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Abstract

In this article we suppose that(Ω,Σ,µ) is a measure space andT an one-to-one, linear, continu
ous operator ofL1(µ) into the dualE′ of a Banach spaceE. For any measurable setA consider the
imageT (L+

1 (µA)) of the positive cone of the spaceL1(µA) in E′, whereµA is the restriction of the

measureµ onA. We provide geometrical conditions on the conesT (L+
1 (µA)) which yield that the

measureµ is atomic, i.e., thatL1(µ) is lattice isometric to�1(A), whereA denotes the set of atom
of µ. This result yields also a new characterization ofc0(Γ ).
 2003 Elsevier Inc. All rights reserved.

1. Introduction

The study of the isomorphic copies ofL1(µ) in dual spaces is an old problem of fun
tional analysis. In 1938, Gelfand [6] proved thatL1[0,1] is not isomorphic to a conjuga
Banach space and, in 1959, Dieudonné [4] raised the problem:

Characterize theL1(µ) spaces which are isomorphic to a conjugate Banach space

Motivated by the above problem and by some known results on the geometry of
in this article we study the embeddability ofL1(µ) in dual spaces in connection with th
geometry of the images of the positive cone ofL1(µ) and its subcones. We show that so
properties of these cones are not only characteristic for the measureµ but also affect the
geometry of the predual space. Especially we suppose that (Ω,Σ,µ) is a measure spac
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0022-247X/$ – see front matter 2003 Elsevier Inc. All rights reserved.
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andT is an one-to-one, linear continuous map ofL1(µ) into the dualE′ of a Banach
spaceE. We use a result of [15] which states that any weak-star closed cone of a
space cannot have an unbounded, weak-star closed and weak-star dentable bas
that a base for a cone is an intersection of the cone with an affine hyperplane d
by a strictly positive linear functional. To this end for any measurable subsetA of Ω
with µ(A) > 0 which is not the union of a finite number of atoms (we call any suc
set infinitely decomposable) we consider the restrictionµA of µ onA and we study the
geometry of the imageT (L+

1 (µA)) of the positive cone ofL1(µA). The geometry of thes
cones is very important in our study.

In particular for each infinitely decomposable setA we study the weak-star closu
Q(A) of the coneT (L+

1 (µA)). Note that any setQ(A) is a wedge because it is the wea
star closure of a cone and also thatQ(A) is infinite dimensional because we have assum
that the setA is infinitely decomposable. In this article we suppose that the wedgesQ(A)

have the following two properties.
At first we suppose thatthe setQ(Ω) is a cone.SinceQ(Ω) is a wedge, this propert

is satisfied if and only ifQ(Ω) ∩ (−Q(Ω))= {0}. The assumption thatQ(Ω) is a cone
implies that any wedgeQ(A) is a cone becauseQ(A)⊆Q(Ω). In the sequel we study th
existence of norm unbounded bases inQ(A) and its subcones which are defined (the ba
by elements of the spaceE. Especially we suppose thatfor any infinitely decomposable s
A there are a measurable subsetD of A and an elementy of E such thaty, as a linear
functional onE′, defines an unbounded base for the coneQ(D). As we will see later, this
property of cones is the crucial property of this article. If we assume that the abov
properties are satisfied, then we prove (Theorem 12) that

(i) The imageT ′(E) of E via the adjointT ′ of T is contained inc0(A), whereA is the
set of atoms ofµ; and

(ii) The measureµ is atomic. ThereforeL1(µ) is lattice isometric to�1(A).

As a corollary we prove that if the operatorT is an into isomorphism, thenT ′(E) =
c0(A). Moreover if we suppose that the range ofT is weak-star dense inE′, we show that
T ′ is an isomorphism ofE onto c0(A). Finally we give a new characterization ofc0(Γ )
based on the above properties of cones.

As we have noted before, the methodology and the proofs of this article are based
geometry of cones. So Section 2 of this work is an introduction to the geometry of
and to the properties of their bases. In Section 3 we study the images of the positiv
of L1(µ) and its subcones inE′ via the operatorT . In the sequel we define a subspace
L∞(µ) which is denoted byc0(µ) and plays an important role in our study. Specifica
we prove thatc0(µ) is lattice isometric to the spacec0(A). Moreover, as we will see in
the proof of the main result, the assumption thatT ′(x) /∈ c0(µ) for some elementx of E,
combined with the definition ofc0(µ) and our assumptions for the conesQ(A), implies
the existence of a weak-star closed cone in a dual space with a norm unbounded, we
closed and weak-star dentable base, which contradicts the result of [15]. So we pro
T ′(E) ⊆ c0(µ). This is the basic step of this work from where it follows everything
this article we provide also many examples which introduce the reader to the geom
cones and to the basic ideas of this article.
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Recall that the embeddability ofL1(µ) in dual spaces has been studied by many aut
in the past. We refer to the papers of Pelczynski [11,12], Lewis and Stegall [9], Stega
Fonf [5] but we can also refer to many other significant works. For an extensive stu
L1-predual spaces we refer to the book of Lacey [8].

In 1981, Bourgain and Delbaen [2] gave an example of a Banach spaceE whose dual
E′ is isomorphic to�1 butE does not contain any copy ofc0. MoreoverE is a separable
L∞ space with the Radon–Nikodým property andE is somewhat reflexive. So the Bana
spaces whose dual is isomorphic to�1 seems to be a big class of spaces and the cha
terization ofc0 among the elements of this class is an interesting problem. Corollary
such a characterization ofc0.

Finally note the following characterization ofc0 which is proved in [14]:An ordered
Banach spaceE is order isomorphic toc0 if and only if E is a σ -Dedekind complete
vector lattice and its dualE′ is order isomorphic to�1. The proof of this result is based o
the proof that the dualE′ of E has a positive Schauder basis. The methods and the re
of [14] are quite different from the methodology and the results of the present article

2. Bases for cones

We start with the basic properties of the bases for cones which we will use in this a
LetE be a normed space. Denote byE′ the norm dual and byE′′ the second norm dua

of E. Also denote byR+ the set of real numbersλ � 0. For eachx ∈ E denote byx̂ the
natural image ofx in E′′ and for eachK ⊆E denote byK̂ the setK̂ = {x̂ ∈E′′ | x ∈K}.

