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Longitudinal analysis of magnetic resonance images of the human brain provides knowledge of brain changes
during both normal aging as well as the progression of many diseases. Previous longitudinal segmentation
methods have either ignored temporal information or have incorporated temporal consistency constraints with-
in the algorithm. In thiswork,we assume that some anatomical brain changes canbe explained by temporal tran-
sitions in image intensities. Once the images are aligned in the same space, the intensities of each scan at the same
voxel constitute a temporal (or 4D) intensity trend at that voxel. Temporal intensity variations due to noise or
other artifacts are corrected by a 4D intensity-based filter that smooths the intensity values where appropriate,
while preserving real anatomical changes such as atrophy. Here smoothing refers to removal of sudden changes
or discontinuities in intensities. Images processed with the 4D filter can be used as a pre-processing step to any
segmentation method. We show that such a longitudinal pre-processing step produces robust and consistent
longitudinal segmentation results, even when applying 3D segmentation algorithms. We compare with state-
of-the-art 4D segmentation algorithms. Specifically, we experimented on three longitudinal datasets containing
4–12 time-points, and showed that the 4D temporal filter is more robust and has more power in distinguishing
between healthy subjects and those with dementia, mild cognitive impairment, as well as different phenotypes
of multiple sclerosis.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Segmentation of brain magnetic resonance (MR) images is an im-
portant step in analyzing brain structures. By providing quantitative
measures of the shape and size of brain structures, a better understand-
ing of normal aging (Resnick et al., 2003; Thambisetty et al., 2010), as
well as diseases such as Alzheimer's (Querbes et al., 2009) and multiple
sclerosis (MS) (Shiee et al., 2012) can be gained. Longitudinal segmen-
tation in brain imaging provides additional insights into the dynamics
of brain anatomy for monitoring atrophy and other structural changes
that may be related to disease progression. For example, longitudinal
imaging studies have revealed accelerated brain volume decline in
mild cognitive impairment (Driscoll et al., 2009) and accelerated gray
matter atrophy in MS progression (Fisher et al., 2008). The goal of this
work was to develop an algorithm that improves the accuracy and
stability of brain segmentations in longitudinal data.
. This is an open access article under
The primary challenge of a 4D image segmentation method, in con-
trast to 3D analysis, is ensuring consistency or stability of the results
while retaining sensitivity. Longitudinal processing is aimed toward
quantifying time-varying changes of a subject. However, the presence
of image artifacts and noise can reduce the sensitivity of a 4D segmenta-
tion method by overshadowing the time-varying effects. An example is
shown in Fig. 1 where four longitudinal T1-weighted SPGR (spoiled gra-
dient recalled) scans of a healthy volunteer are processedwith indepen-
dent 3D Freesurfer (FS) (Dale et al., 1999) and a state-of-the-art 4D
segmentation method, longitudinal Freesurfer (or 4D Freesurfer)
(Reuter et al., 2012). Each scan is separated by approximately one
year. The inconsistency is visually evident in the hard segmentations
(orange arrow in Fig. 1 second row), where the cortical gray matter
shrinks and grows over time. Although all images are scanned in the
same scanner and with the same pulse sequence parameters, small
differences in the noise level or intensities across time-points give rise
to inconsistency in the 4D segmentations. In comparison, use of our
4D filter produces a more consistent segmentation, where the cortex
shrinks gradually, as expected in normal aging (Fig. 1 bottom row). In
this paper, we address this issue of segmentation stability in
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Top row shows SPGR scans of four consecutive time-points of a healthy volunteer (age 68 at T=1),with each time point being one year apart. Next four rows showmagnified views
of the cortex on the original images, segmentations from 3D Freesurfer, 4D Freesurfer, and 3D Freesurfer following by our 4Dfiltering. An arrow showswhere the cortex shrinks and grows
periodically on both 3D and 4D Freesurfer segmentations, while it is more consistent with the 4D filter.
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longitudinal imaging studies of aging or diseases where one might
expect gradual changes.

Several methods have been previously proposed to analyze 4D im-
ages in a longitudinally consistent manner. CLASSIC (Xue et al., 2006)
is a 4D segmentation algorithm that contains a 4D registration and 4D
segmentation loop. First, all 3D time-points are co-registered using a
4D registration (Shen and Davatzikos, 2004; Prastawa et al., 2012; Kim
et al., 2013) to account for the anatomical changes and then are seg-
mented by a 4D version of a fuzzy C-means algorithm (Pham, 2001)
to account for temporal smoothness in segmentation. Here, smoothness
refers to lack of sudden changes or discontinuities in intensities across
time. A 4D segmentation pipeline was also proposed in (Dai et al.,
2012), where temporal constraints on cortical thickness are enforced
to obtain longitudinally smooth cortical thickness measures. In 4D
Freesurfer (Reuter et al., 2012), individual time-points are first
segmented with 3D Freesurfer (Dale et al., 1999), a mean template is
created, and then the time-points are segmented using the mean tem-
plate as a target in an unbiased fashion. However, 4D FreeSurfer does
not take advantage of the fact that much of the brain often remains
unchanged over time, which could be used to improve robustness to
noise and other artifacts.

In this paper, we propose a patch based 4D temporal filtering
algorithm as a pre-processing step to any segmentation method so as
to obtain temporally consistent longitudinal brain segmentations. A
patch is a small 3D subimage (e.g., 3×3×3 voxels) centered at a voxel
of interest. For a longitudinal dataset where the scans are of similar
contrast, time-points are first co-registered using a rigid transformation.
Once the images are rigidly registered, we assume that some changes in
anatomy can be modeled by smooth temporal changes in image inten-
sities. Patches are used to model the temporal change in order to take
advantage of the contextual information within the neighborhood
around a voxel (Roy et al., 2013a; Roy et al., 2011; Roy et al., 2014).
We then automatically distinguish between two types of patches,
(1) patches that show gradual temporal atrophy, but can be corrupted
by noise andminor intensity variations, and (2) patches that do not fol-
low any gradual trend. The intensities of only the first type of patches
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are filtered using an auto-regressivemodel of first order (AR(1)), under
the assumption that the patch intensities of the tth time-point can be
predicted from the (t -1)th time-point. The intensities of the second
type of patches are not changed. Once the images are temporally
filtered, they can be segmented using any segmentation method. We
show that by using temporal filtering as a pre-processing step, stable
and robust 4D segmentations are obtained. We have presented
preliminary elements of this work in conference form (Roy et al.,
2013c, 2013b).

