
Theoretical Computer Science 360 (2006) 415–439
www.elsevier.com/locate/tcs

Interfaces as functors, programs as coalgebras—A final coalgebra
theorem in intensional type theory

Markus Michelbrink∗,1

Department of Computer Science, University of Wales Swansea, Singleton Park, Swansea, SA2 8PP, UK

Received 24 May 2005; received in revised form 9 March 2006; accepted 16 May 2006

Communicated by B.P.F. Jacobs

Abstract

In [P. Hancock, A. Setzer, Interactive programs in dependent type theory, in: P. Clote, H. Schwichtenberg (Eds.), Proc. 14th
Annu. Conf. of EACSL, CSL’00, Fischbau, Germany, 21–26 August 2000, Vol. 1862, Springer, Berlin, 2000, pp. 317–331, URL
〈citeseer.ist.psu.edu/article/hancock00interactive.html〉; P. Hancock, A. Setzer, Interactive programs and weakly final coalgebras
in dependent type theory, in: L. Crosilla, P. Schuster (Eds.), From Sets and Types to Topology and Analysis. Towards Practicable
Foundations for Constructive Mathematics, Oxford Logic Guides, Clarendon Press, 2005, URL 〈www.cs.swan.ac.uk/∼csetzer/〉]
Hancock and Setzer introduced rules to extend Martin-Löf’s type theory in order to represent interactive programming. The rules
essentially reflect the existence of weakly final coalgebras for a general form of polynomial functor. The standard rules of dependent
type theory allow the definition of inductive types, which correspond to initial algebras. Coalgebraic types are not represented in
a direct way. In this article we show the existence of final coalgebras in intensional type theory for these kind of functors, where
we require uniqueness of identity proofs (UIP) for the set of states S and the set of commands C which determine the functor. We
obtain the result by identifying programs which have essentially the same behaviour, viz. are bisimular. This proves the rules of
Setzer and Hancock admissible in ordinary type theory, if we replace definitional equality by bisimulation. All proofs [M. Michel-
brink, Verifications of final coalgebra theorem in: Interfaces as Functors, Programs as Coalgebras—A Final Coalgebra Theorem in
Intensional Type Theory, 2005, URL 〈www.cs.swan.ac.uk/∼csmichel/〉] are verified in the theorem prover agda [C. Coquand, Agda,
Internet, URL 〈www.cs.chalmers.se/∼catarina/agda/〉; K. Peterson, A programming system for type theory, Technical Report, S-412
96, Chalmers University of Technology, Göteborg, 1982], which is based on intensional Martin-Löf type theory.
© 2006 Elsevier B.V. All rights reserved.

MSC: 03B15; 03F65; 03B70; 16W30; 18A15; 18D15; 68Q60; 68Q85

Keywords: Dependent type theory; Interactive programming; Coalgebra

1. Introduction

Martin-Löf type theory [28,35] is a very carefully developed framework for constructive mathematics. It is well
suited as a theory for program construction since it is possible to express both specification and programs within the

∗ Tel.: +44 1792 295393; fax: +44 1792 295708.
E-mail address: m.michelbrink@swansea.ac.uk.

1 Supported by EPSRC Grant GR/S30450/01.

0304-3975/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.05.033

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82070505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://citeseer.ist.psu.edu/article/hancock00interactive.html
http://www.cs.swan.ac.uk/~csetzer/
http://www.cs.swan.ac.uk/~csmichel/
http://www.cs.chalmers.se/~catarina/agda/
mailto:m.michelbrink@swansea.ac.uk

416 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

same formalism. Types in Martin-Löf type theory can be seen as program specifications via the proposition-as-types
interpretation [34,6,37]. Inhabitants of these types are programs which fulfil the required specification. Running such a
program means to evaluate an expression. One of the design features of the framework is that the evaluation of a well-
typed program always terminates. Further, there is no interaction with the environment. In order to introduce interaction
into type theory and to allow the non-termination of programs, Hancock and Setzer [17,19] introduced the notions of
(state dependent) interfaces and interactive programs. Their approach results in an extension of type theory by rules
expressing the existence of weakly final coalgebras for the functors determined by interfaces. This coalgebraic rules
give a comfortable way to reason about interactive programs. However, coalgebraic types are not represented directly in
standard type theory. In fact, they are classical examples of impredicative conceptions whereas Martin-Löf type theory
is a strictly predicative theory. Predicative type theories play a particular role for giving foundational interpretations of
programming languages. They have multiple mathematical models, notably set theoretic, PER models and denotational
models, that provide precise definitions of programming language features, due to their explicit inductive construction.