Let P be awedgeof E, i.e.,P is a convex subset ofE such thatλP ⊆ P for each
λ ∈ R+. If E = P − P the wedgeP is calledgeneratingand if P ∩ (−P) = {0} we say
that P is a cone. Suppose thatE is ordered by the wedgeP , i.e., for anyx, y ∈ E we
havex � y if and only if y − x ∈ P . If P is a cone the ordering is antisymmetric. A line
functionalf onE is positiveif f (x)� 0 for eachx ∈ P andstrictly positiveif f (x) > 0
for eachx ∈ P , x �= 0. Also a linear functionalf on E is uniformly monotonicif a real
numbera > 0 exists such thatf (x)� a‖x‖ for eachx ∈ P . In the above cases we say a
thatf is positive, strictly positive and uniformly monotonic onP .

The dual spaceE′ of E is ordered by the wedge

P 0 = {
x ′ ∈E′ | x ′(x)� 0 for eachx ∈ P}

which is calledthe dual wedgeof P (in E′).
Let P be a cone. A subsetB of P is abase for the coneP if a strictly positive linear

functionalf of E exists such thatB is the intersection of the coneP with the affine
hyperplane{x ∈E | f (x)= 1}, i.e.,

B = {
x ∈ P | f (x)= 1

}
.

Then we say thatthe baseB is defined by the functionalf . The baseB is convex and it
is easy to show thatB is bounded if and only if the functionalf is uniformly monotonic.
Indeed, if we suppose that‖x‖ �M for eachx ∈ B, then for eachx ∈ P , x �= 0, we have
‖x/f (x)‖ �M, therefore‖x‖ �Mf(x) for eachx ∈ P , hencef is uniformly monotonic.
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For the converse suppose thatf (x)� a‖x‖ for eachx ∈ P . Then for eachx ∈ B we have
1 = f (x)� a‖x‖, therefore the baseB is bounded.

Note also that ifP is a finite-dimensional closed cone then each baseB for P is
bounded. Indeed if we suppose thatB is defined by the linear functionalf andxn ∈ B
with ‖xn‖ → ∞, thenf (xn/‖xn‖) → 0. Since the setP ∩ UE (UE is the closed uni
ball of E) is compact, a subsequence of{xn/‖xn‖} exists which converges to an eleme
x0 of P . Then we have that‖x0‖ = 1 andf (x0) = 0, contradiction becausef is strictly
positive onP .

A nonzero elementx0 of P is anextremal pointof P if for any x ∈ E, 0 � x � x0

implies thatx = λx0 for some real numberλ ∈ R+. A point x0 of a baseB for P is an
extreme point ofB if and only if x0 is an extremal point ofP . Indeed, if we suppos
that x0 is an extremal point ofP andx0 = λx + (1 − λ)y with x, y ∈ B, we have tha
0 � λx, (1− λ)y � x0. Thereforex, y are positive multiples ofx0 and by the fact thatx, y
are elements ofB we have thatx = y = x0. For the converse we suppose that the baseB is
defined by the linear functionalf , x0 is an extreme point ofB and that 0< x � x0. Then

x0 = f (x) x
f (x)

+ f (x0 − x) x0 − x
f (x0 − x)

and by the fact thatx0 is an extreme point ofB we have thatx is a positive multiple ofx0.
Thereforex0 is an extremal point ofP .

In [13,15] the geometry (dentability, extreme points) of the bases of cones are st
From these articles we refer some results below which we will use in the present pa

We start with the notion of the continuous positive projection which is defined in
as follows: Letx0 be an extremal point ofP . If there exists a continuous projectionΠ
of E onto the one-dimensional subspace generated byx0, such that 0� Π(x) � x for
eachx ∈ P , then we say that the pointx0 has(admits) a continuous, positive projection.
Then it is easy to show that a positive continuous linear functionalπ of E exists such
thatΠ(x) = π(x)x0 for eachx ∈ E with π(x0) = 1. If x0 admits a continuous, positiv
projectionΠ , then

E = [x0] ⊕ Y,
whereY is the kernel ofΠ and for anyx ∈E we have

x ∈E+ if and only if Π(x) ∈E+ andx −Π(x) ∈E+.

As it is proved in [13], ifE is a normed lattice (i.e.,E is a lattice and for eachx, y ∈E,
|x| � |y| implies that‖x‖ � ‖y‖) or if E is a Banach space with the Riesz decomposi
property and the coneP is closed and generating, then each extremal point ofP admits a
continuous positive projection. Recall that an ordered spaceX has the Riesz decompositio
property if for anyx, y, z ∈X+, x � y+z implies thatx = x1+x2, wherex1, x2 ∈X+ with
x1 � y, x2 � z. Also note that every linear lattice has the Riesz decomposition proper
the converse is not always true.

A linear functionalx ′ ofE strongly exposesa pointx of a subsetD ofE if x ′(x)� x ′(y)
for eachy ∈D and for any sequence{xn} inD x ′(xn)→ x ′(x), implies that‖xn−x‖ → 0.
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Theorem 1 [13, Proposition 3.4].Let B be a base for a coneP of a normed spaceE,
defined(the base) by a continuous linear functionalf onE and letx0 be an extreme poin
ofB which admits the continuous, positive projectionΠ(x)= π(x)x0, x ∈E. Then

(i) x0 is a strongly exposed point ofB if and only if there exists a uniformly monoton
continuous linear functional ofE;

(ii) If h is a uniformly monotonic, continuous linear functional onE, then the functiona
g = h(x0)π − h strongly exposes the pointx0 in B with g(x0)= 0.

Suppose thatK is a convex subset ofE′. The setK is weak-star dentableif for each
real numberε > 0 there exists a pointx ′

ε of K which does not belong to the weak-s
closure of the convex hull of the set{x ′ ∈ K | ‖x ′ − x ′

ε‖ � ε}. An elementx ′
0 ∈ K is a

weak-star strongly exposed pointof K if there existsx ∈ E which, as a linear functiona
onE′, strongly exposes the pointx ′

0 in K. If a subsetK of E′ is not weak-star dentabl
thenK does not have weak-star strongly exposed points. This holds because if we s
that a pointx of E strongly exposes a pointx ′

0 of K then for any real numberε > 0, we
have thatx separatesx ′

0 and the set{x ′ ∈K | ‖x ′ − x ′
0‖ � ε} which is impossible becaus

we have assumed that the setK is not weak-star dentable.