The paper is organized as follows. First, the motivation for intensity
based regression of normal anatomical changes is proposed in
Section 2.2. Then the auto-regressive model on the intensities is
described in Section 2.3. Next, we evaluate the accuracy of the method
on simulated longitudinal atrophies and show the improvement in
robustness on test–retest scans of real data in Section 3.2. We also
show that 4D filtering improves discrimination of dementia or mild
cognitive impairment when compared against healthy groups using a
variety of segmentation algorithms in Sections 3.3 and 3.4. In particular,
we show that using 3D FreeSurfer with our proposed approach
improves upon 4D Freesurfer especially when the number of time-
points is large (Section 3.4). Finally, we explore in Section 3.5 the effect
of 4D filtering in finding GM atrophy on subjects with multiple sclerosis
(MS).
2. Materials and methods

2.1. Data sets

We experimented on 6 sets of data, listed in Table 1. First, we esti-
mated the parameter f based on the image contrast and scanners, as
noted in Section 2.3. We simulated atrophy on a dataset containing
two subjects (denoted by Sim-2), one with both SPGR (GE 1.5T,
0.94×0.94×1.5 mm3, TR=6.9 ms, TE=3.4 ms, flip angle=8∘) and
MPRAGE (GE 1.5T, 0.94×0.94×1.5 mm3, TR=35 ms, TE=5 ms, flip
angle=45∘) and one with MPRAGE from a Philips 3T (0.82×0.82×1.1
mm3, TR=10.21 ms, TE=6 ms, flip angle 8∘) scanner. These two
subjects were chosen from the BLSA and MS dataset, respectively
(explained later in this section).

To estimate the test–retest stability of the method, we use two
datasets. For the first set, MPRAGE scans (0.82×0.82×1.17 mm3, TR=
10.2 ms, TE=6 ms, flip angle 8∘) from a 3T Siemens scanner (denoted
by TR-10) were acquired every week for 10 consecutive weeks on a
healthy male volunteer. Precautions were taken to have identical scan-
ning and patient conditions every time, e.g., scans were done at the
same time of the day, and the volunteer was allowed the same amount
of sleep and fluid intake on the day of scanning. The second dataset con-
sists of SPGR scans (GE 3T, 1.0mm3, TR=8.06ms, TI=450ms, flip angle
8∘) of 29 healthy subjects, each subject having 10 scans over a month,
separated by 3 days. This dataset (denoted by CoRR-29) is obtained
from the Consortium for Reliability and Reproducibility (CoRR) data-
base (Zuo et al., 2014), specifically the HNU dataset (Hangzhou Normal
University) (http://dx.doi.org/10.15387/fcp_indi.corr.hnu1). Note that
although the scans were available for 30 subjects, we discarded one
due to an incomplete field of view.
Table 1
The table describes the details of the datasets used for all the experiments.

Name Contrast # Scanner

Simulation Sim-2 SPGR &
MPRAGE

2 GE 1.5T & Philips 3T

Test–retest TR-10 MPRAGE 1 Siemens 3T
CoRR-29 SPGR 29 GE 3T

OASIS OA-49 MPRAGE 49 Siemens 1.5T
BLSA BL-39 SPGR 49 GE 1.5T
MS MS-59 MPRAGE 59 Philips 3T
To demonstrate the discriminative power in longitudinal analysis
versus cross-sectional analysis, 49 subjects with 3-5 time-points (age
range 60-92) were selected from the OASIS (Open Access Series of
Imaging Studies) (Marcus et al., 2007) longitudinal database (dataset
denoted by OA-49). Each visit was separated by approximately one
year and there was an average of three visits per subject. For every sub-
ject and every visit, there were 3–4 repeat MPRAGE scans (1×1×1.25
mm3, TR=9.7 ms, TE=4 ms) from a Siemens 1.5T scanner. The repeat
scans are co-registered and averaged to improve signal-to-noise ratio.
Among the 49 subjects, 15 of them were diagnosed with dementia,
and the other 34 were characterized as non-demented throughout the
span of the study. Note that there were also 14 patients in the database
who were initially non-demented, but were diagnosed with dementia
at later time-points. We did not include them in our subset.

To evaluate our method when applied to a greater number of time-
points, we experimented on 39 subjects from the BLSA (Baltimore Lon-
gitudinal Study of Aging) database (Resnick et al., 2000), with 15 of
them diagnosed with mild cognitive impairment (MCI) at all time-
points (dataset denoted by BL-39). The other 24 subjects are healthy
controls. Each subject contains 4–11 visits (average 9 visits per subject),
each separated by approximately one year. SPGR images were acquired
axially (0.94×0.94×1.5 mm3, TR=35 ms, TE=5 ms, flip angle = 45∘)
for each visit on a GE 1.5T scanner.

The 4D filtering was also applied on a set of MS patients, where we
explored the progression of atrophy on different phenotypes of MS.
The data set includes 59 patients with MS (dataset denoted by MS-
59), with each patient having 3–8 visits (average 4), each visit separated
by a year. The average age of the participants was 44 years (range
22–67), with an average disease duration 9 years. Among the 59 pa-
tients, 22 were diagnosed with relapsing remitting MS (RRMS), 15
with primary progressive (PPMS), and 22 with secondary progressive
MS (SPMS). All subjects had T1-w MPRAGE (0.82×0.82×1.1 mm3)
and FLAIR (0.82×0.82×2.2 mm3) scans acquired on a 3T Philips scan-
ner (TR/TE=10.21/6 ms, flip angle 8∘).

To demonstrate the flexibility of our approach, we apply it as a
preprocessing step to several different segmentation algorithms. These
algorithms each use different underlyingmethodologies. The Freesurfer
(Dale et al., 1999) algorithm employs a Markov random field model in
combination with statistical atlases and deformable surfaces. Because
it includes both a 3D and 4D implementation, a natural comparison
that we focus on is the combination of temporal filtering and 3D
Freesurfer against 4D Freesurfer (Reuter et al., 2012). Other algorithms
that we tested include Atropos (Avants et al., 2011), which is based on
an expectation–maximization approach, FIRST (Patenaude et al.,
2011), which is based on active appearance models, TOADS (Bazin
and Pham, 2008), which uses fuzzy clustering with topological
constraints, and MALP-EM (Ledig et al., 2015), which combines multi-
atlas label fusion with expectation–maximization.

