Available at

((/()ff"ﬂ'(f/‘fy.
www.ElsevierMathematics.com MATHEMATICAL
‘s POWERED BY sclENcE@DlRECT"’ ANALYS]S AND
ELSEVIER J. Math. Anal. Appl. 289 (2004) 126-142 APPLICATIONS

www.elsevier.com/locate/jmaa

Embeddability ofL1(w) in dual spaces, geometry
of cones and a characterizationcgf

loannis A. Polyrakis

Department of Mathematics, National Technical University of Athens, Zografou 157 80, Athens, Greece
Received 7 December 2001
Submitted by J. Diestel

Abstract

In this article we suppose tha®, X, 1) is a measure space afidan one-to-one, linear, continu-
ous operator of.1(u) into the dualE’ of a Banach spacg. For any measurable satconsider the
imageT(Lir(MA)) of the positive cone of the spadq (11 4) in E’, wherew 4 is the restriction of the

measurex on A. We provide geometrical conditions on the com{if(uA)) which yield that the
measureu is atomic, i.e., thal1(u) is lattice isometric t&q (A), where A denotes the set of atoms
of u. This result yields also a new characterizatior (™).

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The study of the isomorphic copies bf (x) in dual spaces is an old problem of func-
tional analysis. In 1938, Gelfand [6] proved tHat[O, 1] is not isomorphic to a conjugate
Banach space and, in 1959, Dieudonné [4] raised the problem:

Characterize thd.1() spaces which are isomorphic to a conjugate Banach space.

Motivated by the above problem and by some known results on the geometry of cones,
in this article we study the embeddability bf () in dual spaces in connection with the
geometry of the images of the positive cond.af) and its subcones. We show that some
properties of these cones are not only characteristic for the meadwrealso affect the
geometry of the predual space. Especially we suppose fhaP( 1) is a measure space
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and T is an one-to-one, linear continuous mapIaf(t) into the dualE’ of a Banach
spaceE. We use a result of [15] which states that any weak-star closed cone of a dual
space cannot have an unbounded, weak-star closed and weak-star dentable base. Recall
that a base for a cone is an intersection of the cone with an affine hyperplane defined
by a strictly positive linear functional. To this end for any measurable subsaf 2

with £(A) > 0 which is not the union of a finite number of atoms (we call any such a

set infinitely decomposable) we consider the restrictionof i« on A and we study the
geometry of the imag@(Lif(uA)) of the positive cone of.1(i4). The geometry of these

cones is very important in our study.

In particular for each infinitely decomposable setwe study the weak-star closure
Q(A) of the coneT(Lir(y,A)). Note that any sef(A) is a wedge because it is the weak-
star closure of a cone and also tlgatA) is infinite dimensional because we have assumed
that the setA is infinitely decomposabile. In this article we suppose that the we@ga3
have the following two properties.

At first we suppose thahe setQ(£2) is a coneSinceQ(£2) is a wedge, this property
is satisfied if and only ifQ(£2) N (—Q(£2)) = {0}. The assumption thad (£2) is a cone
implies that any wedg@(A) is a cone becausg@(A) C Q(£2). In the sequel we study the
existence of norm unbounded base®if¥) and its subcones which are defined (the bases)
by elements of the spade Especially we suppose thiatr any infinitely decomposable set
A there are a measurable subsBtof A and an elemeny of E such thaty, as a linear
functional onE’, defines an unbounded base for the can®). As we will see later, this
property of cones is the crucial property of this article. If we assume that the above two
properties are satisfied, then we prove (Theorem 12) that

() The imageT’(E) of E via the adjointT’ of T is contained inco(A), whereA is the
set of atoms ofx; and
(i) The measure is atomic. Thereford. 1 () is lattice isometric td1(A).

As a corollary we prove that if the operatBris an into isomorphism, thefi’(E) =
co(A). Moreover if we suppose that the rangefols weak-star dense if’, we show that
T’ is an isomorphism oF ontocg(A). Finally we give a new characterization af(I")
based on the above properties of cones.

As we have noted before, the methodology and the proofs of this article are based on the
geometry of cones. So Section 2 of this work is an introduction to the geometry of cones
and to the properties of their bases. In Section 3 we study the images of the positive cone
of L1(u) and its subcones iB’ via the operatof. In the sequel we define a subspace of
Lo (1) which is denoted byp(u) and plays an important role in our study. Specifically
we prove thato(u) is lattice isometric to the spaeg(A). Moreover, as we will see in
the proof of the main result, the assumption thiatr) ¢ co(w) for some element of E,
combined with the definition ofg(1) and our assumptions for the con@gA), implies
the existence of a weak-star closed cone in a dual space with a norm unbounded, weak-star
closed and weak-star dentable base, which contradicts the result of [15]. So we prove that
T'(E) € co(w). This is the basic step of this work from where it follows everything. In
this article we provide also many examples which introduce the reader to the geometry of
cones and to the basic ideas of this article.
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Recall that the embeddability é@f; () in dual spaces has been studied by many authors
in the past. We refer to the papers of Pelczynski[11,12], Lewis and Stegall [9], Stegall [16],
Fonf [5] but we can also refer to many other significant works. For an extensive study of
L1-predual spaces we refer to the book of Lacey [8].

In 1981, Bourgain and Delbaen [2] gave an example of a Banach ¢padeose dual
E’ is isomorphic to¢1 but E does not contain any copy of. MoreoverE is a separable,

Lo space with the Radon—Nikodym property afids somewhat reflexive. So the Banach
spaces whose dual is isomorphic#pseems to be a big class of spaces and the charac-
terization ofcp among the elements of this class is an interesting problem. Corollary 14 is
such a characterization o.