Theorem 2 [15, Corollary 2].LetP be a weak-star closed cone of the dualE′ of a normed
spaceE and letB be a norm-unbounded base for the coneP . Then each norm-unbounde
weak-star closed and convex subsetK ofB is not weak-star dentable.

Example 3. (i) Suppose thatE = �1 and thatP = �+1 is the positive cone of�1. Suppose
thaty ∈ �∞ with yn = 1/n for eachn. Theny defines the base

B = {
x ∈ �+1 | y(x)= 1

}
for the cone�+1 , and we remark thatB is unbounded becausenen ∈ B for eachn ∈ N, where
{en} is the usual Schauder basis of�1. For eachn, the pointnen of B is an extremal poin
of P and therefore also an extreme point ofB. Also the pointnen admits the continuous
positive projection

Πn(x)= πn(x)nen, whereπn(x)= 1

n
xn for eachx = (x1, x2, . . .) ∈ �1.

The elementh of �∞ with hi = 1 for eachi is a uniformly monotonic, continu
ous linear functional on�1. Therefore by Theorem 1, each extreme pointnen of B is
a strongly exposed point ofB and the functionalgn = h(nen)πn − h strongly exposes
the pointnen in B with gn(nen) = 0. Especially forn = 1 we have that the functiona
g1 = (0,−1,−1,−1, . . .) strongly exposese1 in B with g1(e1)= 0.

Now consider�1 as the dual ofc0. Then the cone�+1 is weak-star closed and the baseB
is unbounded and weak-star closed. By Theorem 2,B is not weak-star dentable, therefo
B does not have weak-star strongly exposed points. As we have remarked above,nen is a
strongly exposed point ofB for eachn. SinceB is not weak-star dentable, any strong
exposing functional ofnen cannot belong toc0. Indeed, as we have shown before,
functionalg = (0,−1,−1,−1, . . .) strongly exposese1 butg does not belong toc0.
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(ii) Suppose thatE = �p with 1< p < +∞, P = �+p is the positive cone of�p and
{en} is the usual Schauder basis ofE. Suppose thatB = {x ∈ �+p | f (x) = 1} is a base
for �+p which is defined by a linear functionalf = (f1, f2, . . .) ∈ �q . Sincef is strictly
positive we have thatfi > 0 for eachi. Thenen/fn ∈ B for eachn, therefore the baseB
is unbounded. Since the spaceE is reflexive and the coneP and the baseB are weakly
closed, by Theorem 2, we have that the baseB is not dentable. Therefore for anyn, the
extreme pointen/fn of B cannot be strongly exposed.

We can also show that the baseB does not have strongly exposed points as follows
first we remark thatE does not have uniformly monotonic, continuous linear function
Indeed if we suppose thath ∈ �q with h(x) � a‖x‖ for eachx ∈ E+ and for some rea
numbera > 0, we have thathn = h(en) � a‖en‖ = a for eachn, thereforea = 0, a con-
tradiction. Since each extreme pointen/fn of B admits a continuous positive projectio
by Theorem 1 we have thaten/fn is not a strongly exposed point ofB becauseE does not
have uniformly monotonic, continuous linear functionals.

For a further study of the geometry of convex sets (dentability, extreme points
refer to the book of Diestel and Uhl [3]. Also for ordered spaces we refer to the boo
Jameson [7] and Aliprantis [1].

Let L :E → X be a continuous linear operator ofE into a normed spaceX. If L is
one-to-one andL−1 is continuous, we say thatL is anisomorphismof E intoX and also
thatE is embeddablein X. The operatorL′ :X′ →E′ such that

(L′x ′)(x)= x ′(Lx) for eachx ′ ∈X′ andx ∈E,
is theadjoint of L. This operator is continuous with‖L′‖ = ‖L‖. Suppose thatE,X are
ordered normed spaces andL is an isomorphism ofE into X. If for any x ∈ E it holds
x ∈ E+ if and only if L(x) ∈ X+, thenL is an order isomorphismof E into X and if
moreover‖Lx‖ = ‖x‖ for eachx, we say thatL is anorder isometry. If in the two previous
definitionsE,X are vector lattices, we say also thatL is alattice isomorphismand alattice
isometry, respectively.

Recall that an ordered spaceE is avector latticeif for any two elementsx, y ∈ E the
supremum of{x, y} in E exists. Then the infimum of{x, y} also exists and we denote b
x ∨ y and byx ∧ y the supremum and the infimum of{x, y}, respectively. A subspaceX
of E is asublatticeor aRiesz subspaceof E if for any x, y ∈X, x ∨ y andx ∧ y belong
toX.

3. Embeddability of L1(µ) in dual spaces

In this section we will denote by(Ω,Σ,µ) a measure space, where the measureµ takes
values in the interval[0,+∞] andΣ is aσ -algebra of measurable subsets ofΩ . Also we
will denote byT an one-to-one bounded linear operator ofL1(µ) into the norm dualE′ of
a Banach spaceE. We will suppose that the spaceL1(µ) is infinite dimensional, the norm
dual ofL1(µ) is the spaceL∞(µ) and thatµ(A) <∞ for any atomA of µ.

Recall thatL1(µ) is the space of absolutely integrable functionsf :Ω→ R with norm
‖f ‖1 = ∫ |f (t)|dµ andL∞(µ) is the space of measurable, essentially bounded func
Ω
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f :Ω→ R with norm‖f ‖∞ = inf{a ∈ R+ | |f (t)| � a for eacht ∈Ω}. The above space
in the pointwise ordering, are Banach lattices with positive conesL+

1 (µ) andL+∞(µ),
respectively. Since in these spaces the equality of functions is in the sense of the
everywhere we will say “for everyt” instead of “for almost allt .” A measurable subsetA
of Ω is anatomof µ if µ(A) > 0 and for eachB ∈Σ with B ⊆ A we have thatµ(B)= 0
orµ(B)= µ(A).