2.2. Motivation

Most existing 4D segmentation methods involve a nonlinear 4D
registration step where either the individual images (Dale et al., 1999)
or their segmentations (Xue et al., 2006) are deformably registered to
a common template. Thus the temporal change in anatomy is modeled
Resolution (mm3) TR (ms) TE (ms) Flip angle

0.94×0.94×1.5 & 0.82×0.82×1.1 6.9 & 35 3.4 & 5.0 8∘ & 45∘

0.82×0.82×1.17 10.2 6 8∘

1.0×1.0×1.0 8.06 N/A 8∘

1.0×1.0×1.25 9.7 4 10∘

0.94×0.94×1.5 35 5 45∘

0.82×0.82×1.1 10.21 6 8∘

http://dx.doi.org/


Fig. 2. The top row shows SPGR scans of three time-points of a normal subject having 6
longitudinal scans, separated by a year. The second row shows the intensity profiles of
three voxels, one inside ventricle (magenta), one in deep WM (green), and one on the
ventricle-WM boundary (blue). The AR(1) fit of the blue line is shown in red. The
bottom row shows the intensities of 5×5 patches around the blue voxel over the 3
time-points. The leftmost and rightmost voxels in the patches represent WM and
ventricle voxels that remain unchanged over the time course, while the voxels in the
middle columns of the patches are generally decreasing in intensity, indicating
enlargement of the ventricle.
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by a geometric “morphing” of the images. However, it has been shown
that the same change in anatomy can also be modeled by an intensity
change (Miller and Younes, 2001).

An example of how longitudinal anatomical changes can be
explained by intensity changes is shown in Fig. 2(a), where three
time-points (years 1, 2, and 6) of a healthy volunteer are shown. Each
of the time-points is rigidly registered (Jenkinson and Smith, 2001) to
a reference space (e.g., an atlas or an average of all time points). Each
of the images are scaled so that the mode of the white matter (WM)
intensity is at unity. Themode is automatically foundby fitting a smooth
kernel estimator to the image histogram (Pham and Prince, 1999).
Fig. 2(b) shows the temporal intensity profiles of three voxels, one
each in deep WM, ventricles, and on the ventricle-WM boundary. As
the subject is healthy, the anatomical change associated with normal
aging, e.g., enlargement of the ventricles, ismanifested in themonotonic
decrease in intensity of the voxel on the WM-ventricle boundary (blue
line), with perturbations due to image noise. Also, the voxel inside
WM (or ventricle) remains WM (or ventricle) for all the time-points,
thus its intensity remains in the realm of the corresponding tissue
intensities. A similar trend can also be observed for a patch as well.
Fig. 2(c) shows the same 5×5 patch (in 2D) over the three time-
points, demonstrating the shifting boundary of the ventricles. We
propose that after rigid registration, the trend in some patches can be
attributed to various factors like noise (e.g., green and magenta lines
in Fig. 2(b)), actual gradual anatomical changes (e.g., blue line in
Fig. 2(b)), or small registration errors. To remove the noise and other ar-
tifacts from those patches, we propose to fit the longitudinal intensities
to a smooth first order auto-regressive model.

2.3. Algorithm

Image patches are defined as p×q×r 3D subimages associated with
each voxel of the image. Patches are typically small and centered on the
voxel of interest—e.g., p=q=r=3. It is convenient for writing out the
mathematics to describe a patch as the 1D vector of size d×1, where
d=pqr. The voxels within a patch are always ordered in the same
way, using a consistent rasterization, to create this 1D representation.

We assume that there are T time-points available for a subject,
{s1,… ,sT}. Each of the time-points {s1,… ,sT} is rigidly registered to a
reference template. Each scan is skull-stripped with the same mask
(generated from either the baseline or a mean template) and corrected
for any intensity inhomogeneities independently. They are also scaled
so that the mode of the WM intensities of each image is unity (Pham
and Prince, 1999; Shinohara et al., 2014; Roy et al., 2013d). The images
are also assumed to be scannedwith the same acquisition protocol. Each
image is first decomposed into d×1 patches, yi(t) , i=1,… ,N , t=
1,… ,T, where N is the total number of voxels in each image. Since the
images are rigidly registered, the trend at the ith voxel is obtained
from the collection of patches { yi(1),… ,yi(T)}.

At every voxel, an observed image patch yi
(t) is assumed to consist of

a “true patch” xi(t) and additive noise, expressed as.

y tð Þ
i ¼ x tð Þ

i þ ε tð Þ
i ;1≤t≤T; ð1Þ

where the observed patch is a noisy perturbation of the true patch at
each voxel. Here εi(t) accounts for both image noise as well as small
intensity variations. We assume that there are two types of patches:
patches that follow a gradual trend and patches that do not. Our as-
sumption is that aging or neurodegenerative processes typically cause
gradual shrinking of brain structures. These constitute the first type of
patch, while other patches fall into the second type. We discuss this in
greater detail in the remainder of the section.

As shown in Fig. 2, there are some patches for which the atrophy
results in smooth intensity change, such as ventricular enlargement.
We assume that the gradual anatomical changes can be modeled by
smooth changes in intensities; therefore, for those patches, xi(t) are
modeled as an AR(1) regression,

x tð Þ
i ¼ Mi x

t�1ð Þ
i ; tN1: ð2Þ

Assuming ai is the ith true patch for the baseline image (t=1), then
xi
(t) can be re-written as,

x tð Þ
i ¼ Mt�1

i ai; t≥1: ð3Þ

The d×d matrix Mi is positive definite and contains the parameters
of the ARmodel. The exponent onMi signifiesmultiple products with it-
self ((t-1) power).We note that the intensities are a nonlinear function
of the time t; therefore themodel has the capability of detecting nonlin-
ear changes in the intensity profile. However, because Mi itself is not a
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function of t, xi(t) must follow amonotonic trend. The first ordermodel is
based on the assumption that the serial images of a subject are obtained
at approximately uniform intervals, which is true for all subjects in our
database. However, when a subject is scanned at highly nonuniform in-
tervals, higher order models can be used in the same framework.

There are some patches that do not follow monotonic change in in-
tensities. Such patchesmight include acute lesions inMS subjectswhich
may appear and disappear in successive time-points, the presence of a
new tissue-boundary in developing brains that is not possible to predict
from the previous time-point, or tissue variations due to hydration level
changes (Nakamura et al., 2015). We distinguish between these two
types of tissue patches. The patches that do not follow smooth, mono-
tonic intenity changes are where the fitting error of the AR regression
(Eq. (3)) is sufficiently large. Therefore, for such patches, the original in-
tensities must be preserved. Eq. (3) is modified to satisfy this criteria for
all patches,

z tð Þ
i ¼ w tð Þ

i Mt�1
i ai þ 1�w tð Þ

i

� �
y tð Þ
i ; tN1: ð4Þ

Here, zi(t) is an estimated patch accounting for both gradual and non-
gradual atrophies. The scalarwi

(t) is aweight that determines if the trend
at the ith patch is due to a gradual anatomical change (such as growing
ventricles in normal aging,wi

(t)→1) or some atrophy that is not gradual.
In the presence of such non-gradual atrophies, the intensities cannot be
smoothed with an AR model, thus wi