On the other side one has to be careful adding rules to type theory. That this may have disastrous consequences can
be seen e.g. in Martin-Löf’s Mathematics of Infinity [29] where it is shown that type theory becomes inconsistent when
the formal laws for the fixed point operator are adjoined to it.

However, in this work we show that it is possible to reason about interactive programs in standard predicative type
theory as long as we replace the definitional equality in the rules [17,19] by bisimulation. This is done by constructing
final coalgebras for the functors mentioned above. The basic idea for this construction is essentially the same as for
the model construction in Michelbrink/Setzer [34]. However, the proof that there is a final coalgebra for this kind of
functors is surprisingly hard. This is due to the fact that we work in intensional type theory, where we have to deal with
the problem that types depending on propositionally equal elements may not be equal. However, unlike the extensional
version intensional type theory has a number of desirable features we do not want to miss: all well-typed expressions
normalize and well-typedness, type-hood, type-checking as well as definitional equality are decidable.

The theory of types developed by Martin-Löf “is intended to be a full scale system for formalizing intuitionistic
mathematics” [30]. As a foundational theory it is thought to be open-ended, in the sense that we might extend it by
rules for new types provided the informal semantic principles of the theory are respected. In this article we work
with an extension of Martin-Löf type theory that accommodates inductive–recursive definitions. A first example of
simultaneous induction–recursion is Martin-Löf’s definition of the first universe á la Tarski [28]. The general schema
for this kind of definition is introduced and investigated by Dybjer [10].

The paper is organized as follows. In Section 2 we restate the original definition of interfaces and programs, try to
explain the concept of intensional identity, the meaning it has for constructive reasoning and describe the difficulties
which arise using this concept. We discuss families and predicates and how they are related and give a new modified
definition of interfaces. In Section 3 we introduce our category and in the following Section 4 the endofunctor Prog
on this category, for which we are going to show that there is a final coalgebra in the category. In Section 5 we define
a coalgebra for this functor, which consist in a family of sets CT, equivalence relations on this sets and a morphism
elim: CT → Prog CT. In Section 6 we introduce the unique morphism. However, to prove that the function defined
indeed belongs to the category and that it is the unique morphism making the coalgebra square commute we have to
do some more work. In Section 7 we define the repetition of the unique morphism and prove our Main Lemma. The
Main Lemma is then used to prove that the morphism defined in Section 6 belongs to the category (is extensional) and
is the unique morphism making the diagram commute. In Section 8 we point out how to get a final coalgebra for the
original functor of Hancock/Setzer from this. In Section 10 we conclude by describing some future and related work.

We use the following notations: t� t ′ for t evaluates to t ′, t� t ′ for t, t ′ evaluate to the same value, A for the
type A is inhabited, id : t

.= t ′ or id : t
.=A t ′ for id is an inhabitant of the identity type. We use the notation

(x : A) → B x for the product type and sig m0 : A0, . . . , mn : An m0 . . . mn−1 for sigma types where the components
of a : sig m0 : A0, . . . , mn : An m0 . . . mn−1 are accessed via ami

for i = 0, . . . , n. We denote the canonical elements
of the sigma types by 〈a0, . . . , an〉 and abbreviate sig fst : A, snd : B fst by

∑
(A, B) or

∑
(x : A.B x) to emphasize

x. The sentential connectives ∀, ∃, ∧, ∨, ⇒ for this type of constructors are used in the standard way to emphasize the
reading of types as propositions. We sometimes suppress arguments which can be inferred from other arguments, for
instance we write subst id b instead of subst A B a a′ id b. We also use the notation _ for missing arguments. We
use the notations False and True for the type with zero and one canonical element, respectively. To improve readability
we overload some function symbols, e.g. st, co. However, functions denoted by equal symbols have equal codomains
whereas the argument types may be different.