We remark here that if the measure space(Ω,Σ,µ) is σ -finite thenL∞(µ) is the
dual ofL1(µ) and any atom ofµ is of finite measure. If the setΩ is infinite andµ is
the counting measure defined on the subsets ofΩ , then the above assumptions are a
satisfied. For any setΓ denote byc0(Γ ) the space of real vectorsa = (ai)i∈Γ , such that
for each real numberε > 0, the set{i ∈ Γ | |ai|> ε} is finite, with norm‖a‖0 = supi∈Γ |ai |
and by�1(Γ ) the space of real vectorsa = (ai)i∈Γ , with norm‖a‖1 = ∑

i∈Γ |ai|. These

spaces, in the pointwise ordering, are Banach lattices with positive conec+0 (Γ ) and�+1 (Γ ),
respectively.

Let A ∈ Σ . We will denote byχA the characteristic functionof A and byµA the
restriction ofµ on A, i.e.,µA(B) = µ(A ∩ B) for eachB ∈ Σ . The setA is infinitely
decomposableif A = ⋃∞

i=1Ai , where{Ai} is a countable family of disjoint measurab
subsets ofΩ with µ(Ai) > 0 for eachi. Therefore the setA is not infinitely decompos
able if µ(A) = 0 or if A is the union of a finite number of atoms. Note thatL1(µA) is
lattice isometric to the subspaceFA = {ξχA | ξ ∈ L1(µ)} of L1(µ) andL1(µA) is infinite
dimensional if and only if the setA is infinitely decomposable.

Definition 4. For any measurable subsetA ofΩ we will denote byK(A) the cone

K(A)= {
T (ξχA) | ξ ∈ L+

1 (µ)
}

and byQ(A) the weak-star closure of the coneK(A) in E′.
Also we will denoteP(A) the dual wedge ofK(A) in E and byP(A)0 the dual wedge

of P(A) in E′.

Recall that

P(A)= {
x ∈E | x ′(x)� 0 for eachx ′ ∈K(A)}

is the dual wedge ofK(A) in E and

P(A)0 = {
x ′ ∈E′ | x̂(x ′)� 0 for eachx ∈ P(A)}.

SinceP(A)0 is weak-star closed andK(A)⊆ P(A)0, we have that

K(A)⊆Q(A)⊆ P(A)0.
Also the annihilator

M = {
x ∈E: x ′(x)= 0 for anyx ′ ∈ T (

L1(µ)
)}

of T (L1(µ)) in E is contained inP(A). Therefore if the range ofT is not weak-star dens
in E′, thenP(A) is a wedge ofE but not a cone.
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We will say that an elementy of E defines an unbounded base for the coneQ(A), if ŷ
is strictly positive onQ(A) and the set{

x ′ ∈Q(A) | ŷ(x ′)= 1
}

is norm unbounded inE′. As we will see in Theorem 12, the existence of certain
bounded bases for cones inE′ is crucially related to properties of operators ofL1(µ) into
the dual spaceE′.

The assumption that̂y is strictly positive onQ(A) implies thatQ(A) is a cone. In-
deedx ′,−x ′ ∈Q(A) implies thatŷ(x ′)= 0, thereforex ′ = 0 becausêy is strictly positive
onQ(A).

In the following proposition we give the properties ofK(A) andQ(A). Some of them
are known results of the theory of ordered spaces.

Proposition 5. For any measurable subsetA ofΩ we have

(i) K(A) is a cone;
(ii) Q(A)= P(A)0;
(iii) Q(A) is a cone if and only ifP(A)− P(A) is dense inE;
(iv) An elementy of E defines an unbounded base for the coneQ(A) if and only if the

functional ŷ is strictly positive onQ(A) and ŷ defines an unbounded base for t
coneK(A);

(v) If an elementy of E defines an unbounded base for the coneQ(A), the setA is
infinitely decomposable.

Proof. (i) Suppose thatx ′ ∈ K(A) ∩ (−K(A)). Then there existξ, η ∈ L+
1 (µ) with

x ′ = T (ξχA) andx ′ = T (−ηχA). SinceT is an isomorphism we have thatξχA = −ηχA,
thereforeξχA = 0 becauseξχA ∈ L+

1 (µ) ∩ (−L+
1 (µ)). So we have thatx ′ = 0, therefore

K(A) is a cone.
(ii) As we have remarked aboveQ(A)⊆ P(A)0. Suppose thatx ′

0 ∈ P(A)0\Q(A). Then
there existsz0 ∈ E separatingx ′

0 andQ(A), i.e., ẑ0(x ′
0) < a � ẑ0(x ′) for eachx ′ ∈Q(A).

Since 0∈Q(A), we have thata � 0, thereforêz0(x ′
0) < 0. Also for eachx ′ ∈ K(A) and

eachλ ∈ R+, we have thatλx ′ ∈Q(A), thereforeẑ0(λx ′)� a for eachλ ∈ R+, therefore
ẑ0(x

′)� 0 for eachx ′ ∈ K(A). By the definition ofP(A) we have thatz0 ∈ P(A). Since
x ′

0 ∈ P(A)0, we have also that̂z0(x ′
0)� 0, a contradiction. HenceP(A)0 =Q(A).

(iii) Suppose thatZ is the closure ofP(A)− P(A) in E. Suppose thatQ(A) is a cone.
If we suppose thatx0 ∈ E \ Z, there exists an elementx ′ of E′ which is zero onZ and
x ′(x0) > 0. This implies thatx ′(x) = 0 for eachx ∈ P(A) and−x ′(x)= 0 for eachx ∈
P(A), thereforex ′ ∈Q(A)∩ (−Q(A)) hencex ′ = 0 because we have assumed thatQ(A)

is a cone. This is a contradiction. ThereforeZ = E. For the converse suppose thatZ = E
and thatx ′ ∈Q(A) ∩ (−Q(A)). Then it is easy to show thatx ′(x)= 0 for eachx ∈ P(A)
thereforex ′ is equal to zero onE. Hencex ′ = 0 andQ(A) is a cone.

(iv) Suppose that an elementy of E is strictly positive onQ(A) and also that it define
an unbounded base for the coneK(A). Then it is clear that the baseB for the coneQ(A)
which is defined byy is also unbounded. Suppose now that an elementy of E defines an
unbounded base for the coneQ(A). Thenŷ is strictly positive onQ(A) and the setB =
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{x ′ ∈Q(A) | ŷ(x ′) = 1} is unbounded. Suppose that the setD = {x ′ ∈ K(A) | ŷ(x ′)= 1}
is bounded. Then eachx ′ ∈ B is the weak-star limit of a net(x ′

λ)λ∈Λ of K(A). Therefore
x ′ is also the weak-star limit of the net(x ′

λ/ŷ(x
′
λ))λ∈Λ of D. Therefore the setB, as the

weak-star closure of the bounded setD is also bounded, a contradiction. Hence the seD
is unbounded, sôy defines also an unbounded base for the coneK(A).