Finally note the following characterization of which is proved in [14]/An ordered
Banach spaceE is order isomorphic tacg if and only if E is a o-Dedekind complete
vector lattice and its duak’ is order isomorphic t&. The proof of this result is based on
the proof that the duat’ of E has a positive Schauder basis. The methods and the results
of [14] are quite different from the methodology and the results of the present article.

2. Basesfor cones

We start with the basic properties of the bases for cones which we will use in this article.

Let E be a normed space. Denote BYthe norm dual and bg” the second norm dual
of E. Also denote byR . the set of real numbers> 0. For eachx € E denote byx the
natural image of in E” and for eachk < E denote byK the setk = {£ € E” | x € K}.

Let P be awedgeof E, i.e., P is a convex subset of such that\P C P for each
re Ry If E=P — P the wedgeP is calledgeneratingand if P N (—P) = {0} we say
that P is acone Suppose thafk is ordered by the wedg®, i.e., for anyx,y € E we
havex < yifand only ify —x € P. If P is a cone the ordering is antisymmetric. A linear
functional f on E is positiveif f(x) > 0 for eachx € P andstrictly positiveif f(x) >0
for eachx € P, x # 0. Also a linear functiona)f on E is uniformly monotonidf a real
numbera > 0 exists such that (x) > a||x|| for eachx € P. In the above cases we say also
that f is positive, strictly positive and uniformly monotonic éh

The dual spac&’ of E is ordered by the wedge

P°={x"€ E'|x'(x) > O for eachx € P}

which is callecthe dual wedgef P (in E').

Let P be a cone. A subsa? of P is abase for the coné if a strictly positive linear
functional f of E exists such thaB is the intersection of the conB with the affine
hyperplangx € E | f(x) =1}, i.e.,

B={xeP|fx)=1}.

Then we say thathe baseB is defined by the functiongl. The baseB is convex and it
is easy to show thak is bounded if and only if the functiongl is uniformly monotonic.
Indeed, if we suppose thk| < M for eachx € B, then for eachx € P, x # 0, we have
llx/f )] < M, thereforg|x | < Mf(x) foreachx € P, hencef is uniformly monotonic.



I.A. Polyrakis / J. Math. Anal. Appl. 289 (2004) 126-142 129

For the converse suppose thaty) > al|x| for eachx € P. Then for eachx € B we have
1= f(x) > a|x], therefore the basB is bounded.

Note also that ifP is a finite-dimensional closed cone then each bBstr P is
bounded. Indeed if we suppose thatis defined by the linear functiongl andx, € B
with ||x, || = oo, then f(x,/l|lx.|l) — 0. Since the se N Ug (Ug is the closed unit
ball of E) is compact, a subsequence{of /| x, ||} exists which converges to an element
xo of P. Then we have thdtxp| = 1 and f(xo) = 0, contradiction becausg is strictly
positive onP.

A nonzero elementg of P is anextremal pointof P if forany x € E, 0< x < xo
implies thatx = Axo for some real numbex € R. A point xg of a baseB for P is an
extreme point ofB if and only if xg is an extremal point ofP. Indeed, if we suppose
that xg is an extremal point o andxg = Ax + (1 — 1)y with x, y € B, we have that
0< Ax, (1—A)y < xo- Thereforex, y are positive multiples afg and by the fact that, y
are elements oB we have that = y = xg. For the converse we suppose that the hiase
defined by the linear functiondl, xg is an extreme point oB and that O< x < xp. Then

X X0—X
Fo T
and by the fact thatg is an extreme point oB we have that is a positive multiple ofy.
Thereforexg is an extremal point oP.

In [13,15] the geometry (dentability, extreme points) of the bases of cones are studied.
From these articles we refer some results below which we will use in the present paper.

We start with the notion of the continuous positive projection which is defined in [13]
as follows: Letxp be an extremal point oP. If there exists a continuous projectidn
of E onto the one-dimensional subspace generatespbguch that 0< I7(x) < x for
eachx € P, then we say that the poinp has(admit9 a continuous, positive projection
Then it is easy to show that a positive continuous linear functienaf E exists such
that IT(x) = 7 (x)xp for eachx € E with 7 (xg) = 1. If xo admits a continuous, positive
projection/T, then

x0= f(x)

E=[xo]®Y,
whereY is the kernel offT and for anyx € E we have
xeE, ifandonlyif IT(x)e Eyandx —I1(x) € E.

As itis proved in [13], ifE is a normed lattice (i.e£ is a lattice and for each, y € E,
|x| < |y| implies that||x|| < ||y]]) or if E is a Banach space with the Riesz decomposition
property and the cong is closed and generating, then each extremal poift afimits a
continuous positive projection. Recall that an ordered spalcas the Riesz decomposition
property if for anyx, y, z € X4+, x < y+zimplies thatc = x1+x2, wherex1, x2 € X with
x1 <y, x2 < z. Also note that every linear lattice has the Riesz decomposition property but
the converse is not always true.

Alinear functional’ of E strongly exposes pointx of a subseD of E if x'(x) > x'(y)
for eachy € D and for any sequende, } in D x'(x,) — x'(x), implies that|x, — x|| — O.
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Theorem 1 [13, Proposition 3.4]Let B be a base for a con® of a hormed spacé,
defined(the basgby a continuous linear functiongl on E and letxg be an extreme point
of B which admits the continuous, positive projecti@iix) = = (x)xo, x € E. Then

(i) xois a strongly exposed point & if and only if there exists a uniformly monotonic,
continuous linear functional of;

(i) If & is a uniformly monotonic, continuous linear functional Bnthen the functional
g = h(xo)m — h strongly exposes the poing in B with g(xg) =0.

