1.1.

Let s be a fixed base and let Φ be as in Section 3; clearly, Φ depends on s. It will be convenient to introduce the following property.

Property A. A function $\omega(x)$ on $[1,+\infty)$ will be said to have Property A when
(i) $\omega(x)$ tends to $+\infty$ in a non-decreasing manner as x tends to $+\infty$.
(ii) For each base $r \nsim s$ and each positive integer h one can find constants $C>0$ and $\gamma>1$ such that, for all large n,
(4.1) $\#\left\{(j, k): 1 \leqslant j, k \leqslant n, \Phi\left(h r^{j}-h r^{k}\right) \leqslant \omega(n) \log \log n\right\} \leqslant C n^{2}(\log n)^{-\nu}$.

Lemma 4.1. Let $\omega(x)$ be any function satisfying Property A. Then Theorem 1.1 holds; more precisely, under the choice

$$
\begin{equation*}
d_{c}=\min \left\{\frac{1}{2}, \eta / \omega(/ c)\right\}, \quad(c=1,2, \ldots) \tag{4.2}
\end{equation*}
$$

of $\left\{d_{c}\right\}$ we have with probability 1 that the random number $z=x+y$ satisfies both (1.2) and (2.1). Here, η denotes any positive constant such that $\eta>1 / \sin ^{2} \pi s^{-2}$.

Proof. Choose $\left\{d_{c}\right\}$ as in (4.2). Let $h \geqslant 1$ and $r \geqslant 2$ be given integers such that $r \nsim s$. It suffices to show that (2.13) holds for some choice of the constants C and $\gamma>1$. In view of (3.5) and (4.1) it suffices to show that, for some $\gamma>1$, we have

$$
\exp \left[-\beta\left(h r^{n}\right) \omega(n) \log \log n\right]=0\left((\log n)^{-\gamma}\right) \text { as } n \rightarrow \infty
$$

Equivalently, we must have that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty}\left[\omega(n) \beta\left(h r^{n}\right)\right]>1 \tag{4.3}
\end{equation*}
$$

Put $K=\eta \sin ^{2} \pi s^{-2}$, thus, $K>1$. By (3.6) and (4.2) we have for n sufficiently large that $\beta\left(h r^{n}\right)=K / \omega(V / m)$. Here, m is the integer defined by $s^{m-2} \leqslant h r^{n}<s^{m-1}$. Hence, for n sufficiently large we have $\sqrt{ } m \leqslant n$, thus, $\omega(/ m) \leqslant \omega(n)$, yielding (4.3). This completes the proof of Lemma 4.1.

Theorem 1.1 is now obtained by invoking the following result. It implies that any function $\omega(x)$ satisfying $\omega(x) \uparrow+\infty$ and

$$
\omega(x)=o(\log x / \log \log x), \quad \text { as } x \rightarrow+\infty
$$

does have Property A. Actually, Lemma 4.2 is much stronger than necessary for our purpose and it would be of interest to find a simple proof of the fact that there exists at least one function having Property A.

Lemma 4.2. For each choice of the positive integers h and $r \geqslant 2, r \nsim s$, one can find positive constants C, α and δ such that, for all $n=1,2, \ldots$,

$$
\begin{equation*}
\#\left\{(j, k): 1 \leqslant j, k \leqslant n, \Phi\left(h r^{j}-h r^{k}\right) \leqslant \alpha \log n\right\} \leqslant C n^{2-\delta} . \tag{4.4}
\end{equation*}
$$

The proof of Lemma 4.2 is analogous to a proof in [7] pp. 665-669. The following is a quick sketch in several steps of a proof of Lemma 4.2 which may be regarded as a simplified version of the implicit proof contained in [7]. Lemma 4.2 will be reduced to:

Lemma 4.3. Let h and $r \geqslant 2$ be positive integers such that at least one prime divisor p of s is not divisible on r. Then there exist positive constants C, α and δ such that the inequality

$$
\begin{equation*}
\#\left\{j=1, \ldots, n: \Phi_{N}\left(h r^{j}+u\right) \leqslant \alpha \log n\right\} \leqslant C n^{1-\delta} \tag{4.5}
\end{equation*}
$$

holds for each choice of the integers $n \geqslant 1$ and u. Here, the integer N is defined by $s^{N-1}<n \leqslant s^{N}$.