(v) Suppose that an elementy of E defines an unbounded base for the coneQ(A).
The coneQ(A) is closed in the norm topology ofE′ and alsoQ(A) has an unbounde
base, thereforeQ(A) is infinite dimensional because as we have remarked in the pre
section, a finite-dimensional closed cone of a Banach space cannot have an unb
base. Since the coneQ(A) is infinite dimensional, we have that the setA is infinitely
decomposable. ✷

In the main theorem below we will assume that

(a) The setQ(Ω) is a cone; and
(b) For each infinitely decomposable subsetA ofΩ there are a measurable subsetD of A

and an elementy of E such thaty defines an unbounded base for the coneQ(D).

In the following examples we study the above properties for some simple cases
spacesL1(µ), E and the operatorT . Examples (i) and (ii) satisfy properties (a) and
but in examples (iii) and (iv) property (b) fails. Examples (i) and (ii) are similar but t
difference shows the meaning of (b). Especially in (i), for any infinitely decompos
setA an element ofE exists which defines an unbounded base for the coneQ(A) but in
example (ii) the existence of such an element ofE is not guaranteed for anyA. However
in example (ii), for any infinitely decomposable setA we can find a measurable subsetD
of A and an elementy of E which defines an unbounded base for the coneQ(D). Note
also that in (b) the setD is an infinitely decomposable subset ofA. This holds becaus
the assumption that the coneQ(D) has an unbounded base implies thatQ(D) is infinite
dimensional, therefore the setD is infinitely decomposable.

Example 6. (i) Suppose thatE = c0, and thatT : �1 → �1 = c′0 is the identity map. (The
measureµ is just counting measure on the subsets ofN.) Since the positive cone of�1
is weak-star closed we have thatQ(Ω) = �+1 , thereforeQ(Ω) is a cone. Also it is eas
to show that a subset ofN is infinitely decomposable if and only if it is infinite. So fo
any infinite subsetA of N we have thatK(A)= {ξχA | ξ ∈ �+1 }. The elementy of E with
yi = 0 if i /∈A andyi = 1/i for eachi ∈A defines the base

B =
{
ξχA

∣∣ ξ ∈ �+1 ,
∑
i∈N

yiξi = 1

}

for the coneK(A). The baseB is unbounded becausenen ∈ B for eachn ∈ A, where
{en} is the usual Schauder basis of�1. Also the coneK(A) is weak-star closed, therefo
K(A)=Q(A) and the elementy of E defines an unbounded base for the coneQ(A).

(ii) Suppose thatE = c0(Γ ) and thatT : �1(Γ )→ �1(Γ ) is the identity map. (The mea
sureµ is just counting measure on the subsets ofΓ .) As in the previous case we have th
Q(Ω)= �+(Γ ), thereforeQ(Ω) is a cone. Suppose thatA is an infinitely decomposabl
1
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subset ofΓ . Then the setA is infinite and it is easy to show thatK(A) is weak-star closed
soQ(A) = K(A). If the setA is uncountable andy ∈ E, theny cannot be strictly posi
tive onQ(A) because the support ofy is at most countable. However, for any counta
subsetD = {γn | n ∈ N} of A the elementy = (yγ ) of E with yγ = 0 for eachγ /∈D, and
yγn = 1/n, for eachn, defines the base

B =
{
ξχD

∣∣ ξ ∈ �+1 (Γ ),
∞∑
n=1

yγnξγn = 1

}

for the coneK(D). As in the case of�1, the baseB is unbounded becauseneγn ∈ B for
eachn. So for each infinitely decomposable subsetA of Ω an infinitely decomposabl
subsetD of A and an elementy ∈ E exist such thaty defines an unbounded base for t
coneQ(D).

(iii) Suppose thatT is the natural embedding of�1(Γ ) in its second dual. The
K(Ω) = T (�+1 (Γ )) = �+1 (Γ ) andP(Ω) = �+∞(Γ ) is the dual cone ofK(Ω) in �∞(Γ ).
Since the dual cone of�+∞(Γ ) in �′∞(Γ ) is the positive cone of�′∞(Γ ), we have tha
Q(Ω)= (�′∞(Γ ))+ andQ(Ω) is a cone.

Suppose that the elementf of �∞(Γ ) defines an unbounded base for the co
(�′∞(Γ ))+. Thenf is strictly positive on(�′∞(Γ ))+ and by Proposition 5 we have th
the set

B = {
x ∈ �+1 (Γ ) | f (x)= 1

}
is unbounded. Sincef is strictly positive on�+1 (Γ ) we have also thatfi = f (ei) > 0
for eachi ∈ Γ . Suppose that{xν} is an unbounded sequence inB. If we suppose tha
fi > ρ > 0 for eachi, we have

1 = f (xν)=
∑
i∈Γ
fix

ν
i > ρ

∑
i∈Γ
xνi = ρ‖xν‖1,

a contradiction because the sequence{xν} is unbounded. Therefore there exists a seque
{iν} in Γ with limν→∞ fiν = 0. Suppose thatL is the set of allg ∈ �∞(Γ ) for which
limν→∞ giν exists. ThenL is a sublattice of�∞(Γ ) and suppose thatϑ is the linear func-
tional onL with ϑ(g) = limν→∞ giν for eachg ∈ L. Thenϑ is positive and continuous
therefore by [7, Proposition 4.2.4],ϑ has a positive and continuous extension on�∞(Γ )
which we denote again byϑ . Then we have thatϑ(f )= 0. This is a contradiction becau
ϑ �= 0 and we have assumed thatf is strictly positive on(�′∞(Γ ))+. Therefore an elemen
f ∈ �+∞(Γ ) which defines an unbounded base for the coneQ(Ω) does not exist. Also fo
any infinite subsetA of Γ we have thatK(A) = �+1 (A) andQ(A) = (�′∞(A))+ and as
above, we have that an element of�∞(A) which defines an unbounded base for the c
Q(A) does not exist.