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 417

2. Basic definitions and concepts

2.1. Interfaces and interactive programs

In [17] Hancock and Setzer give the following definition of an interface:
An interface is a quadruple (S, C, R, n) s.t.

• S : Set
• C : S → Set
• R : (s : S, C s) → Set
• n : (s : S, c : C s, R s c) → S.
The elements of the set S are called states, C s is the set of commands in state s : S, R s c the set of responses to a
command c : C s in state s : S, and n s c r the next state of the system after this interaction.

A program for this interface starting in state s : S is a quadruple (A, c, next, a) s.t.
• A : S → Set
• c : (s : S, A s) → C s

• next : (s : S, a : A s, r : R s (c s a)) → A (n s (c s a) r)

• a : A s.
The elements of the set A s are understood as programs starting in the state s. The command c s a is the command
issued by the program a : A s, and next s a r is the program that will be executed, after having obtained for command
c s a the response r : R s (c s a). The execution of a program a : A s proceeds as follows. First we compute c s a

and issue this command. Then we wait for a response r : R s (c s a) from the real world. When we have obtained
a response r we compute the new program next s a r . This cycle is repeated until we reach a command c with no
responses. It may be undecidable if this is the case. It should also be noted that a program may wait forever for a
response. See [17] for further motivations.

Note that in the above definition programs are given by arbitrary families of sets A : S → Set. That means the
whole range of sets can be used to introduce elements into the set of all programs. In particular, the set of programs
itself may be used. This is a violation of the vicious-circle principle: impredicative definitions should not be used. That
is, an object should not be defined in terms of a totality to which the object itself belongs. In other words, no totality
can contain members defined in terms of itself. The vicious-circle principle is taken very seriously in Martin-Löf type
theory.

If we combine c s a and next s a we get an element of ProgHS A s := ∑
(c : C s.(r : R s c) → A (n s c r)).

Since there is no way to get the set of all programs directly in a predicative framework, Hancock and Setzer expanded
Martin-Löf type theory. This results in a type theory where the adjoined rules express the existence of a (weakly) final
coalgebra for the functor ProgHS.

We are going to show that under certain assumptions on the sets of states and commands the existence of this set of
programs can be proved in ordinary type theory. The proof is surprisingly hard. The reason for this is that we work in
intensional type theory.

2.2. Intensional identity

Under the proposition-as-types interpretation, propositions are nothing other than types. That a proposition is true
means that the type is inhabited. In order to have an internal representation of equality, identity types are introduced.
The main purpose of these identity types is to be able to make the assumption that two objects of a type are identical,
i.e. to express identity of objects on the left side of an implication. Martin-Löf type theory can be formulated on top
of a theory of logical types (logical framework) [35]. This is a typed ���-calculus with dependent function types, a
special type Set and a rule which states that each object of Set is also a type. Sets are given by formation, introduction,
elimination and equality rules. The formation rules say how to build sets, the introduction rules say what the canonical
elements of the set are. Elimination and equality rules say how to eliminate set formers. �- and �-conversion together
with the equality rules give definitional equality.

There are two main versions of Martin-Löf type theory: extensional and intensional type theory. The difference lies
in the treatment of the identity type. In both versions the formation and introduction rules of the identity type are

418 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

the same:

A : Set a, b : A

a
.=A b : Set

A : Set a : A

refl a : a
.=A a

The difference is in the elimination and equality rules for the identity type. The elimination rules in extensional type
theory identify propositional and definitional identity:

p : a
.=A b

a = b : A

This renders type theory undecidable, i.e. well-typedness, type-checking, type-hood and definitional equality become
undecidable [22]. This is in contrast to intensional type theory. There is a deep symmetry between the introduction rules
on the one side and the elimination and equality rules on the other side in intensional type theory. The elimination rules
for all sets can be understood as structural induction rules: a proposition is true for all elements iff the proposition is
true for the canonical elements of the set. In fact, elimination and equality rules can be calculated from the introduction
rules [9]. This holds as well for the identity type:

C : (x, y : A, p : x
.=A y) → Set

c : (x : A) → C x x (refl x) a, b : A p : a
.=A b

idpeel C c a b p : C a b p

with equality idpeel C c a a (refl a) = c a. Surprisingly this very weak elimination rule allows to deduce the usual
properties of equality, notably Leibniz’ principle (C a implies C b for a

.= b). However, working with intensional
identity becomes very awkward. The reason for this is that propositional and definitional equality do not collapse. That
is, two instances of a type family with indices which are not convertible, just propositionally equal, are not the same
type, i.e. c : C a is in general not an element of C b if a equals b, though if p : a

.= b and c : C a we get an element
subst p c : C b. The trouble is that this element depends on the proof p and there is no general way to conclude that
subst p c equals subst q c for p, q : a

.= b.
We frequently use the following well known (and easy to prove) principles:

Principle 1.

a0
.= a1 ⇒ f a0

.= f a1

for A, B : Set, f : A → B, a0, a1 : A.

Principle 2.

〈a0, b0〉 .=∑
(A,B) 〈a1, b1〉 ⇔ a0

.=A a1 ∧ b̄0
.=B a1 b1

for A : Set, B : A → Set, ai : A, bi : Bi, i = 0, 1 and b̄0 obtained from b0 by the inhabitant of a0
.= a1.

2.3. Families and predicates

What makes type theory into dependent type theory is that types may depend on elements of other types. A family
of sets is given by a set IndexP and a function P : IndexP → Set. The function P may as well be seen as a predicate on
IndexP. On the other hand it is often technically simpler to work with a more fibration-like view of families: a family
is given by two sets CoIndexF, IndexF and a function F : CoIndexF → IndexF. We call the former predicate and
the latter family. It is possible to switch between these notions in the following ways: from predicate P to family F
(pr0 denotes the first projection):

CoIndexF := ∑
(IndexP, P)

IndexF := IndexP

F := pr0 : ∑
(IndexP, P) → IndexP.

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 419

From family F to predicate P define IndexP := IndexF and let P i be given by the following rules:

Formation Introduction Elimination

i : IndexF
P i : Set

c : CoIndexF
intro c : P (F c)

i : IndexF c′ : P i

B : (i : IndexF, c′ : P i) → Set
b : (c : CoIndexF) → B (F c) (intro c)

elim B b i c′ : B i c′

where elim B b (F c) (intro c) evaluates to b c. Note that the latter gives exactly the rules for intensional identity
if we take as family � : A → A × A with � a := (a, a). We write PredToFam P and FamToPred F , respectively,
for the predicate and family we gain by the way above. Intuitively we can think about FamToPred F as the pre-image
function F−1.

We say that f : A → B is a bijection iff there is a g : B → A such that a
.= (g(f a)) and b

.= (f (g b)) are inhabited
for all a : A, b : B. We write A B iff there is such a bijection. It is easy to establish the following bijections:

P i FamToPred (PredToFam P) i

iso : CoIndexF (PredToFam(FamToPred F))CoIndexF.

In the second case the functions pr0 ◦ iso = (PredToFam(FamToPred F)) ◦ iso and F are pointwise equal.
There is a second approach to get a predicate P from a family F. This approach uses the identity set: define IndexP :=

IndexF and

P i := ∑
(c : CoIndexF, (F c)

.= i)

for i : IndexF. We write FamToPred′ F for this predicate. Again it is not too hard to establish the following bijections:

P i FamToPred′ (PredToFam P) i

iso : CoIndexF (PredToFam (FamToPred′ F))CoIndexF

and to prove that in the second case the functions pr0 ◦ iso = (PredToFam (FamToPred′ F)) ◦ iso and F are pointwise
equal. Note that the index set stays the same all the time and that

FamToPred (PredToFam P) i FamToPred′ (PredToFam P) i

(PredToFam (FamToPred F))CoIndex (PredToFam (FamToPred′ F))CoIndexF.