Further, the function Φ_{N} is defined by

$$
\begin{equation*}
\Phi_{N}(w)=\sum_{c=1}^{N} \phi\left(w s^{-c}\right), \quad(N=1,2, \ldots) \tag{4.6}
\end{equation*}
$$

If w is a positive integer as in (3.4) then $\Phi_{N}(w)$ is easily seen to be no smaller than the number of good pairs $\left(w_{c-1}, w_{c-2}\right)$ with $1 \leqslant c \leqslant N,\left(w_{-1}=0\right)$. From the properties of the function ϕ,

$$
\Phi_{N}(-w)=\Phi_{N}(w) \leqslant \Phi(w) .
$$

Moreover, $\Phi_{N}\left(w+b s^{m}\right)=\Phi_{N}(w)$ as soon as b and m are integers with $m \geqslant N$. It follows that

$$
\begin{equation*}
\Phi\left(w s^{\lambda}+y s^{\mu}\right)=\Phi\left(w+y s^{\mu-\lambda}\right) \geqslant \Phi_{N}(w) \tag{4.7}
\end{equation*}
$$

provided y, λ and μ are integers satisfying $\mu-\lambda \geqslant N$.
Step (i). We assert that Lemma 4.2 is a consequence of Lemma 4.3. Namely, applying (4.5) with $u=-h r^{k}$ and summing over $k=1, \ldots, n$, one obtains (4.4) whenever some prime divisor of s is not divisible on r.

It remains to consider the case that each prime divisor of s is also a prime divisor of r. Let r and s have factorizations

$$
r=p_{1} \varrho_{1} \ldots p_{k}{ }^{\varrho_{k}} ; s=p_{1}{ }^{\sigma_{1}} \ldots p_{k} \sigma_{k} \text { with } \frac{\sigma_{k}}{\varrho_{k}} \leqslant \ldots \leqslant \frac{\sigma_{1}}{\varrho_{1}}
$$

and all ϱ_{i} positive. Then $R=r^{\sigma_{1}} / s^{\rho_{1}}$ is an integer with $R \geqslant 2$; (if $R=1$
then $r \sim s$). Further, p_{1} is a prime dividing s but not R. It follows from Lemma 4.3 that

$$
\begin{equation*}
\#\left\{\lambda=1, \ldots, m: \Phi_{M}\left(h r^{q} R^{\lambda}\right) \leqslant \alpha \log m\right\} \leqslant C m^{1-\delta} \tag{4.8}
\end{equation*}
$$

for each choice of the integers $m \geqslant 1$ and $q=0,1, \ldots, \sigma_{1}-1$. Here, C, α and δ denote positive constants while $s^{M-1}<m \leqslant s^{M}$. Thus, $M \sim \log m / \log s$ when m is large.

In proving (4.4), consider a pair of integers j and k with $1 \leqslant j \leqslant k \leqslant n$ and write

$$
j=\lambda \sigma_{1}+q, k=\mu \sigma_{1}+q^{\prime} \text { with } 0 \leqslant q, q^{\prime}<\sigma_{1}
$$

$\left(0 \leqslant \lambda, \mu \leqslant n / \sigma_{1}\right.$ and $\left.\lambda \leqslant \mu\right)$. Then one has

$$
h r^{j}-h r^{k}=\left[h r^{q} R^{\lambda}\right] s^{\varrho_{1} \lambda}-\left[h r^{q^{\prime}} R^{\mu}\right] s^{\varrho_{1} \mu} .
$$

Hence, using (4.7),

$$
\Phi\left(h r^{j}-h r^{k}\right) \geqslant \Phi_{M}\left(h r^{q} R^{\lambda}\right) \text { provided }(\mu-\lambda) \varrho_{1} \geqslant M .
$$

The latter is true for all but $0(n M)$ pairs $1 \leqslant j, \leqslant k \leqslant n$. Applying (4.8) with $m=\left[n / \sigma_{1}\right]$ (thus $M=0(\log n)$) and summing over q, one obtains a result of the type (4.4).