(iv) Let E be the spaceC[0,1] of continuous real valued functions defined on[0,1].
Then by the Kakutani representation theorem,E′ as anAL-space is lattice isometric to a
L1(µ) space and suppose thatT is a lattice isometry ofL1(µ) ontoE′. ThenT (L+

1 (µ))=
E′+. Since the coneE′+ is weak-star closed we have thatQ(Ω)= E′+ is a cone. Suppos
that an elementy of E defines an unbounded base for the coneE′+. Theny ∈E+ andy is
strictly positive onE′+. If we suppose thaty(t)= 0 for somet ∈ [0,1], thenŷ is equal to
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zero on the Dirac measureδt supported at{t}, a contradiction. Thereforey(t)� α > 0 for
eacht . The set

B = {
m ∈E′+ | ŷ(m)= 1

}
is the base forE′+ defined byy. For eachm ∈B we have

1 =
∫

[0,1]
y dm� αm

([0,1]),
therefore‖m‖ � 1/α, a contradiction because we have assumed that the baseB is un-
bounded. Therefore an elementy ∈ E+ which defines an unbounded base for the c
Q(Ω) does not exist.

Definition 7. Denote byc0(µ) the set of functionsf ∈ L∞(µ) with the property: For
each infinitely decomposable setA and each real numberε > 0 there exists an infinitely
decomposable setB ⊆A such that‖f χB‖∞ � ε.

Lemma 8. For eachf ∈ L∞(µ) \ c0(µ), there exists an infinitely decomposable setA and
a real numberρ > 0 such that|f (t)|> ρ for eacht ∈A.

Proof. By the definition ofc0(µ) there exists an infinitely decomposable setA and a real
numberρ > 0 such that‖f χB‖∞ > ρ for each infinitely decomposable subsetB of A.
Therefore the setD = {t ∈ A | |f (t)| � ρ} is not infinitely decomposable. Hence the
A \D is infinitely decomposable with|f (t)|> ρ for eacht ∈A \D. ✷
Lemma 9. Letf ∈ c0(µ) andA ∈Σ withµ(A) > 0.

(i) If A does not contain atoms, then‖f χA‖∞ = 0.
(ii) If f �= 0, then the measureµ has at least one atom.
(iii) If A is an atom ofµ, thenf (t)= ‖f χA‖∞ for all t ∈A.

Proof. Let a real numberε > 0 and letAε = {t ∈A | |f (t)|> ε}. Suppose thatµ(Aε) > 0.
SinceA does not contain atoms, each measurable subsetB of Aε with µ(B) > 0 is infi-
nitely decomposable with‖f χB‖∞ > ε. This contradicts the definition ofc0(µ), therefore
µ(Aε) = 0. Hence‖f χA‖∞ = 0 and statement (i) is true. Iff �= 0, then by (i)µ has at
least one atom, therefore (ii) is also true. (iii) is obvious becauseA is an atom. ✷

Two atomsA,B of µ areequivalentif µ(A�B)= 0, whereA�B = (A\B)∪(B \A).
In this article we will identify the atoms ofµ with the corresponding equivalence clas
and we will denote byA the set of atomsof µ. The measureµ is atomicor purely atomic,
if each measurableA with µ(A) > 0, contains at least one atom ofµ.

If the measureµ is atomic then�1(A) is lattice isometric (we have assumed thatµ(A)

<∞ for any atomA) toL1(µ) and the map
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U(α)=
∑

A∈supp(α)

αA

µ(A)
χA, α ∈ �1(A), (1)

is a lattice isometry of�1(A) ontoL1(µ).

Proposition 10. The setc0(µ) is a closed sublattice ofL∞(µ). If A= ∅, thenc0(µ)= {0}
and ifA �= ∅, the map

Ψ (α)=
∑

A∈supp(a)

αAχA, α ∈ c0(A),

is a lattice isometry ofc0(A) ontoc0(µ).

Proof. If A= ∅, then by Lemma 9 we have thatc0(µ)= {0}.
Suppose now thatA �= ∅ andf,g ∈ c0(µ). It is clear thatλf ∈ c0(µ) for eachλ ∈ R.

For each infinitely decomposable setA and eachε > 0 there exist infinitely decomposab
setsA1 ⊆ A andA2 ⊆ A1 with ‖f χA1‖∞ � ε/2 and‖gχA2‖∞ � ε/2. Therefore‖(f +
g)χA2‖∞ � ‖f χA2‖∞ + ‖gχA2‖∞ � ε. Also it is easy to show that‖(f ∨ g)χA2‖∞ � ε.
Thereforef + g,f ∨ g ∈ c0(µ) andc0(µ) is a sublattice ofL∞(µ).

For eachα ∈ c0(A) denoteΨ (α) by fα . If we suppose thatfα /∈ c0(µ) then by
Lemma 8, there exists an infinitely decomposable subsetD of Ω and a real numberε > 0
such that|fα(t)| > ε for eacht ∈ D. Since the set{A ∈ supp(α) | |αA| > ε} is finite, we
have that the setD is contained in the union of a finite number of atoms. ThereforeD is
not infinitely decomposable, a contradiction. Hencefα ∈ c0(µ) and it is easy to show tha
‖α‖0 = ‖fα‖∞. To prove that the mapΨ is onto, for eachf ∈ c0(µ) define the vecto
αf = (αfA)A∈A with

α
f
A = ‖f χA‖∞ if f (t)� 0 for all t ∈A

and

α
f
A = −‖f χA‖∞ if f (t) < 0 for all t ∈A.