(t) is set to 0.
The weightswi

(t) are computed in a data-dependent manner so as to
distinguish between the two types of patches. If the model fitting error
|| yi(t) -xi(t)||2 is too large, it indicates the presence of a non-monotonic
atrophy that cannot be explained by smooth change in intensities.
Following this notion, wi

(t) is defined as,

w tð Þ
i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jj y tð Þ
i � x tð Þ

i jj22
f 2

s ; t≥1: ð5Þ

where f is a smoothing parameter that also acts as a soft noise threshold.
Note thatwi

(t) depends on the deviation of the observed patch yi
(t) from

the true patch xi
(t), when the patch is assumed to follow a gradual atro-

phy. If this deviation ||δi(t)||=|| yi(t)-xi(t)||≫ f, wi
(t)≈0, then the patch is

largely unaffected by the smoothing filter, i.e., xi(t)≈yi
(t). Estimation of

f is described in Section 3.1.
Based on the data yi

(t), we first estimate the weights wi
(t) and

AR(1) parameters Mi and ai. Then the estimated patches zi(t) are found
from Eq. (4) using these estimates. For mathematical simplicity, we
make the assumption that Mi is a positive definite diagonal matrix,
Mi=diag{mi ,1,… ,mi ,d}, and thus Mi

t=diag{mi ,1
t ,… ,mi ,d

t }. Then the
filtered intensities xi(t) are found for the ith patch by minimizing the ℓ2

norm of the error with respect to Mi and ai. The total sum of squared
error of the estimated patches is given by

ETotal ¼ ∑
N

i¼1
∑
T

t¼1
jj y tð Þ

i � z tð Þ
i jj22

¼ ∑
N

i¼1
∑
T

t¼1
w tð Þ

i

� �2
jj y tð Þ

i �Mt�1
i aijj22

¼ f 2 ∑
N

i¼1
∑
T

t¼1

jj y tð Þ
i �Mt�1

i aijj22
f 2 þ jj y tð Þ

i �Mt�1
i aijj22

: ð6Þ

Note that although we employ an autoregressive model of the first
order, it is evident from Eq. (6) that all time-points are used to estimate
the model parameters.

Estimates of Mi and ai are obtained by differentiating ETotal with re-
spect to these variables and setting the gradients to zero. Under the
diagonal assumption ofMi, the update equations are as follows,

∑
T

t¼1
t � 1ð Þ y tð Þ

i;ℓ �mt�1
i;ℓ ai;ℓ

� �
mt

i;ℓ
1

f 2 þ jjδ tð Þ
i jj22

� �2 ¼ 0; ð7Þ

∑
T

t¼1
y tð Þ
i;ℓ �mt�1

i;ℓ ai;ℓ
� �

mt�1
i;ℓ

1

f 2 þ jjδ tð Þ
i jj22

� �2 ¼ 0; ð8Þ

δ tð Þ
i ¼ y tð Þ

i � x tð Þ
i ;ℓ ¼ 1;…;d;

where yðtÞi;l and ai;l denote the lth component of yi(t) and ai, respectively,

l ¼ 1;…;d. Initializing mi;l ¼ 1 and ai=yi
(1), Eqs. (7)–(8) are repeated

until the values of mi;ℓ and ai converge. The converged values for Mi,
ai, and a chosen value for f (see Section 3.1) are used to provide the es-
timated patches zi(t) based on Eq. (4). It is noted that the computation in
Eqs. (7)–(8) is simplified by the diagonal assumption ofMi, and they are
solved for each of the patch dimensionsℓ separately. Nevertheless, the
patch-based error ||δi(t)|| introduces contextual information in the com-
putation ofMi. The diagonalMi can be replaced by an arbitrary d×d pos-
itive definite matrix Mi. However, the number of time-points is usually
much less than the patch dimension (i.e. T≪d), introducing instability
in the computation of an arbitrary positive definite matrix.

Fig. 3 shows four out of ten time-points of a healthy volunteer, each
separated by two years, and the correspondingmi ,14 for the center voxel
of each 3×3×3 patch in the image (d=27). Voxels that remain WM
throughout the time span (deep WM denoted by a white arrow), have
ami ,14≈1 indicating their intensity remains stable over the time series.
Enlargement of the ventricles (black arrow) is also evident, resulting in
mi ,14b1 shown in dark blue, which indicates a decrease in intensity over
time, corresponding to the transition from WM voxels to ventricle
voxels. Some cortical thinning is also observed with mi ,14b1 near
deep sulci (magenta and white arrows), where GM voxels turn into
CSF voxels. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

The parameter f acts as a soft threshold for the AR model fitting to
the temporal intensities of a patch. By design, it can also be a user
input to the algorithm. Larger f implies less error (||δi(t)||) tolerance, in-
dicating filtered intensities should follow the autoregressive model
more strictly. Ideally, f should vary from patch to patch based on the tis-
sue type and amount of expected atrophy at a patch. For example,with a
ventricular CSF patch, the inherent signal-to-noise ratio is lower on T1-
weighted images (Sijbers et al., 1998) than a pureWMpatch, indicating
that the choice of f should be higher for CSF patches than WM. The
choice of f should also depend on the acquisition protocol of the
image, e.g., SPGR vs MPRAGE and the scanner. However, in this paper,
we only address the variation of f with respect to the image contrast
and scanner, and choose a global f based on a simulation study on an
SPGR and MPRAGE images of different scanners in Section 3.1.

3. Results

The algorithm was implemented in MATLAB. We used 3×3×3
patches, i.e., d=27, for all our experiments. The processing time is
about 2 hours on a 12-core 2.92GHz Intel processor for an 11 time-
point data set with images of 1 mm3 resolution, requiring about 2-
3GB of memory. 3D and 4D Freesurfer require about 24 and 36 h, re-
spectively on the same machine. Before temporal filtering, all images
were pre-processed by skull-stripping (Carass et al., 2011), registration
to MNI atlas (Mazziotta et al., 1995) (www.mristudio.org), resampling
to 1 mm3 isotropic resolution, and inhomogeneity correction using N4
(Tustison et al., 2010).

http://www.mristudio.org


Table 3
Mean ± standard deviations of coefficient of variation (in percent) of volume changes in
ten consecutive scans are shown for 29 healthy subjects (CoRR-29 dataset). Bold indicates
significantly lowest (pb0.01) coefficient compared to other methods.