Suppose thaK is a convex subset df’. The setK is weak-star dentablé for each
real number > O there exists a point, of K which does not belong to the weak-star
closure of the convex hull of the s¢t’ € K | [|x" — x|l > e}. An elementx; € K is a
weak-star strongly exposed poiit K if there existsx € E which, as a linear functional
on E', strongly exposes the poinf, in K. If a subsetk of E’ is not weak-star dentable
thenK does not have weak-star strongly exposed points. This holds because if we suppose
that a pointx of E strongly exposes a point, of K then for any real number > 0, we
have thatx separates; and the sefx’ € K | [|x" — x| > e} which is impossible because
we have assumed that the $&is not weak-star dentable.

Theorem 2[15, Corollary 2].Let P be a weak-star closed cone of the d&alof a normed
spaceFE and letB be a norm-unbounded base for the caheThen each norm-unbounded
weak-star closed and convex sub&edf B is not weak-star dentable.

Example 3. (i) Suppose thak = ¢; and thatP = ¢; is the positive cone of;. Suppose
thaty € £, with y, = 1/n for eachn. Theny defines the base

B=|xetf|yx)=1}

for the cone@f, and we remark thak is unbounded because, € B for eachm € N, where
{e,} is the usual Schauder basis@f For each, the pointre, of B is an extremal point
of P and therefore also an extreme point&fAlso the pointze,, admits the continuous,
positive projection

1
IT,(x) =, (x)ne,, wheremr,(x)=—x, foreachx = (x1, x2,...) € £1.
n

The elementh of ¢o with h; = 1 for eachi is a uniformly monotonic, continu-
ous linear functional orf1. Therefore by Theorem 1, each extreme paiat of B is
a strongly exposed point a8 and the functionak, = h(ne,)m, — h strongly exposes
the pointne, in B with g,(ne,) = 0. Especially forn = 1 we have that the functional
g1=1(0,-1,-1,-1,..)) strongly exposeg; in B with g1(e1) = 0.

Now consider as the dual ofg. Then the conéir is weak-star closed and the bae
is unbounded and weak-star closed. By Theore® B not weak-star dentable, therefore
B does not have weak-star strongly exposed points. As we have remarkedahoigea
strongly exposed point aB for eachn. SinceB is not weak-star dentable, any strongly
exposing functional ofie, cannot belong tag. Indeed, as we have shown before, the
functionalg = (0, —1, —1, —1, ...) strongly exposeg; but g does not belong tep.
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(if) Suppose thatt = £, with 1 < p < 400, P = E;g is the positive cone of, and
{e,} is the usual Schauder basis Bf Suppose thaB = {x € Z;; | f(x) =1} is a base
for ¢} which is defined by a linear functiongl = (f1, f2,...) € £;. Since f is strictly
positive we have thaf; > 0 for eachi. Thene,/ f, € B for eachn, therefore the basB
is unbounded. Since the spakeis reflexive and the con® and the bas&# are weakly
closed, by Theorem 2, we have that the b&sis not dentable. Therefore for amy the
extreme poing, / f, of B cannot be strongly exposed.

We can also show that the baBedoes not have strongly exposed points as follows. At
first we remark that' does not have uniformly monotonic, continuous linear functionals.
Indeed if we suppose thate £, with i(x) > allx| for eachx € E and for some real
numbera > 0, we have thak, = h(e,) > alle,|| = a for eachn, thereforea = 0, a con-
tradiction. Since each extreme poiyy f, of B admits a continuous positive projection,
by Theorem 1 we have thajt/ f,, is not a strongly exposed point 8f because does not
have uniformly monotonic, continuous linear functionals.

For a further study of the geometry of convex sets (dentability, extreme points) we
refer to the book of Diestel and Uhl [3]. Also for ordered spaces we refer to the books of
Jameson [7] and Aliprantis [1].

Let L:E — X be a continuous linear operator &finto a normed spac. If L is
one-to-one and.~1 is continuous, we say thdt is anisomorphismof E into X and also
that E is embeddablén X. The operatol’: X’ — E’ such that

(L'x"Y(x) =x"(Lx) foreachx’ e X' andx € E,

is theadjoint of L. This operator is continuous with’.’|| = ||L||. Suppose thak, X are
ordered normed spaces ahds an isomorphism of: into X. If for any x € E it holds

x € E4 if and only if L(x) € X4, thenL is anorder isomorphisnof E into X and if

moreovel| Lx| = ||x|| for eachx, we say thal. is anorder isometrylf in the two previous
definitionsE, X are vector lattices, we say also tHais alattice isomorphisnand aattice

isometry respectively.

Recall that an ordered spaékis avector latticeif for any two elements, y € E the
supremum ofx, y} in E exists. Then the infimum dfx, y} also exists and we denote by
x Vy and byx A y the supremum and the infimum 6f, y}, respectively. A subspaceé
of E is asublatticeor aRiesz subspacdef E if forany x,y € X, x vy andx A y belong
to X.

3. Embeddability of L1(x) in dual spaces

In this section we will denote b§2, X, 1) a measure space, where the meaguiakes
values in the intervdl0, +oc0] and X is ac -algebra of measurable subsetsaf Also we
will denote byT an one-to-one bounded linear operatofaf.) into the norm duak’ of
a Banach spaceg. We will suppose that the spaéa (u) is infinite dimensional, the norm
dual of L1(w) is the spacd.., (1) and thatu(A) < oo for any atomA of w.