We shall show thatαf ∈ c0(A). For each real numberε > 0 we putAε = {A ∈ A |
|αfA| > ε}. This set is finite because if we suppose thatAε is infinite we take a count
able unionB of elements ofAε and we have that|f (t)|> ε for all t ∈ B, a contradiction
because we have assumed thatf ∈ c0(µ) and the setB is infinitely decomposable. Henc
αf ∈ c0(A) and it is easy to show thatΨ (αf )= f , therefore the map is onto. Also it is ea
to show thatΨ is linear and thatΨ,Ψ−1 are positive. ThereforeΨ is a lattice isometry. ✷
Remark 11. Suppose that the measure space(Ω,Σ,µ) is σ -finite. Then we have th
following:

The setA of atoms ofµ is at most countable, and the setΩ is decomposed in th
setsΩ1,Ω2, whereΩ1 = ⋃

A∈AA,Ω2 =Ω\Ω1. Suppose thatµ1 = µΩ1 andµ2 = µΩ2.
ThenL1(µ) = L1(µ1) ⊕ L1(µ2) andL∞(µ) = L∞(µ1)⊕ L∞(µ2), whereL1(µ1) and
L∞(µ1) are order isometric to�1(A) and�∞(A), respectively. Any elementf of c+0 (µ)
is decomposed in the elementsf1, f2 with f1 ∈L+∞(µ1) andf2 ∈ L+∞(µ2). Then

0 � f1, f2 � f,
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and by the definition ofc0(µ) it follows that f1, f2 ∈ c0(µ). SinceΩ2 does not contain
atoms, by Lemma 9, we have thatf2 = 0, thereforef = f1. This implies thatc0(µ) ⊆
L∞(µ1) and by Proposition 10,c0(µ) is lattice isometric toc0(A). Therefore

L1(µ)= �1(A)⊕L1(µ2), L∞(µ)= �∞(A)⊕L∞(µ2),

and

c0(µ)= c0(A)⊆ �∞(A).
Note also that if the familyA is infinite, then�∞(A)= �∞ and�1(A)= �1.

In the beginning of this section we have assumed that(Ω,Σ,µ) is a measure spac
the measureµ takes values in the interval[0,+∞], L1(µ) is infinite dimensional with
L′

1(µ)= L∞(µ) and thatµ(A) <∞ for any atomA of µ. Recall thatA is the set of atoms
(equivalence classes) ofµ and that for any linear operatorT :L1(µ)→ E′ denote byT ′
the adjoint ofT . Under these assumptions and in according to the notations of Definit
we state the following theorem.

Theorem 12. LetT be an one-to-one bounded linear operator ofL1(µ) into the norm dual
E′ of a Banach spaceE. If

(a) Q(Ω) is a cone; and
(b) For each infinitely decomposable subsetA ofΩ there are a measurable subsetD ofA

and an elementy ofE such thaty defines an unbounded base for the coneQ(D),

then

(i) T ′(Ê)⊆ c0(µ) with T ′(P̂ (Ω))⊆ c+0 (µ);
(ii) The measureµ is atomic. In particular the spaceL1(µ) is lattice isometric to�1(A).

Proof. SinceQ(Ω) is a cone,P(Ω) − P(Ω) is norm dense inE, by statement (iii) of
Proposition 5. So to prove thatT ′(Ê)⊆ c0(µ) it suffices to show thatT ′(P̂ (Ω))⊆ c+0 (µ).
We begin with an observation.

For eachx ′′ ∈E′′ with T ′x ′′ = r ∈ L∞(µ), for eachξ ∈ L1(µ) and eachB measurable
we have∫

B

ξ(t)r(t) dµ= r(ξχB)= T ′x ′′(ξχB)= x ′′(T ξχB).

Suppose thatx0 ∈ P(Ω) and thatT ′(x̂0)= r. Then for eachξ ∈L+
1 (µ) we have

0 � (T ξ)(x0)= x̂0(T ξ)=
∫
Ω

ξ(t)r(t) dµ

and it follows thatr ∈ L+∞(µ). Now suppose thatr = T ′(x̂0) /∈ c0(µ). We will use the
elementx0 and assumption (b) to produce a weak-star closed, weak-star dentable
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unbounded baseK for a weak-star closed coneR in a dual space, which contradicts Th
orem 2. This will show that the assumptionT ′(x̂0) /∈ c0(µ) is impossible. Here are th
details.

By Lemma 8, there are an infinitely decomposable subsetA of Ω and a real numbe
ρ > 0 so thatr(t) > ρ for eacht ∈ A. We may also suppose thatρ < ‖T ‖. So for each
ξ ∈L+

1 (µ) we have

x̂0(T ξχA)=
∫
A

ξ(t)r(t) dµ > ρ

∫
A

ξ(t) dµ= ρ‖ξχA‖1 � ρ

‖T ‖
∥∥T (ξχA)∥∥. (2)

Next we shall show that

x̂0(x
′)� ρ

2‖T ‖‖x ′‖ (3)

for eachx ′ ∈Q(A). To this end suppose thatx ′ ∈Q(A), x ′ �= 0 and thatx ′ is the weak-sta
limit of the netT (ξαχA), whereξα ∈ L+

1 (µ) for anyα. If we suppose that̂x0(x
′)= 0, then

0 = lim x̂0(T ξαχA)� lim
ρ

‖T ‖
∥∥T (ξαχA)∥∥

by (2) and the netT (ξαχA) norm converges to zero. Thereforex ′ = 0, a contradiction
Hencex̂0(x

′) > 0 and using (2) again we may find a subnet ofT (ξαχA) (which we do not
rename) with

2x̂0(x
′) > ρ

‖T ‖
∥∥T (ξαχA)∥∥

for eachα. Since closed bounded balls inE′ are weak-star compact and the netT (ξαχA)
weak-star converges tox ′ we have that

2x̂0(x
′)� ρ

‖T ‖‖x ′‖,
as desired.

By assumption (b) there is a measurable subsetD of A and an elementy ∈E such that
y defines an unbounded base for the coneQ(D), i.e., ŷ is strictly positive onQ(D) and
the set

C = {
x ′ ∈Q(D) | ŷ(x ′)= 1

}
is unbounded. Now consider the cone

R = R+ ⊕Q(D)= {
(λ, x ′) | λ� 0, x ′ ∈Q(D)}

in (R ⊕E)′ and let

K = {
(λ, x ′) ∈R | λ+ ŷ(x ′)= 1

}
.