Ventricle Cortical GM Subcortical GM Cerebral WM

3D Freesurfer 3.48 ± 1.13 2.41 ± 1.21 2.07 ± 0.54 1.15 ± 0.33
4D Freesurfer 2.22 ± 0.60 1.40 ± 0.22 0.99 ± 0.33 1.00 ± 0.17
4D Filter ± 3D
Freesurfer

1.24 ± 0.49 1.25 ± 0.57 0.98 ± 0.39 0.57 ± 0.22
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3.1. Simulation study

To estimate the parameter f in Eq. (5), we used an atrophy simula-
tion algorithm (Karacali and Davatzikos, 2006) on the Sim-2 data
(Section 2.1) to simulate anatomical changes in the brain. One subject
with both SPGR and MPRAGE scans (GE 1.5T) from the BL-39 and one
subject with MPRAGE from MS-59 dataset (Philips 3T) were used for
this experiment. The simulation algorithm takes an MR image and its
3-class hard segmentation (CSF, GM, and WM) and generates an
atrophied image around designated foci with a given radius of atrophy.
We used decreasing radii of atrophy (20 to 15mm) to simulate six time-
points where the ventricles grow over time, simulating a common
occurrence in late aging. A 3-class fuzzy c-means (Bezdek, 1980)
(FCM) based segmentation was used as the input. The six time-points
were filtered using varying f∈(0,1) and the resultant images were
again individually segmented using FCM. The same experiment was re-
peated for all of the three acquisitions. The misclassification rates in
both cases, averaged over three classes, are obtained for each f. Misclas-
sification rate is defined as the ratio of average number of misclassified
voxels (over 6 time-points) and the average number of voxels involved
in the simulated atrophy.

As mentioned earlier in Section 2.3, a very small f will not have any
effect on the filtering, as smaller f imparts no change in intensities (as
f→0, wi

(t)→0 in Eq. (5)). With increasing f, the temporal intensities
are smoothed more and more, thereby becoming more robust to
noise, while at the same time smoothing some actual tissue changes.
We obtained these optimal values: fSPGR1.5T=0.31, fMPRAGE1.5T=0.21,
fMPRAGE3T=0.19, at less than 2% misclassification error. Since the f
values for MPRAGE on both scanners are very close, we used
fMPRAGE=0.21 for all the experiments with MPRAGE images described
later. A larger value of fSPGR compared to fMPRAGE arises from the obser-
vation that the contrast to noise ratio in MPRAGE images is typically
higher than in SPGR, indicating a smaller noise threshold is needed for
detection of gradual atrophy.

3.2. Robustness on test–retest scans

In this section, we evaluate the robustness of the 4D filtering using
test–retest scans of healthy volunteers, i.e. TR-10 and CoRR-29 data
(Section 2.1). Ideally for a healthy subject, the tissue volumes are not ex-
pected to change much within a span of ten weeks or a month. For TR-
10 dataset, the volumes of cortical GM, cerebral WM, and ventricles are
plotted in Fig. 4 for individual 3DFreesurfer segmentation of the original
images (blue triangles), 4D Freesurfer (magenta spheres), and 3D
Freesurfer segmentation of temporally filtered images (green stars).
Similar to a previously reported study on multi-center test–retest
reliability of Freesurfer (Jovicich et al., 2013), 4D FS produces almost
half the variability compared to 3D FS on GM and WM, while there is
very little difference between the two on ventricles. We also observe
that 4D Freesurfer has more variability than the 4D filtering method.
The difference is primarily emphasized in ventricle volume, where the
coefficient of variation is 1.67% for 4D Freesurfer, while it is 0.53% for
our filtering method, shown in Table 2. As the ventricle volume is the
most robust statistic for scans spanning over only ten weeks, a
Table 2
Coefficient of variation (in percent) of volume changes in ten consecutive weeks for a
healthy subject (TR-10 dataset). Bold indicates lowest coefficient compared to other
methods.

Ventricle Cortical
GM

Subcortical
GM

Cerebral
WM

3D Freesurfer 1.529 1.756 1.523 1.332
4D Freesurfer 1.669 0.757 0.741 0.557
4D Filter + 3D Freesurfer 0.532 0.568 0.589 0.380
significantly smaller coefficient of variation for our temporalfiltering in-
dicates greater consistency of the segmentation. A similar decrease is
shown for the other tissues.We note that 4D Freesurfer has a consistent
bias from individual Freesurfer segmentations with larger ventricles or
smaller WM. This is likely due to the difference in the transformation
spaces of the methods.

A similar analysis was carried out for the CoRR-29 dataset, with 29
healthy volunteers having 10 scans spanned over a month. Table 3
shows the mean and standard deviations of coefficients of variations
for the three methods. 4D Filter followed by 3D Freesurfer shows the
lowest average coefficient of variation (pb0.01 using Wilcoxon signed
rank test) among the three on ventricles, cortical GM andWM, indicat-
ing significantly improved segmentation stability.

To estimate the stability of the algorithmwith respect to the number
of time-points, we also created an augmented set of the TR-10 dataset
by randomly sampling T images (T={4,… , 9}) from the 10 weekly
scans. The sampling is done 10 times for each T. Therefore, this
augmented dataset contains 60 subsets, each subset containing 4 to 9
scans from the weekly test–retest scans. Then the images were
processed with the 4D filtering method. Then both the processed and
original images are segmented with FAST (Zhang et al., 2001) to find
CSF, GM, and WM segmentations. Since we do not expect the tissues
to change much within a span of 10 weeks on a healthy control, Dice
coefficients (Dice, 1945) for the three tissue classes were used as a
similarity metric and were computed on each subset with respect to
the baseline of that subset. The mean Dice coefficients for T=4,… ,9
on all three tissues were significantly larger (pb10-5 with Wilcoxon
rank-sum test) than the unfiltered images, indicating significant
improvement in segmentation stability after 4D filtering. Also the Dice
coefficients between T and (T+1) time-points are not significantly
different (pN0.01) for any T on any tissue, indicating that the 4D
filtering is robust to the variation in number of time-points. Median
WM Dice for T=4 was 0.97, while it was 0.98 for T=9, compared to
0.91 with unfiltered images.

We also tested our approach with a 3-class Expectation–Maximiza-
tion (EM) based segmentation method Atropos, which also includes
3-D and 4-D implementations (Avants et al., 2011). Scans of the same
healthy subject over 10 weeks are segmented using 4D Atropos with a
temporal smoothness weight of 0.3. CSF, GM, and WM tissue volumes
are plotted in Fig. 5 for 3D Atropos, 4D Atropos, and 3D Atropos on 4D
filtered images. Use of filtering shows an improvement in segmentation
stability of our temporal filter over a Markov random field temporal
smoothness constraint on the segmentations. Clearly, 3D Atropos
shows noisy volume trends, and 4D Atropos shows a slight decreasing
trend in WM volume, indicating that the WM volume changes by 5%,
while there is a 7% increase in CSF. Our 4D filtering with 3D segmenta-
tion produces the most stable segmentation without the spurious
volume changes.