Recall thatL1 () is the space of absolutely integrable functighs? — R with norm
Ifll1= [9 | f ()| dr andLso (1) is the space of measurable, essentially bounded functions
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f:2 — Rwithnorm| f|lcc =infla e R4 | | f(#)| < a for eachr € £2}. The above spaces,
in the pointwise ordering, are Banach lattices with positive cabpéu) and L, (w),
respectively. Since in these spaces the equality of functions is in the sense of the almost
everywhere we will say “for every’ instead of “for almost alk.” A measurable subset
of £2 is anatomof u if ©(A) > 0 and for eactB € X with B C A we have thaj.(B) =0
or u(B) = u(A).

We remark here that if the measure sp&ce X, 1) is o-finite then Lo () is the
dual of L1(u) and any atom ofx is of finite measure. If the se® is infinite andu is
the counting measure defined on the subset& pthen the above assumptions are also
satisfied. For any sef denote byco(I") the space of real vectots= (a;);<r, such that
for each real number> 0, the se{i € I' | |a;| > €} is finite, with norm|ja|lo = sup¢r lail
and by¢1(I") the space of real vectots= (a;);cr, With norm|lally = >, la;|. These

spaces, in the pointwise ordering, are Banach lattices with positiveagc(me andq(l“),
respectively.

Let A € X. We will denote byyx, the characteristic functionof A and by the
restriction of i on A, i.e., ua(B) = u(A N B) for eachB € ¥'. The setA is infinitely
decomposablé A = J;2, A;, where{A;} is a countable family of disjoint measurable
subsets of2 with ©(A;) > 0 for eachi. Therefore the set is not infinitely decompos-
able if u(A) =0 or if A is the union of a finite number of atoms. Note thHat(w4) is
lattice isometric to the subspa¢@ = {£x4 | £ € L1(w)} of L1(n) andLy(u4) is infinite
dimensional if and only if the set is infinitely decomposable.

Definition 4. For any measurable subsétbof 2 we will denote byK (A) the cone

K(A)={TExa) 1§ € LT (W)}
and byQ(A) the weak-star closure of the cOREA) in E’.
Also we will denoteP(A) the dual wedge ok (A) in E and byP (A)° the dual wedge
of P(A) in E'.
Recall that
P(A)={x € E|x'(x) >0foreacht’ € K(A)}
is the dual wedge oK (A) in E and
P(A)° =[x € E'| 2(x") > O for eachx € P(A)}.
SinceP(A)? is weak-star closed anki(4) C P(A), we have that
K(A) < 0(A) € P(A)°.
Also the annihilator
M ={x€E: x'(x)=0foranyx’ € T(L1(1))}

of T(L1(w)) in E is contained inP(A). Therefore if the range df is not weak-star dense
in E’, thenP(A) is a wedge oft but not a cone.
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We will say that an element of E defines an unbounded base for the can@), if y
is strictly positive onQ(A) and the set

(¥ eo3ex) =1}

is norm unbounded irE’. As we will see in Theorem 12, the existence of certain un-
bounded bases for cones# is crucially related to properties of operatorsiaf(i.) into
the dual spacé&’.

The assumption that is strictly positive onQ(A) implies thatQ(A) is a cone. In-
deedx’, —x’ € Q(A) implies thaty(x") = 0, thereforex’ = 0 becausé is strictly positive
on Q(A).

In the following proposition we give the properties §{A) and Q(A). Some of them
are known results of the theory of ordered spaces.

Proposition 5. For any measurable subsdtof 2 we have

(i) K(A)isacone

(i) Q(A)=P(A)°;

(i) Q(A)isaconeifandonlyifP(A) — P(A) is denseink;

(iv) An elementy of E defines an unbounded base for the c@gh@) if and only if the
functional y is strictly positive onQ(A) and ¥ defines an unbounded base for the
conek (A);

(v) If an elementy of E defines an unbounded base for the cahel), the setA is
infinitely decomposable.

Proof. (i) Suppose that’ € K(A) N (—K(A)). Then there exist,n € Lf(u) with
x'=T(Exa) andx’ = T (—nyxa). SinceT is an isomorphism we have thaga = —nxa,
thereforet x4 = 0 becausé& x4 € Lir(y,) N (—Lir(u)). So we have that’ = 0, therefore
K(A) is acone.

(ii) As we have remarked abo\@(A) € P(A)°. Supposethat) € P(A)°\ Q(A). Then
there existgo € E separating, and Q(A), i.e.,Zo(x() < a < Zo(x') for eachx’ € Q(A).
Since O Q(A), we have that: < 0, therefore&o(x() < 0. Also for eachy” € K(A) and
each) € R, we have thakx’ € Q(A), thereforeZo(Ax") > a for eachi € R, therefore
Zo(x") > 0 for eachx’ € K (A). By the definition ofP(A) we have thatg € P(A). Since
X € P(A)°, we have also thaio(xg) > 0, a contradiction. Hence(A)? = Q(A).