This is a little bit remarkable since the second approach seems to multiply elements due to the fact that there may be
more than one inhabitant of (F c)

.= i. The phenomenon is related to the fact that we can prove

Collapse
∑

(a : A, a
.= a′)

for a′ : A but in general not

Collapse (a
.= a′)

for a, a′ : A where Collapse A is ∀a, a′ : A.a
.= a′.

2.4. A simpler definition of interfaces

What makes work with the above interface definition clumsy is that there are too many dependencies. The commands
depend on the states, the responses on the commands and the next state on the state, the command and the response.
This seems to be redundant since the information to which state a command belongs should already be given by the
command itself and similarly for the responses and the next state. Hence the responses should depend only on the
command and the next state on the response. The way to achieve this is to work with families instead of predicates:

Definition 3 (Interface). An interface is given by sets S, C, R and functions st : C → S, co : R → C, nxt : R → S.

420 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

Given an interface (S, C, R, n) in the sense of Hancock/Setzer we get an interface in the new sense by

st := PredToFam C

co := PredToFam R′

and setting

nxt(((s, c), r)) := n s c r,

where R′ is the uncurried version of R. The altered definition determines a functor (see Section 4). We are going
to prove that this functor has a final coalgebra and use this result to get a final coalgebra for the original functor of
Hancock/Setzer above. However, we have not succeeded to prove the result in its most general form for arbitrary sets
S, C. In order for the proof to go through we need a principle known as uniqueness of identity proofs on the sets S, C.
This principle states that all the inhabitants of a

.= a′ are identical, that is,

∀a, a′ : A. Collapse (a
.= a′).

We write UIP A for ∀a, a′ : A. Collapse (a
.= a′). As shown by Hofmann [21,22] UIP A is not provable for arbitrary

sets A. However, it is provable for the enumeration types, the natural number type and preserved by the identity type
and the sum type constructors [21], that is,

UIP A ⇒ ∀a, a′ : A.UIP (a
.=A a′)

and

UIP A ⇒ (∀a : A.UIP B a) ⇒ UIP
∑

(A, B).

More general UIP A follows from decidability of identity [20] that is

∀a, a′ : A.(a
.=A a′) ∨ (a � .=A a′),

which is also preserved by the sum type constructor. Streicher [42] noticed that UIP A is provable if in the elimination
rules for the above identity type the type of C is changed from (x, y : A, p : x

.=A y) → Set to (x : A, p :
x

.=A x) → Set. Using this elimination rule is equivalent to pattern matching [31], which therefore proves UIP as well.
However, in this case elimination cannot be justified as structural induction. In the following we assume UIP for the sets
S and C.

3. The category of S-indexed families of setoids

We are going to define the category of S-indexed families of setoids. The ambient category of setoids is a model of
intensional type theory [21]. The set of states S determines the following (presheaf-)category: objects are triples

X : S → Set

≡X: (s : S, X s, X s) → Set

eqX : (s : S) → equivalence (≡X s),

where equivalence R says that R is an equivalence (reflexive, transitive, symmetric) relation.
We use the notations ≡, ≡X and ≡s for the binary relation (s : S)

≡X s ⊆ X s × X s.

We say ≡X: (s : S) → X s → X s → Set is an equivalence relation iff all relations ≡s⊆ X s × X s are equivalence
relations. Morphism f : (X, ≡X, eqX) → (Y, ≡Y , eqY) are given by a family of S-indexed extensional functions in
the sense that

f : (s : S) → X s → Y s

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 421

and

x ≡X x′ ⇒ f s x ≡Y f s x′

for s : S, x, x′ : X s. We use the same notation for the morphism and the function f. If we want to emphasize the
relations ≡X, ≡Y we sometimes say that f is (≡X, ≡Y)-extensional. We identify f, g : (X, ≡X, eqX) → (Y, ≡Y , eqY)

iff

x ≡X x′ ⇒ f s x ≡Y g s x′

for all s : S, x, x′ : X s.
It is easily verified that this gives a category.