Step (ii). It remains to prove Lemma 4.3. From now on $h \geqslant 1, r \geqslant 2$ and p are fixed integers such that p is a prime dividing s but not r. Let o_{k} denote the order of r modulo p^{k}, that is, the smallest positive integer with $r^{m} \equiv 1\left(\bmod p^{k}\right)$. We assert that, for some positive constant ε,

$$
\begin{equation*}
o_{k} \geqslant \varepsilon p^{k} \text { for all } k>0 \tag{4.9}
\end{equation*}
$$

First observe that, for $c \geqslant 1$,

$$
a \equiv 1+q p^{c}\left(\bmod p^{c+1}\right) \text { implies } a^{p} \equiv 1+q p^{c+1}\left(\bmod p^{c+2}\right)
$$

unless both $c=1$ and $p=2$. Let $p \geqslant 3$ and consider

$$
r^{(p-1) p^{j}} \equiv 1+q p^{c+j} \not \equiv 1\left(\bmod p^{c+j+1}\right)
$$

It holds for $j=0$ with a unique maximal $c \geqslant 1$ and q prime to p. By induction, it holds for all $j \geqslant 0$. Hence, $o_{c+j+1}>p^{j}$ for all $j \geqslant 0$, proving (4.9) when $p \geqslant 3$. If $p=2$ one uses instead

$$
2^{2^{1+j}} \equiv 1+2^{c+j} \not \equiv 1\left(\bmod 2^{c+j+1}\right)
$$

Step (iii). Define g as the largest integer such that p^{g} divides h. Consider a pair of distinct non-negative integers j_{1} and j_{2}. By (4.9), we have $\left|j_{1}-j_{2}\right| \geqslant \varepsilon p^{k-g}$ as soon as $h r^{j_{1}} \equiv h r^{j_{2}}\left(\bmod p^{k}\right)$, hence, as soon as $h r^{j_{1}} \equiv h r^{j_{2}}$ $\left(\bmod s^{k}\right)$. Consequently, introducing

$$
\begin{equation*}
N_{k}(t)=\#\left\{j=1, \ldots, s^{k}: h r^{j} \equiv t\left(\bmod s^{k}\right)\right\} \tag{4.10}
\end{equation*}
$$

we have the upperbound

$$
\begin{equation*}
N_{k}(t) \leqslant 1+s^{k}\left(\varepsilon p^{k-g}\right)^{-1} \leqslant 1+\left(p^{g} / \varepsilon\right)(s / 2)^{k}, \tag{4.11}
\end{equation*}
$$

holding for each choice of the positive integer k and the residue class $t=0,1, \ldots, s^{k}-1$.

Step (iv). For $k=1,2, \ldots$, consider the function Ψ_{k} with domain $G_{k}=\left\{0,1, \ldots, s^{k}-1\right\}$ defined as follows. Let $t \in G_{k}$ have the expansion

$$
\begin{equation*}
t=t_{0}+t_{1} s+\ldots+t_{k-1} s^{k-1}, \quad t_{i} \in\{0,1, \ldots, s-1\} \tag{4.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Psi_{k}(t)=\#\left\{i=1, \ldots, k-1:\left(t_{i}, t_{i-1}\right) \neq(0,0),(s-1, s-1)\right\} \tag{4.13}
\end{equation*}
$$

Consider further the quantity

$$
\begin{equation*}
M_{k}(b)=\#\left\{t \in G_{k}: \Psi_{k}(t) \leqslant b k\right\} \tag{4.14}
\end{equation*}
$$

where b is a positive parameter. We assert that for each positive number $\varrho>\frac{1}{2}$ there exists a positive number $b_{0}(\varrho)$ such that

$$
\begin{equation*}
M_{k}(b)=O\left(2^{2 k}\right) \text { as } k \rightarrow \infty, \text { as soon as } 0<b<b_{0}(\varrho) \tag{4.15}
\end{equation*}
$$

One proof based on Stirling's formula may be found in [7] p. 667. A second proof would be as follows.