(iif) Suppose that is the closure ofP(A) — P(A) in E. Suppose thaP (A) is a cone.
If we suppose thatg € E \ Z, there exists an element of E’ which is zero onZ and
x'(xg) > 0. This implies that’(x) = 0 for eachx € P(A) and—x'(x) = 0 for eachx €
P(A), thereforex’ € Q(A) N (—Q(A)) hencex’ = 0 because we have assumed Q&n )
is a cone. This is a contradiction. Thereféte= E. For the converse suppose ti¥at E
and thate’ € Q(A) N (—Q(A)). Thenitis easy to show that(x) =0 for eachx € P(A)
thereforex’ is equal to zero orE. Hencex’ =0 andQ(A) is a cone.

(iv) Suppose that an elemenf E is strictly positive onQ(A) and also that it defines
an unbounded base for the coki€¢A). Then it is clear that the badfor the coneQ(A)
which is defined by is also unbounded. Suppose now that an elemesitE defines an
unbounded base for the co A). Theny is strictly positive onQ(A) and the seB =
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{x" € Q(A) | y(x’) =1} is unbounded. Suppose that the Bet {x' € K(A) | y(x') = 1}
is bounded. Then eacH € B is the weak-star limit of a neix} ), <4 of K(A). Therefore
x" is also the weak-star limit of the nét; /3(x;))rea Of D. Therefore the seB, as the
weak-star closure of the bounded #ets also bounded, a contradiction. Hence thel3et
is unbounded, s defines also an unbounded base for the ckiig).

(v) Suppose that an elementof E defines an unbounded base for the cangl).
The coneQ(A) is closed in the norm topology df’ and alsoQ(A) has an unbounded
base, therefor@(A) is infinite dimensional because as we have remarked in the previous
section, a finite-dimensional closed cone of a Banach space cannot have an unbounded
base. Since the con@(A) is infinite dimensional, we have that the sétis infinitely
decomposable. O

In the main theorem below we will assume that

(a) The setD(£2) is a cone; and
(b) For each infinitely decomposable subdeif $2 there are a measurable subBedf A
and an element of E such thaty defines an unbounded base for the con®).

In the following examples we study the above properties for some simple cases of the
spacesl1(u), E and the operatof. Examples (i) and (ii) satisfy properties (a) and (b)
but in examples (iii) and (iv) property (b) fails. Examples (i) and (ii) are similar but their
difference shows the meaning of (b). Especially in (i), for any infinitely decomposable
setA an element oft exists which defines an unbounded base for the @@@4&) but in
example (ii) the existence of such an elemenEaf not guaranteed for any. However
in example (ii), for any infinitely decomposable setve can find a measurable subget
of A and an element of E which defines an unbounded base for the c®). Note
also that in (b) the seb is an infinitely decomposable subset 4f This holds because
the assumption that the com® D) has an unbounded base implies tiatD) is infinite
dimensional, therefore the sbtis infinitely decomposable.

Example 6. (i) Suppose thak = co, and thatT": £; — £1 = ¢ is the identity map. (The
measureu is just counting measure on the subsetdNof Since the positive cone df

is weak-star closed we have th@i{(2) = ef, thereforeQ(£2) is a cone. Also it is easy
to show that a subset ¥ is infinitely decomposable if and only if it is infinite. So for
any infinite subsel of N we have thak (A) ={&x4 | & € 61“}. The elemeny of E with
yi=0if i ¢ Aandy; = 1/i for eachi € A defines the base

B= {SXA |&et], Zyifi =1}
ieN

for the coneK (A). The baseB is unbounded because,, € B for eachn € A, where
{e,} is the usual Schauder basisfaf Also the conek (A) is weak-star closed, therefore
K(A) = Q(A) and the element of E defines an unbounded base for the coné).

(ii) Suppose thaltl = co(I") and thatl : £1(I") — £1(I") is the identity map. (The mea-
surepu is just counting measure on the subset$'gf As in the previous case we have that
Q(2) = 81“(1“), thereforeQ (£2) is a cone. Suppose thatis an infinitely decomposable
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subset off". Then the sef is infinite and it is easy to show th&t(A) is weak-star closed,
S0 Q(A) = K(A). If the setA is uncountable ang € E, theny cannot be strictly posi-
tive on Q(A) because the support ofis at most countable. However, for any countable
subsetD = {y, | n € N} of A the elemeny = (y, ) of E with y,, =0 for eachy ¢ D, and

¥y, = 1/n, for eachn, defines the base

o
B= {sxD [Eeti (D). Y vk, =1
n=1
for the coneK (D). As in the case of;, the baseB is unbounded because,, € B for
eachn. So for each infinitely decomposable subdebf 2 an infinitely decomposable
subsetD of A and an element € E exist such thay defines an unbounded base for the
coneQ(D).

(iii) Suppose thatT is the natural embedding of1(I") in its second dual. Then
K(2) =T (M) =¢] (") and P(2) = ¢1,(I") is the dual cone ok (£2) in e (I").
Since the dual cone of (I") in ¢, ,(I") is the positive cone ot (I"), we have that
0(82) = (U (IN)+ and Q(£2) is a cone.