3.3. Atrophy detection on OASIS

As no longitudinal dataset with manual labels are freely available to
test sensitivity of the proposed filtering method, we instead
demonstrate that the 4D filter improves discrimination power between
groups of healthy controls and patients with neurodegeneration on the



Fig. 3. (a) Four time-points of a subject before and after 4D processing, and (b) a map ofmi,14 using 3×3×3 patches after temporal filtering (d=27). The white arrow points to a voxel
inside deepWMwithmi ,14≈1, indicating no gradual change in intensities since the voxel remains asWM over the time-period. The magenta arrow indicates a voxel on the cortex with
mi,14N1, indicating a gradual increase in intensities (GM toWM), since the cortex shrinks over time. The black arrow indicates a voxel near the ventricle-WM boundary, wheremi,14b1. It
indicates a gradual increase in ventricle size, where the voxel changes from WM to ventricle over time.
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OA-49 data (Section 2.1). Since the filtering can be applied to any 3D
segmentation method, we filtered and segmented both demented and
non-demented subjects with TOADS (Bazin and Pham, 2008), FIRST
(Patenaude et al., 2011), and 3D Freesurfer (Dale et al., 1999). 4D
Freesurfer (Reuter et al., 2012) has already been shown to distinguish
between the healthy anddementia groups on this dataset. Here, we rep-
licated that result with 4D Freesurfer and showed that the combination
of 4D filter and 3D Freesurfer performs similarly, if not better, in
distinguishing the two groups than 4D Freesurfer. Similar improvement
in distinguishing power after filtering was shown for TOADS and FIRST
as well. TOADS provides a tissue segmentation of the whole brain into
multiple labels, cerebellar and cerebral WM, GM, sulcal CSF, thalamus,
caudate, putamen, and ventricles. FIRST generates subcortical GM
segmentation into multiple labels, such as left and right thalamus,
caudate, putamen, globus pallidus, hippocampus, and amygdala. Similar
labels are also obtained fromFreesurfer aswell. Tomeasure longitudinal
atrophy in segmentation volumes, we propose absolute percent volume
change per year (APV), defined as

APV ¼ jVtþ1 � Vt j
V1Δt

where V1 is a robust baseline volume for every subject, obtained from a
linearfit of the longitudinal volumes (Reuter et al., 2012). Vt denotes the
volume at tth time-point, and Δt denotes the age difference between
Fig. 4. Ventricle, WM, and cortical GM volumes (in mm3) are plotted w.r.t. the ti
time-points (t+1) and t. Note that in addition to the absolute volume
changes, APV also normalizes with respect to the actual age difference
between two scans. For subjects with more than two time-points,
multiple APV values were obtained. However since the rates of atrophy
may increase or decrease with age, we do not compute an average APV
for a subject. Instead we use the APV values of all time-points of all
subjects to compare the atrophy rates between demented and non-
demented groups using non-parametric statistical testing.

Fig. 6 shows barplots of median APV when both original and filtered
images are segmented with TOADS and FIRST. Subcortical GM volumes
have been shown to be associated with dementia and early onset of
Alzheimer's disease (Driscoll et al., 2009; Lehmann et al., 2010;
Jovicich et al., 2009; den Heijer et al., 2010). Visually, the variation in
APV decreases after 4D filtering (shown by lower interquartile range),
indicating more confidence in discriminating demented vs non-
demented groups. We hypothesized that APV for the demented group
is larger than the non-demented group. A Mann–Whitney U test indi-
cates that ventricle and putamen volumes for TOADS segmentations
are indeed significantly (pb0.01) larger in the demented group after
4D filtering. The caudate and cerebral WM volumes do not show any
significant difference after filtering, although the interquartile ranges
decrease, indicating decrease in variances. Similarly, both the left and
right hippocampus and amygdala volume changes obtained from
FIRST are significantly larger (pb0.001) after 4D filtering. Left and
right globus pallidus volume changes are significantly larger (pb0.05)
me-points for a healthy subject, scanned weekly for ten consecutive weeks.

Image of Fig. 4
Image of Fig. 3


Fig. 5.MPRAGE scans of a healthy volunteer, scanned for 10 consecutive weeks, are segmented using both 3D and 4D EM based segmentation Atropos (Avants et al., 2011).We compared
the 4D segmentation volumes in mm3 (magenta lines) with individual 3D Atropos segmentations of original data (blue lines) and 4D filtered images (green lines).
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as well. Although we did not find any significant difference between
demented and healthy subjects for thalamus volumes, the p-value de-
creases (p=0.067 to 0.054) after filtering. Note that the statistic
obtained from the Mann–Whitney U test is closely related to the area
under an ROC (receiver operating characteristics) curve for a binary
classification. Therefore, a lower p-value indicates a higher U statistic,
which in turn indicates higher area under the curve, indicating im-
proved sensitivity and specificity to distinguish between dementia
and non-dementia based on atrophy rates.

Next we tested our approach when used with Freesurfer. Fig. 7
shows barplots of absolute percent volume change per year for 3D
Freesurfer, 4D Freesurfer, and 4D filtering followed by 3D Freesurfer
for both demented and non-demented groups. As shown earlier
(Reuter et al., 2012), magnitude of volume changes, as well as their var-
iances, are sometimes higher in 3D Freesurfer than 4D Freesurfer,
e.g., left/right thalamus, putamen, and amygdala. Significant increase
in atrophywas observed in the demented group on the left/right hippo-
campus (pb0.05) for all threemethods, which is consistent with earlier
results (Reuter et al., 2012). We observed significant increases in rates
of volume changes in the demented group in the left/right ventricles
Fig. 6. Barplots show average percent volume change (APV) per year on both demented and non
corresponds to 25th and 75th percentiles. Asterisk indicates significantly (pb0.01) higher APV i
ventricles and putamen show significant atrophy in dementia on 4D filtered images compared
show significant atrophy with 4D filtering, which was absent in the original images.
and thalamus (pb0.05) on both 4D Freesurfer and 4D filtering followed
by 3D Freesurfer, but not on 3D Freesurfer. We also observed significant
increases in left putamen (pb0.05) volumes, though there is no signifi-
cant increase on either 4D or 3D Freesurfer (pN0.10). Atrophy in the pu-
tamen has been shown to be associated with dementia (Moller et al.,
2015). Therefore, our 4D filter followed by 3D Freesurfer has similar
performance, if not better, as 4D Freesurfer in distinguishing neurode-
generation, with significant reduction in computation time (about
20–24 h of 3D Freesurfer processing).