Let k be fixed, $m=[k / 2]$ so that $k=2 m+q$ with $q=0$ or 1 . Let $f(t)$ denote the function on G_{k} defined as in (4.13) but with i restricted to the odd integers $i=1,3, \ldots, 2 m-1$, (so that the pairs counted do not overlap). In particular, $f(t) \leqslant \Psi_{k}(t)$. As is easily seen,

$$
\sum_{t \in G_{k}} u^{f(t)}=s^{q} \prod_{i=1}^{m}[1+1+u+\ldots+u]=s^{q}\left[2+\left(s^{2}-2\right) u\right]^{m}
$$

Here, u is an auxiliary variable. Assuming that $0<u<1$ we have that $\Psi_{k}(t) \leqslant b k$ implies $u^{f(t)} \geqslant u^{b k}$. Hence, by (4.14),

$$
M_{k}(b) \leqslant\left(s / u^{b}\right)^{q}\left[2 u^{-2 b}+\left(s^{2}-2\right) u^{1-2 b}\right]^{m} \text { for each } 0<u<1
$$

By choosing b as a sufficiently small number and $u=b$, the quantity [•] can be brought arbitrarily close to 2 , (since $x^{-x} \rightarrow 1$ as $x \downarrow 0$). This proves the assertion (4.15).

Step (v). End of proof of Lemma 4.3. It suffices to establish (4.5) for n of the form $n=s^{k},(k=1,2, \ldots)$. In this case $N=k$ and $\alpha \log n=b k$ where $b=\alpha \log s$.

Observe that $\Phi_{k}(w)$ is periodic of period s^{k}. Hence, if $w \equiv t\left(\bmod s^{k}\right)$ with $t \in G_{k}$ then $\Phi_{k}(w)=\Phi_{k}(t) \geqslant \Psi_{k}(t)$ by (4.13) and the remark following (4.6). Therefore, by (4.10), the left hand side of (4.5) (with $n=s^{k}$ and $N=k$) has the upperbound $\Sigma^{\prime} N_{k}(t)$ where we sum over those $t \in G_{k}$ for
which $\Psi_{k}(t+u) \leqslant b k$; here $t+u$ is to be interpreted modulo s^{k}. Moreover, by (4.11) and (4.14), we have the upperbound (independent of u):

$$
\sum_{t}^{\prime} N_{k}(t) \leqslant M_{k}(b)\left[1+\left(p^{g} / \varepsilon\right)(s / 2)^{k}\right]=O\left(2^{-(1-\varrho) k} s^{k}\right)
$$

as soon as $0<b<b_{0}(\varrho)$, by (4.15). Here, ϱ can be any number with $\frac{1}{2}<\varrho<1$. Consequently, we have for each $\delta<\log 2 / \log s^{2}$ that (4.5) holds with a suitable constant C (depending on h and r) as soon as $b=\alpha \log s$ is sufficiently small, $0<\alpha<\alpha_{0}(\delta)$, where $\alpha_{0}(\delta)$ is independent of h and r.

The University of Rochester

References

1. Cassels, J. W. S., On a problem of Steinhaus about normal numbers, Colloquium Math., 7, 95-101 (1959).
2. Colebrook, C. M., On the Hausdorff dimension of certain sets of non-normal numbers, forthcoming.
3. Kakutani, S., On equivalence of infinite product measures, Ann. Math., 49, 214-224 (1948).
4. Loève, M., Probability Theory, second edition, (Princeton, 1960).
5. Niven, I., Irrational Numbers, Carus Mathematical Monograph no. 11, (New York, 1956).
6. Pjateckit-Shapiro, I. I., On the laws of distribution of the fractional part of an exponential function, (Russian), Izv. Akad. Nauk SSSR, Ser. Mat., 15, 47-52 (1951).
7. Schmidt, W., On normal numbers, Pacific J. Math., 10, 661-672 (1960).
8. —, Über die Normalität von Zahlen zu verschiedenen Basen, Acta Arith., 7, 299-309 (1962).
9. —— Normalität bezüglich Matrizen, J. reine angew. Math., 214/215, 227-260 (1964).
10. Weyl, H., Über die Gleichverteilung von Zahlen mod 1, Math. Ann., 77, 313352 (1916).

[^0]: ${ }^{1}$) The second author's contribution was supported in part by the National Science Foundation, Grant GP-5801.

 1 Series A.