Suppose that the element of ¢ (I") defines an unbounded base for the cone
(L (I')+. Then f is strictly positive on(¢,,(I"))+ and by Proposition 5 we have that
the set

B={xetf(IN|fx)=1}

is unbounded. Sinc¢ is strictly positive onEj(F) we have also thaf; = f(e;) >0
for eachi € I'. Suppose thafx"} is an unbounded sequence i If we suppose that
fi > p > 0 for eachi, we have

I=f") =) fixt >pYy_x =plx"ll,
iel’ iel’

a contradiction because the sequeface is unbounded. Therefore there exists a sequence
{i,} in I with lim, .« fi, = 0. Suppose thak is the set of allg € £ (I") for which
lim,_ ~ gi, €xists. TherL is a sublattice of,(I") and suppose that is the linear func-
tional on L with 9 (g) = lim,_  g;, for eachg € L. Then® is positive and continuous,
therefore by [7, Proposition 4.2.4}, has a positive and continuous extension¢gs(1")
which we denote again by. Then we have that(f) = 0. This is a contradiction because
¥ # 0 and we have assumed thats strictly positive on¢, (I"))+. Therefore an element
f € £2.(I") which defines an unbounded base for the cOn&) does not exist. Also for
any infinite subsetd of I we have thatk (A) = Ej(A) and Q(A) = (¢,,(A))+ and as
above, we have that an elementégf(A) which defines an unbounded base for the cone
Q(A) does not exist.

(iv) Let E be the spacé€’[0, 1] of continuous real valued functions defined [@1].
Then by the Kakutani representation theordthas anAL-space is lattice isometric to an
L1(n) space and suppose thais a lattice isometry of.1(u) onto E’. ThenT(Li“(u)) =
E', . Since the coné&’, is weak-star closed we have th@($2) = E/, is a cone. Suppose
that an element of E defines an unbounded base for the céje Theny € E, andy is
strictly positive onE’, . If we suppose thag(r) = 0 for somer € [0, 1], theny is equal to
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zero on the Dirac measuse supported aft}, a contradiction. Thereforg(t) > o > 0 for
eachr. The set

B={meE|3(m) =1}

is the base foE’, defined byy. For eachn € B we have

1= / ydm}am([o,l]),
[0,1]

therefore|m| < 1/a, a contradiction because we have assumed that the basein-
bounded. Therefore an element E. which defines an unbounded base for the cone
Q(£2) does not exist.

Definition 7. Denote byco() the set of functionsf € Lo () with the property: For
each infinitely decomposable sétand each real number> 0 there exists an infinitely
decomposable sét C A such thal| f xg oo < €.

Lemma8. Foreachf € Loo(u) \ co(w), there exists an infinitely decomposable 4etnd
a real numberp > 0 such that f ()| > p for eachr € A.

Proof. By the definition ofco() there exists an infinitely decomposable gedind a real
numberp > 0 such thatl| f xpllec > p for each infinitely decomposable subgetof A.
Therefore the seD = {tr € A | | f(¢)| < p} is not infinitely decomposable. Hence the set
A\ D is infinitely decomposable withf (z)| > o foreacht € A\ D. O

Lemma9. Let f € co(n) andA € X with u(A) > 0.

(i) If A does not contain atoms, théiif x4llco = 0.
(i) If £ 0, then the measure has at least one atom.
(i) If Ais anatom ofu, thenf(r) = || f xallco forall t € A.

Proof. Letarealnumbetr > 0andletAc ={t € A | |f ()| > €}. Suppose that (A¢) > 0.
Since A does not contain atoms, each measurable subsd#tA, with 4« (B) > 0 is infi-
nitely decomposable withf x g ||cc > €. This contradicts the definition @f (), therefore
w(A¢) = 0. Hence| f xallco = 0 and statement (i) is true. If # 0, then by (i) has at
least one atom, therefore (ii) is also true. (iii) is obvious becausean atom. O

Two atomsA, B of u areequivalentf u(A A B) =0,whereAAB =(A\B)U(B\A).
In this article we will identify the atoms gf with the corresponding equivalence classes
and we will denote by4 the set of atomef 1. The measurg is atomicor purely atomic,
if each measurablg with ;(A) > 0, contains at least one atom of
If the measureu is atomic ther?1(A) is lattice isometric (we have assumed tha&i)
< oo for any atomA) to L1(n) and the map
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oA
U(a)—ASUZ A @ € l1(A), (1)
€suppa)

is a lattice isometry of1(A) onto L1 (1).

Proposition 10. The seto(w) is a closed sublattice df o (w). If A =@, thenco(u) = {0}
and if A # ¢, the map

@)= Y aaxa, occolA),
Aesuppa)

is a lattice isometry ofg(A) ontoco(u).

Proof. If A=, then by Lemma 9 we have thaj(it) = {0}.

Suppose now thatl # ¢ and f, g € co(w). It is clear thatLf € co(u) for eachi € R.
For each infinitely decomposable seind eacle > 0 there exist infinitely decomposable
setsA; € A and Az € Ag with || f xa,lleo < €/2 and||gxa,llo < €/2. Therefore|| (f +
&) xAzlloo < 1f Xazlloo + 18X a,lloc < €. AlsO itis easy to show thalt(f v g)xa,lleo < €.
Thereforef + g, f vV g € co(w) andco(w) is a sublattice of. o ().

For eacha € co(A) denote¥(a) by f,. If we suppose thatf, ¢ co(in) then by
Lemma 8, there exists an infinitely decomposable subset 2 and a real number > 0
such that| 1, (t)| > € for eachr € D. Since the setA € supfw) | |aa| > €} is finite, we
have that the seb is contained in the union of a finite number of atoms. Thereforis
not infinitely decomposable, a contradiction. Herfges co() and it is easy to show that
lello = |l falloo- TO prove that the mag is onto, for eachf € co(u) define the vector

af = (@)) scq with
af =l fxallo if £(r)>0forallreA

and

ol =—|fxaleo if f1)<OforalizeA.