3.4. Improvement in atrophy detection on BLSA

While the OASIS dataset has an average of three time-points per
subject, we also experimented on the BL-39 dataset (Section 2.1),
which has an average of nine time-points per subject separated by
one year, to show the improvement in sensitivity and specificity in
detecting atrophywhen average number of time-points is larger. As be-
fore,we segmented the imageswith 3Dand 4D Freesurfer, and 4D filter-
ing followed by 3D Freesurfer. Fig. 8 shows barplots of median values
and interquartile ranges of APV for these three segmentations. Visually,
-demented groups fromOASIS database, when segmented by TOADS and FIRST. The range
n demented group compared to the non-demented group. On TOADS segmentations, both
to un-filtered images. On FIRST segmentations, left and right hippocampus and amygdala

Image of &INS id=
Image of Fig. 5


Fig. 7. Barplots showmedian of absolute percent volume change per year (APV) on left and right subcortical GM structures, when 49 subjects from OASIS dataset are segmented with 3D
and 4D Freesurfer, as well as 4D filtering followed by 3D Freesurfer. The range corresponds to 25th and 75th percentiles. Plus indicates significantly (pb0.05) higher APV on left/right
thalamus and ventricles from demented group observed in both 4D filter and 4D Freesurfer, but not on 3D Freesurfer. Asterisk indicates significant (pb0.05) atrophy on left putamen
in demented group observed on 4D filtering, but not 3D or 4D Freesurfer.
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magnitude and variations of atrophy rates of 3D Freesurfer are generally
larger than 4D segmentations (e.g., left/right pallidum and amygdala),
indicating longitudinally unstable segmentations. We observed signifi-
cantly higher atrophy rates in the MCI group than the healthy volun-
teers for the left/right hippocampus and left/right ventricles (pb0.05)
on all three methods. However, when the atrophy is more subtle and
relatively small, both 3D and 4D Freesurfer failed to detect any signifi-
cant change. Atrophies in thalamus and caudate are known to be asso-
ciated with Alzheimer's Disease (Ryan et al., 2013). Significant atrophy
in the MCI group was observed on the left/right thalamus (pb0.01),
left caudate, right putamen, and right amygdala (pb0.05), which was
not observed on both 4D and 3D Freesurfer segmentations (shown as
asterisk in Fig. 8).

We also computed absolute percent change in cortical thickness per
year. Accelerated cortical thinning has been observed in normal aging
(Fjell et al., 2014), Alzheimer's Disease, as well as other neurodegenera-
tive diseases (Mak et al., 2015). In the BLSA dataset, we observed in
Fig. 9 that the MCI group showed a higher rate of cortical thinning
than the controls on all three methods. However, the rate is not signifi-
cant in 3D and 4D Freesurfer (pN0.10 in both cases), but it is significant
(p=0.015) when the images are processed by our approach followed
by 3D Freesurfer. Also, the variations in the rates of change of thick-
nesses are lower (smaller interquartile range) in the 4D filter, indicating
a more stable segmentation. Therefore, our method is more sensitive to
distinguishing diseased brains from normals than 4D Freesurfer when
the number of time-points is large. The difference in performance of
4D Freesurfer can be explained by the absence of any explicit 4D
smoothness model in segmentations. Therefore the effect of random
temporal noise becomes more evident when the number of time-
points becomes larger.
Fig. 8. Barplots show median of absolute percent volume change (APV) on left and right subco
Freesurfer, as well as 3D Freesurfer after our 4D filtering. The range corresponds to 25th and
controls observed in the combination of 4D filtering and 3D Freesurfer, when the APV is not si
3.5. Atrophy in MS dataset

We have shown on two datasets, OA-49 and BL-39 in Sections
3.3–3.4, that our 4D filtering has superior sensitivity in distinguishing
healthy subjects from patients with dementia and MCI, especially
when the number of time-points is large. In this section, we explore
the volumetric changes of GM in different phenotypes of MS on the
MS-59 data (Section 2.1). In the previous experiments, we showed the
advantage of the 4D filter with intensity based segmentation methods
(FIRST, TOADS, and Freesurfer). Here we use a registration based label
fusion algorithm MALP-EM (Ledig et al., 2015) after with and without
the filtering as a pre-processing step.

Since the 4D intensity model does not account for lesions, the WM
lesions in MPRAGE images are first segmented (Shiee et al., 2009), and
then inpainted with WM intensities (Battaglini et al., 2012). The
inpainted images are filteredwith the 4D filtering, followed by segmen-
tations with a recent multi-atlas label fusion method MALP-EM (multi-
atlas label propagation using expectation maximization). MALP-EM
produces whole brain labeling by first registering multiple atlases to a
subject, then transferring the corresponding atlas labels to subject
space, and combining the labelmaps in subject space via expectation
maximization (EM). In this section, we show that the 4D filter in con-
junction with the label fusion algorithm can detect changes in atrophy
between different phenotypes of MS, compared to unfiltered images.
The results are validated by corroborating with previous findings.

Increased decline in total brain andGMvolumehas been observed in
MS patients (Battaglini et al., 2009) compared to controls, while
atrophies in putamen, thalamus (Eshaghi et al., 2014), cerebellum, and
ventricles (Ramasamy et al., 2009) are shown to be associated with
the progression of the disease in cross-sectional studies. In different
rtical GM structures, when 39 subjects from BLSA dataset are segmented with 3D and 4D
75th percentiles. Asterisk indicates significantly (pb0.05) higher APV on MCI group than
gnificant in both 4D and 3D Freesurfer.

Image of &INS id=
Image of Fig. 7


Fig. 9. Barplots show median and interquartile ranges of absolute percent change in
cortical thickness, when 39 subjects from BLSA dataset are segmented with 3D and 4D
Freesurfer, as well as 4D filtering followed by 3D Freesurfer. Asterisk indicates
significantly (p=0.015) higher thinning in cortex in MCI group (n=15) compared to
controls (n=24) observed in the combination of 4D filtering and 3D Freesurfer, while it
is not significant in both 4D and 3D Freesurfer.
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types of MS, rates of atrophy in different tissues are dominant in nature.
E.g., ventricles, putamen, hippcampus show significant atrophy in
RRMS, while caudate nucleus, along with regions of frontal, patietal,
temporal and occipital cortex, show significant atrophies in SPMS and
PPMS (Pagani et al., 2005). In a cross-sectional study, lower GM volume
was observed in RRMS compared to SPMS (Roosendaal et al., 2011). It
was also observed that total brain volume change is higher in SPMS
compared to both RRMS and PPMS (Stefano et al., 2010). Specifically,
brain volume change was shown to be a powerful statistic that can pre-
dict (pb0.001) relapses in RRMS (Horakova et al., 2009). Similarly, sig-
nificantly higher volume loss was observed in the thalamus, left
superior temporal gyrus, and left superior frontal sulcus on SPMS
(Riccitelli et al., 2010) compared to PPMS.