ThenK is a base for the coneR which is defined by the element(1, y) of R ⊕E. Observe
that(1,0) ∈K and that(0, x ′) ∈K for eachx ′ ∈ C. It is clear that the baseK is unbounded
becauseC is unbounded. Note that sinceQ(D) ⊆Q(A) the linear functional̂x0 satisfies
(3) for all x ′ ∈Q(D). So for eachλ ∈ R+ andx ′ ∈Q(D) we have

(1, x̂0)(λ, x
′)= λ+ x̂0(x

′)� λ+ ρ ‖x ′‖ � ρ (
λ+ ‖x ′‖). (4)
2‖T ‖ 2‖T ‖
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Therefore the functionalh= (1, x̂0) is uniformly monotonic on the coneR. Now observe
that the point(1,0) is an extreme point ofK with continuous positive projection

Π(λ,x ′)= π(λ, x ′)(1,0)= λ(1,0),
whereπ(λ, x ′)= λ for each(λ, x ′) ∈ (R ⊕E)′. Therefore by Theorem 1, the functiona

g = h(1,0)π − h= −(0, x̂0)

strongly exposes the point(1,0) inK. Since(0, x0) ∈ R⊕E we have that(1,0) is a weak-
star strongly exposed point ofK. So the baseK is weak-star dentable. On the other ha
the coneR is weak-star closed becauseQ(D) is weak-star closed. Also the baseK is
weak-star closed because it is defined by the element(1, y) of R ⊕E. But by Theorem 2
the baseK of R is not weak-star dentable and we have arrived at a contradiction. S
have thatT ′(x̂0)= r ∈ c+0 (µ) and the proof of (i) is complete.

(ii) Suppose that a measurable subsetA contains no atoms and thatµA is the restriction
of µ onA. ThenL1(µA) is lattice isometric to the sublatticeFA = {ξχA | ξ ∈ L+

1 (µ)} of
L1(µ) and we identifyL1(µA) with FA. AlsoL1(µA) is infinite dimensional becauseA is
infinitely decomposable. Suppose thatTA is the restriction ofT onFA. ThenTA is an one-
to-one, continuous linear operator ofL1(µA) into E′ and the assumptions of the theore
are satisfied forTA. By Proposition 10,c0(µA)= {0} because the measureµA is nonatomic
and by part (i) of this theoremT ′

A(Ê)⊆ c0(µA)= {0}. This implies thatTA = 0 and (since
TA is one-to-one) thatL1(µA)= {0}, a contradiction. Therefore each measurable subsA
has at least one atom, therefore the measureµ is atomic andL1(µ) is lattice isometric to
�1(A), as asserted.✷
Corollary 13. LetT be an isomorphism ofL1(µ) intoE′. Suppose that

(a) Q(Ω) is a cone; and
(b) For each infinitely decomposable subsetA ofΩ there are a measurable subsetD ofA

and an elementy ofE such thaty defines an unbounded base for the coneQ(D).

If U is the lattice isometry of�1(A) ontoL1(µ) defined in(1) andF = T oU , then

(i) F ′(Ê) = c0(A). The quotient spaceE/M, whereM is the annihilator ofT (L1(µ))

in E, is isomorphic toc0(A).
(ii) If moreoverT (L1(µ)) is weak-star dense inE′, thenF ′|

Ê
is an isomorphism of̂E

ontoc0(A).

Proof. By the theorem, the measureµ is atomic, therefore a lattice isometryU of �1(A)
ontoL1(µ) defined by (1), exists. Consider the measure space(A,2A,m), wherem is
the counting measure onA. Then the operatorF : �1(A)→ E′ is an into isomorphism
which satisfies the assumptions of the previous theorem. IndeedF(�+1 (A))= T (L+

1 (µ)),
therefore the assumption (a) holds. Also for any infinite subsetA′ of A, we consider a
countable subsetB of A′ and we take the unionB of the elements ofB. ThenB is an
infinitely decomposable subset ofΩ , therefore there are an infinitely decomposable su
D of B and an elementy of E such thaty defines an unbounded base for the coneQ(D).
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Then the subsetD of B with elements the atoms ofD is infinitely decomposable and
is easy to show thaty defines an unbounded base for the weak-star closure of the
{F(ξχD) | ξ ∈ �+1 (A)}, hence the assumption (b) is also satisfied.

The adjointF ′ :E′′ → �∞(A) of F is continuous onto and by the theorem,F ′(Ê) ⊆
c0(A).

Suppose thatS = F ′|
Ê

is the restriction ofF ′ on Ê. Then we may suppose thatS :E→
c0(A) and it is easy to show thatF is the adjoint ofS, i.e.,S′ = F . By our assertion tha
F is an isomorphism of�1(A) into E′ it follows that S is onto (see, for example, [10
Theorem 3.1.22, p. 293]). ThereforeF ′(Ê) = c0(A). Hence the operatorF ′ defines an
isomorphism ofE/M onto c0(A). If we suppose moreover thatT (L1(µ)) is weak-star
dense inE′, thenM = {0}, thereforeF ′ is an isomorphism of̂E ontoc0(A). ✷
Corollary 14. For any infinite-dimensional Banach spaceE the following statements ar
equivalent:

(i) E is isomorphic toc0(Γ );
(ii) There exists an isomorphismT of �1(Γ ) into the dual spaceE′ of E with weak-star

dense range inE′ such that: The weak-star closure ofT (�+1 (Γ )) in E′ is a cone and
for each infinite subsetA of Γ , there are a countable subsetD of A and an elemen
y of E such thaty defines an unbounded base for the weak-star closure of the
{T (ξχD) | ξ ∈ �+1 (Γ )}.

Proof. Suppose thatL is an isomorphism ofE ontoc0(Γ ) and thatT is the adjoint ofL.
ThenT is an isomorphism of�1(Γ ) ontoE′ andT is also weak-star to weak-star co
tinuous. ThereforeT (�+1 (Γ )) is a weak-star closed cone, hence the weak-star closu
T (�+1 (Γ )) is a cone. As we have shown in (ii) of Example 6, for each infinite subsA
of Γ , a countable subsetD of A and an elementη ∈ c0(Γ ) exist such thatη defines an
unbounded base for the coneCD = {ξχD | ξ ∈ �+1 (Γ )}, i.e., the set

B = {
ξχD | ξ ∈ �+1 (Γ )with(ξχD)(η)= 1

}
is unbounded. Since the coneCD is weak-star closed its imageK(D) = {T (ξχD) | ξ ∈
�+1 (Γ )} is also a weak-star closed cone and it is easy to show thaty = L−1(η), defines the
unbounded base

T (B)= {
x ′ ∈K(D) | x ′(y)= 1

}
for the coneK(D).

For the converse, suppose that statement (ii) is true. Then each infinitely decomp
subsetA of Γ is infinite, therefore by our assumptions a countable subsetD of A and an
elementy ∈E exist such thaty defines an unbounded base for coneQ(D). HenceT ′ is an
isomorphism ofE ontoc0(Γ ), therefore the converse is also true.✷
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