We shall show thatr/ € co(A). For each real number > 0 we put A€ = {4 € A |
|a£| > ¢}. This set is finite because if we suppose thtis infinite we take a count-
able unionB of elements ofA¢ and we have thdtf ()| > ¢ for all t € B, a contradiction
because we have assumed tliat co(u) and the seB is infinitely decomposable. Hence
af e co(A) anditis easy to show that(a/) = f, therefore the map is onto. Also it is easy
to show that” is linear and tha®, ¥ —1 are positive. Therefor# is a lattice isometry. O

Remark 11. Suppose that the measure spage X, 1) is o-finite. Then we have the
following:

The setA of atoms ofu is at most countable, and the s@tis decomposed in the
sets21, 22, where2y = (o4 A, 22 = 2\$21. Suppose thaty = ne, anduz = pne,.
ThenLi(n) = Li(n1) @ Li(p2) and Leo (1) = Loo(11) © Loo(u2), WhereLy(ug) and
Lo (1) are order isometric té1(A) and£(A), respectively. Any element of CE{(/L)
is decomposed in the elementts f> with f1 € LT (n1) and f2 € L (n2). Then

0< f1, < fs
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and by the definition ofg(w) it follows that f1, f2 € co(u). Since$2, does not contain
atoms, by Lemma 9, we have th#t = 0, thereforef = f1. This implies thatco() C
Lo (1) and by Proposition 1@;p(w) is lattice isometric tag(.A). Therefore

Li(u) = (A S Li(u2), Loo(p) = Loo(A) & Loo(1t2),

and
co(n) = co(A) S Loo(A).
Note also that if the family4 is infinite, thenf (A) = £+, and£1(A) = £1.

In the beginning of this section we have assumed ¢fat>, 1) is a measure space,
the measure: takes values in the interv@D, +oo], L1(w) is infinite dimensional with
L (1) = Loo(n) and thafu(A) < oo for any atomA of u. Recall thatA is the set of atoms
(equivalence classes) pf and that for any linear operat@t: L1(1) — E’ denote byT’
the adjoint off". Under these assumptions and in according to the notations of Definition 4,
we state the following theorem.

Theorem 12. Let T be an one-to-one bounded linear operatofZ@f ) into the norm dual
E’ of a Banach spacg. If

(a) Q(£2)isaconeand
(b) For each infinitely decomposable subdedf £2 there are a measurable subgetof A
and an element of E such thaty defines an unbounded base for the can®),

then

(i) T'(E) S co(u) with T'(P(£2)) € ¢ (10);
(i) The measurg is atomic. In particular the spacg1(w) is lattice isometric t1(A).

Proof. Since Q(£2) is a cone,P(£2) — P(£2) is norm dense irE, by statement (iii) of
Proposition 5. So to prove tha@t (E) < co(p) it suffices to show thar’(P/(.Q\)) C c;{ (w).
We begin with an observation.

For eachx” € E” with T'x” =r € Loo(u), for eachté € L1(n) and eachB measurable
we have

/ EOr () dp=rExs) = T'x" (Exg) = x"(TE xp).
B

Suppose thatg € P(£2) and thatT’(xo) = r. Then for eaclf € Lf(u) we have

0< (T#)(xo) = Fo(TE) = / EOr(t)du
2

and it follows thatr € L} (). Now suppose that = T'(Xo) ¢ co(u). We will use the
elementxg and assumption (b) to produce a weak-star closed, weak-star dentable, norm
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unbounded bask for a weak-star closed conein a dual space, which contradicts The-
orem 2. This will show that the assumpti@i(xo) ¢ co(u) is impossible. Here are the
details.

By Lemma 8, there are an infinitely decomposable sulisef 2 and a real number
p > 0 so thatr(¢t) > p for eachr € A. We may also suppose that< ||T||. So for each
£ € LT (1) we have

20(TExa) =/é(t)r(t)du > p/é(t)du =pllExally > ”’%” 1T E x| (2)
A A
Next we shall show that
A / /O /
Xo(x") = m”x I (3)

for eachx’ € Q(A). To this end suppose thate Q(A), x’ # 0 and thak’ is the weak-star
limit of the netT (&, x4), whereg, € Lir(u) for anya. If we suppose thatg(x’) =0, then

0=lim £o(T&, xa) > lim ”’%” I Gaxa)|

by (2) and the nef (&, x4) norm converges to zero. Therefare= 0, a contradiction.
Hencexop(x") > 0 and using (2) again we may find a subnef@f, x4) (which we do not
rename) with

P
171
for eacha. Since closed bounded balls Ef are weak-star compact and the @&E, x4)
weak-star converges i we have that

2%(x") > T Gaxa)|

A o
2%0(x") = ——||x'|,
T

as desired.

By assumption (b) there is a measurable subbsef A and an element € E such that
y defines an unbounded base for the can@®), i.e., y is strictly positive onQ (D) and
the set

C={x"e QD) |(x) =1}
is unbounded. Now consider the cone

R=R; ®Q0(D)={(.x)[2>0, x" € Q(D)}
in (R® E) and let

K={x)eR 1A+ =1].