Fig. 10(a)–(b) show barplots of median (and interquartile ranges)
absolute percent volume changes per year (APV) on the 59 subjects
with MS, where the segmentations are obtained from MALP-EM after
Fig. 10. Barplots showmedian (and interquartile range) of absolute percent volume change pe
filtered images, and (b) 4D filtered images. Blue asterisk indicate structures where significa
indicates total brain volume. PPMS, RRMS, and SPMS stands for primary progressive, relapsing
4D filtering. Significant atrophy is observed in left/right superior frontal
(pb0.001), left superior occipital, left superior parietal, and right superi-
or temporal (pb0.05) gyri in both SPMS and PPMS compared to RRMS
(cf. Pagani et al., 2005) after filtering (Fig. 10(b)). Significant atrophy
in SPMS was also observed in left/right thalamus (p=0.01) and left su-
perior temporal gyrus (p=0.05) compared to PPMS (cf. (Riccitelli et al.,
2010)). Higher rate of change was observed for total brain volume in
SPMS compared to RRMS (p=0.068) (cf. Stefano et al., 2010), although
it is similar to PPMS (p=0.45). Only right superior occipital gyrus and
left thalamus shows significant atrophy in RRMS compared to SPMS
(p=0.009 and 0.013 respectively) with raw images (Fig. 10(a)), indi-
cating that 4Dfilter hasmore power in distinguishing between different
types of MS. Note that although right superior occipital gyrus is
significant in unfiltered images with 4D FS (p=0.009 RRMS vs SPMS),
it becomes non-significant in filtered images (p=0.285).

We also segmented raw and filtered images with 4D Freesurfer and
3D Freesurfer, respectively. Significant atrophy was observed in the
combination of 4D filter and 3D Freesurfer segmentations in left and
right thalamus (pb0.05) in RRMS compared to both SPMS and PPMS,
corroborating with the fact that the thalamus has been shown to have
significant neurodegeneration in RRMS (Bergsland et al., 2012). Addi-
tionally, left ventricles in RRMS (p=0.03) have higher atrophy rates
than PPMS (cf. Pagani et al., 2005), while left hippocampus has higher
atrophy rates (p=0.02) in PPMS than RRMS. Total brain volumes
from 3D Freesurfer does not show any significant difference between
any groups (pN0.10). The only significant difference on 4D Freesurfer
segmentations of raw images were observed on right thalamus, which
was more atrophied in PPMS compared to both RRMS and SPMS.

4. Discussion and conclusions

Our method employs an auto-regressive (AR(1)) filter on the intensi-
ties of images collected longitudinally. Higher order autoregressive
models can certainly be included in the framework, where intensity at
the tth time-point can depend on all the previous time-points, or in a sim-
pler case, (t-1)th through (t-N)th time-points. Eq. (6) can easily bemod-
ified to account for these higher order models. However, we use a simple
r year (APV) on 59 subjects fromMS dataset, with label-fusion segmentations on (a) un-
nt differences (pb0.05) are observed between at least one of the MS phenotypes. Brain
remitting, and secondary progressive MS.

Image of Fig. 10
Image of Fig. 9
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model to demonstrate that the 4Dfiltering canbeused as apre-processing
step to any 3D segmentation algorithm, while being similar or superior to
alternative approaches.Wehave shown that our 4Dfilter candetect tissue
atrophy in dementia or MCI, as well as different types of MS.

The autoregressive model promotes the temporal intensity trend of
a patch to be smooth. Other approaches have imposed a temporal
smoothness penalty on segmentations via 4D Markov random field
priors. In contrast, we enforce smoothness on the intensity values, so
that the algorithm is not tied to any particular segmentation method.
This can be a valuable advantage in many circumstances where the
properties of a particular segmentation algorithm are desired. For
example, when combined with the TOADS algorithm as shown in
Section 3.3, our filtering can lead to stable topology-preserved longitu-
dinal segmentations. However, like other 4D segmentations, a limita-
tion of our method is that if a new scan is observed, the filtered
images at all time-points must be re-computed.

The temporal auto-regressive filter in Eq. (4) has two components,
one to enforce smooth temporal intensities (Eq. (3)), and a weight to
penalize smoothness if the variation is greater than a noise threshold
(wi

(t) in Eq. (5)). Other smoothing filters, e.g., a moving average filter,
can be used in place of the AR model, but a key component of our
work is the weight wi

(t) which ensures that the patches are smoothed
only when the variation in the temporal dimension is small enough.
The filtering depends on a suitable choice of the threshold f. In theory,
f can vary spatially and also depend on the expected rate of change in
the underlying anatomy. In future work, we will explore the effect of a
temporally and spatially varying f.

In addition to the temporal stability of the brain segmentation, bias in
the longitudinal analysis is a common problem, that can arise from the
asymmetric interpolations when the baseline (first time point) is used
as a target for 4D nonlinear registrations (Yushkevich et al., 2010) in de-
formation based morphometry. To account for the bias in registrations,
two (ormore) time-points of a subject can be transformed to a “halfway”
space to remove the directional bias, as done in SIENA (Smith et al., 2001).
4D Freesurfer creates an unbiased “median” template of all the time-
points and registers all the time-points to the template. In this work, we
simply used the MNI atlas as the target for rigid registrations of all the
time-points before applying the 4D filtering (as described in
Section 2.3), since the focus of this paper is on the robustness of the seg-
mentations. The rigid registration to the MNI atlas before filtering can be
replaced by a rigid registration to an unbiasedmedian template, generat-
ed by ANTS (Avants et al., 2008) or 4D Freesurfer.

4D FS has no explicit noise model; it only transforms all the time-
points into a common unbiased space. Therefore, we would expect a
very similar atrophy detection performance of 4D filter followed by
4D FS as the combination of 4D filter and 3D FS, since the noise has
already been reduced by the filter. For the test–retest study (TR-10
and CoRR-29), we expect that combination of 4D FS and 4D filter to
increase the robustness, i.e. decrease the coefficients of variations,
similar to the comparison between 3D vs 4D FS.

In summary, we have described a temporal filtering algorithm to ob-
tain stable longitudinal segmentations that can be used as a pre-
processing step to any segmentation method. We used both intensity
based (FIRST, TOADS, Freesurfer), as well as registration based (MALP-
EM) segmentation algorithms to show that our method is significantly
more stable than other approaches while remaining sensitive to actual
longitudinal changes.
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