4. The endofunctor Prog

The interface (S, C, R, st, co, nxt) determines the endofunctor Prog given by

Prog X s : Set
= sig command : C

idS
co : (st c)

.= s

nextEl : (r : R, (co r)
.= c) → X(nxt r)

for X : S → Set with equivalence relation

Prog ≡X s 〈c0, ids0, f0〉 〈c1, ids1, f1〉 : Set
= sig idc : c0

.= c1

fct : (r : R, idcr : (co r)
.= c0) → f0 r idcr ≡(nxt r) f1 r idcr′,

where idcr′ := subst idc idcr. We use the notation ≡Prog for this relation. By some simple calculations it follows that
≡Prog is an equivalence relation if ≡ is an equivalence relation. We allow some abuse of notations. Prog takes a family
of sets X : S → Set, an equivalence relation ≡X on X and a witness for the fact that ≡X is an equivalence relation
and gives a triple consisting of a family of sets Prog X : S → Set an equivalence relation Prog ≡X on Prog X and a
corresponding witness.

The morphism part of the functor Prog is given by

Prog g s : Prog X s → Prog Y s

Prog g s 〈c, ids, f 〉 = 〈c, ids, �r : R, idc : (co r)
.= c. g (nxt r) (f r idc)〉.

If g is extensional then Prog g is extensional too. To see this, let

〈c0, ids0, f0〉 ≡Prog 〈c1, ids1, f1〉.2

Then we have idc : c0
.= c1. Let r : R and idcr : (co r)

.= c0. We have

f0 r idcr ≡(nxt r) f1 r idcr′,

where idcr′ is obtained from idcr by idc. We must show that

g (nxt r) (f0 r idcr) ≡(nxt r) g (nxt r) (f1 r idcr′).

But this follows by the extensionality of g.
The defining properties for a functor are easily verified.

2Remember that this means that the type is inhabited.

422 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

5. The coalgebra of computation trees

A possible first approach 3 to construct a final coalgebra representing the programs of Hancock/Setzer might be to
work in the category of setoids [21,5]. The final coalgebra for the functor Prog ought to be defined by means of the set
(List R) → C together with an appropriate equivalence relation. Given a morphism g : B → Prog B the idea is now
to define an element treeg,b : (List R) → C for b : B by

treeg,b () := (g b)command,

treeg,b (l, r) :=
{

(g b′)command if co r
.= treeg,b l,

some “junk” otherwise,

where b′ has to be defined simultaneously by means of (g _)nextEl . However, this approach does not work. The reason is
that we do not have c

.= c′ ∨ c � .= c′ for c, c′ : C in general, i.e. identity on C must not be decidable. As a consequence,
we cannot define treeg,b by case distinction as above. Instead, we have to prove our envisaged result by doing it the
hard way 4 : we are going to define the object of the final coalgebra as a set of trees containing exactly the information
a program needs to have. While well-founded trees can be represented in type theory by inductive types, for non-well-
founded ones we have to resort to a more traditional mathematical definition: a tree is identified with the set of its paths.
Specifically, for us paths are traces of computations represented by sequences of commands and responses (and states,
but these are determined by the command). There must be a restriction, given by logical information in the sequence,
that guarantees the agreement of states, commands and responses. This logical information ensures that the sequence
is a possible computation path for the interface. It is given by identity proofs. In the next step we have to define subsets
of traces corresponding to trees which then will give us the set of programs we are looking for. Subsets can be defined
in type theory as predicates, that is, functions to Set. But to single out certain predicates which correspond to programs
does not work because then the type of trees would not be a set. Alternatively, we can see subsets as functions to bool,
but this is not possible in our case because we do not have decidability. The actual solution is intermediate: instead
of using the whole universe of sets to characterize trees as subsets of paths, we define an ad hoc smaller and more
manageable universe generated by the types of states, commands and responses and closed for identity and sigma
types. Computation trees are then represented by functions on dependent sequences of commands and responses into
this universe. We start by defining the set of possible computation paths of the interface:

Definition 4. Elements of CTSeq s for s : S are either of the form

(c, ids),

where c : C and ids : st c
.= s, or of the form

(l, r, idc, c, ids),

where l : CTSeq s, r : R, idc : co r
.= co _ l, c : C, ids : st c

.= nxt r and co _ l denotes the last command of the
sequence l, i.e.

co _ (c, ids) = co _ (l, r, idc, c, ids) = c.