ThenKk is a base for the conR which is defined by the eleme(t, y) of R @ E. Observe
that(1, 0) € K and that(0, x’) € K for eachx’ € C. Itis clear that the basg is unbounded
because” is unbounded. Note that siné(D) C Q(A) the linear functionakq satisfies
(3) for all x’ € Q(D). So for each. ¢ R, andx’ € Q(D) we have

A A 14 / o ’
(L, F) (A, x") =21 +Zo(x") = 1 + 'l = A llx7]]). 4)
2|7 2||T||( )
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Therefore the functiondl = (1, xp) is uniformly monotonic on the con®. Now observe
that the point(1, 0) is an extreme point ok with continuous positive projection

OO, xY=m(, x)(1,0=xr(1,0),
wherern (A, x") = A for each(), x") € (R @ E)’. Therefore by Theorem 1, the functional

strongly exposes the poirt, 0) in K. Since(0, xp) € R@ E we have thatl, 0) is a weak-
star strongly exposed point &f. So the bas& is weak-star dentable. On the other hand,
the coneR is weak-star closed becaugl D) is weak-star closed. Also the ba&eis
weak-star closed because it is defined by the elerfient of R & E. But by Theorem 2,
the baseK of R is not weak-star dentable and we have arrived at a contradiction. So we
have thatl’(xp) =r € C(J{(M) and the proof of (i) is complete.

(ii) Suppose that a measurable subsetontains no atoms and tha; is the restriction
of won A. ThenL1(u4) is lattice isometric to the sublatticey = {Ex4 | & € Lir(u)} of
L1(n) and we identifyL1(4) with F4. Also L1(e4) is infinite dimensional becauseis
infinitely decomposable. Suppose tligtis the restriction off on F4. ThenTy, is an one-
to-one, continuous linear operator bf(u 4) into E’ and the assumptions of the theorem
are satisfied fof 4 . By Proposition 10¢o(1.4) = {0} because the measyug is nonatomic
and by part (i) of this theorem/g(E) C co(a) = {0}. This implies thaf’y = 0 and (since
T4 is one-to-one) thak1(iu4) = {0}, a contradiction. Therefore each measurable subset
has at least one atom, therefore the meaguieatomic andL1(u) is lattice isometric to
£1(A), as asserted.O

Corollary 13. Let T be an isomorphism df1 () into E’. Suppose that

(a) Q(£2)isaconeand
(b) For each infinitely decomposable subdedf 2 there are a measurable subgetof A
and an element of E such thaty defines an unbounded base for the can®).

If U is the lattice isometry of1(A) onto L1(u) defined in(1) and F = ToU, then

(@) F'(E) = co(A). The quotient spac& /M, whereM is the annihilator ofT (L1(u))
in E, is isomorphic tacg(A).

(ii) If moreoverT (L1(p)) is weak-star dense i’, then F’| ; is an isomorphism of;
ontoco(A).

Proof. By the theorem, the measugeis atomic, therefore a lattice isometty of £1(.A)

onto L1(w) defined by (1), exists. Consider the measure sgac@4, m), wherem is

the counting measure aA. Then the operatofF : £1(A) — E’ is an into isomorphism
which satisfies the assumptions of the previous theorem. Inﬂeéifi(A)) = T(Lir(u)),
therefore the assumption (a) holds. Also for any infinite subBesf .4, we consider a
countable subsdf of A" and we take the unio® of the elements of3. Then B is an
infinitely decomposable subset &f, therefore there are an infinitely decomposable subset
D of B and an element of E such thaty defines an unbounded base for the cai®).
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Then the subseb of B with elements the atoms db is infinitely decomposable and it
is easy to show that defines an unbounded base for the weak-star closure of the cone
(FExp) | € € ZI(A)}, hence the assumption (b) is also satisfied.

The adjointF’: E” — £+, (A) of F is continuous onto and by the theorefi(£)
co(A).

Suppose that = F’|; is the restriction of’ on E. Then we may suppose thsit £ —
co(A) and it is easy to show thdt is the adjoint ofS, i.e., S’ = F. By our assertion that
F is an isomorphism of1(.A) into E’ it follows that S is onto (see, for example, [10,
Theorem 3.1.22, p. 293]). Therefolé(E) = co(A). Hence the operatoF’ defines an
isomorphism ofE/M onto cg(A). If we suppose moreover thdt(Li(w)) is weak-star
dense inE’, thenM = {0}, thereforeF’ is an isomorphism of ontoco(A). O

Corollary 14. For any infinite-dimensional Banach spagethe following statements are
equivalent

(i) E isisomorphic taco(I");

(i) There exists an isomorphisimof ¢1(I") into the dual spacé&’ of E with weak-star
dense range iz’ such that The weak-star closure df(@f(]“)) in E’ is a cone and
for each infinite subset of I', there are a countable subsgt of A and an element
y of E such thaty defines an unbounded base for the weak-star closure of the cone

{TExp) 1§ €L (D).

Proof. Suppose thak is an isomorphism of ontoco(I") and thatT is the adjoint ofL.
ThenT is an isomorphism of1(I") onto E’ and T is also weak-star to weak-star con-
tinuous. Thereford (¢ (I")) is a weak-star closed cone, hence the weak-star closure of
T(ZI(F)) is a cone. As we have shown in (ii) of Example 6, for each infinite sulset

of I, a countable subs&? of A and an elemeny} € co(I") exist such that) defines an
unbounded base for the cofig) = {£xp | & € Eir(F)}, i.e., the set

B={&xp | €ty (IMwith(E xp) (1) = 1}
is unbounded. Since the coldd, is weak-star closed its imag€(D) ={T(Exp) | & €
ZI(F)} is also a weak-star closed cone and it is easy to showtkat ~1(1), defines the
unbounded base

T(B)={x"e K(D)|x'(y)=1}

for the conek (D).

For the converse, suppose that statement (ii) is true. Then each infinitely decomposable
subsetd of I" is infinite, therefore by our assumptions a countable subseft A and an
elementy € E exist such thay defines an unbounded base for c@h@). HenceT’ is an
isomorphism ofE ontoco(I"), therefore the converse is also truex
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