Note that we have to define the function co mutually with the sets CTSeq s, i.e. the definition is by induction–recursion
[10]. The idea here is that a list represents an initial part of a possible program execution. The identities ensure that the
list is accurate for the interface. We need some auxiliary notions:

Definition 5 (Last state, predecessor). We denote the last state of the sequence l : CTSeq s by st _ l, i.e. st _ (c, ids)
:= s, st _ (l, r, idc, c, ids) := nxt r . We denote the modified predecessor of the sequence l by pd _ l, i.e. pd _ (c, ids) :=
(c, ids), pd _ (l, r, idc, c, ids) := l.

3 One of the referees of this paper suggested to explore this idea.
4 “. . . the dwarfs found out how to turn lead into gold by doing it the hard way. The difference between that and the easy way is that the hard way

works.” Terry Pratchett, The Truth, 2000.

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 423

Definition 6 (Append). We define mutually

l0 � 〈r, idc〉 � l1 : CTSeq s

and an inhabitant of

co _ l1
.= co _ (l0 � 〈r, idc〉 � l1) (1)

for s : S, l0 : CTSeq s, r : R, idc : co r
.= co _ l0, l1 : CTSeq (nxt r) by

l0 � 〈r, idc〉 � (c, ids) := (l0, r, idc, c, ids),

l0 � 〈r, idc〉 � (l, r ′, idc′, c, ids) := ((l0 � 〈r, idc〉 � l), r ′, idc′′, c, ids),

where we obtain idc′′ from idc′ by the inhabitant of 1 which is defined as refl c in both cases.

Note that definition by cases is necessary in the definition of the inhabitant of 1 since otherwise the terms would not
evaluate.

Proposition 7 (Associativity of append).

l0 � 〈r0, idc0〉 � (l1 � 〈r1, idc1〉 � l2)
.= (l0 � 〈r0, idc0〉 � l1) � 〈r1, idc′

1〉 � l2,

where idc′
1 is obtained from idc1 by the inhabitant of

co _ l1
.= co _ (l0 � 〈r0, idc0〉 � l1)

due to 1.

Proof. Induction on l2. If l2� (c, ids) both sides of the equation evaluate to the same value. Let l2� (l, r, idc, c, ids).
Let c1 := co _ l1, c′

1 := co _ (l0 � 〈r0, idc0〉 � l1).
Let lleft := l0 � 〈r0, idc0〉 � (l1 � 〈r1, idc1〉 � l) and lright := (l0 � 〈r0, idc0〉 � l1) � 〈r1, idc′

1〉 � l. By I.H. we have

idl : lleft
.= lright .

Let cl := co _ l, c′
l := co _ (l1 � 〈r1, idc1〉 � l), cleft := co _ lleft , cright := co _ lright .

We have inhabitants of

cl
.= c′

l , c′
l

.= cleft, cl
.= cright

by which we obtain inhabitants

idc′
l : co r

.= c′
l , idcleft : co r

.= cleft, idcright : co r
.= cright

from idc. By idl we obtain a second inhabitant

idc′
right : co r

.= cright

from idcleft and with UIP C we conclude that idc′
right

.= idcright and

〈lleft, idcleft〉 .= 〈lright, idcright〉 (2)

by Principle 2. Now l0 � 〈r0, idc0〉 � (l1 � 〈r1 idc1〉 � l2) evaluates to

(lleft, r, idcleft, c, ids)

and (l0 � 〈r0, idc0〉 � l1) � 〈r1, idc′
1〉 � l2 to

(lright, r, idcright, c, ids).

The claim follows by (2) with Principle 1. �

424 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

Remark. Note that to conclude that (2) holds, we have to prove that idc′
right equals idcright . We obtained idc′

right from

idcleft by shifting it along idl. Since we know nothing 5 about idl (we got idl from the I.H.) we know nothing about
idc′

right . So to force the needed equality we apply UIP C.

Corollary 8.

(c, ids0) � 〈r, idc〉 � l
.= (c, ids1) � 〈r, idc〉 � l

for ids0, ids1 : (st c)
.= s.

Proof. With UIP S. �

Corollary 9.

(c0, ids0) � 〈r, idc〉 � l
.= (c1, ids1) � 〈r, idc′〉 � l

for id : c0
.= c1, idsi : (st ci)

.= s (i = 0, 1) and idc′ = subst id idc.

Proof. Case id = refl c. �

We are going to define a universe U. The definition is by induction–recursion [10]. The universe U is a relatively
small universe. It contains names for the sets S, C, R and is closed only under the identity and sigma type formers. For
the general rôle of universes in type theory and the proof theoretic strength gained by (much larger) universes compare
[36,41].

Definition 10 (Universe). We define mutually

U : Set
= data NameS | NameC | NameR |

NameId (u : U)(e1, e2 : set u) |
NameSig (u : U)(f : (e : set u) → U)

and

set(u : U) : Set
by

set NameS = S
set NameC = C
set NameR = R
set (NameId u e1 e2) = (e1

.=(set u) e2)

set (NameSig u f) = ∑
(e : (set u).(set (f e))).

We write NIdC for NameId NameC.

We want to define computation trees as functions T : CTSeq s → U with the following properties:
(1) There is exactly one root c : C for the tree.
(2) For every l : CTSeq s which is a node of the tree and for every r : R suitable for l there is exactly one successor,

i.e. one c such that (l, r, idc, c, ids) is a node of the tree.
(3) For every l : CTSeq s which is a node of the tree the predecessor of l is a node of the tree too.
Where a list l is a node of the tree if set (T l) is inhabited and r : R is suitable for l if co r

.= co _ l. Technically
a computation tree will be a dependent tuple of a function T together with a witness that the function fulfils the

5 At least we do not know if types depending on idl are inhabited.

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 425

properties above (Definition 12). The properties are expressed by sigma types (Definition 11). We formalize this ideas as
follows:

Definition 11. For s : S, T : CTSeq s → U let �1 s T be

sig root : C
idS

ro : st root .= s

rootex : set (T(root, idS
ro))

rootuni : ∀ c : C, idsc : st c
.= s. set (T (c, idsc)) ⇒ c

.= root.

For s : S, T : CTSeq s → U, l : CTSeq s, e : set (T l), r : R and idcr : co r
.= (co _ l) let �2 s T l e r idcr be

sig command : C
idS

co : st command .= nxt r

commandex : set (T (l, r, idcr, command, idS
co))

commanduni : ∀ c : C, idsc : st c
.= nxt r. set (T (l, r, idcr, c, idsc)) ⇒

c
.= command .

For s : S, T : CTSeq s → U, l : CTSeq s and e : set (T l) let �3 s T l e be

set (T (pd _ l)).

Let � s T be (�1 s T) ∧ (�2 s T) ∧ (�3 s T).

Note the natural way in which we make use of dependent types in this definition: we quantify in � only over those l
which are nodes of the tree T: argument e : set (T l) in �1 and �2. This will play an important role later. We are now
able to define the family of sets in the object part of the final coalgebra:
Definition 12 (Computation trees).

CT (s : S) : Set
= sig tree : CTSeq s → U

phi : � s tree.

Before we define an equivalence relation on this family we declare the morphism of the final coalgebra. We single
out the command of each tree by using the witness for the property �1.

Definition 13 (Command of a computation tree). For ct : CT s : with ctphi� (�1, �2, �3)

co _ ct := �1root
,

idS
co _ ct := �1idS

ro
.

The program that we obtain after doing one computation step and receiving a response r is represented by the subtree
at branch r. A subtree is given by taking the tree function on another position. The argument is constructed by means
of the append function on lists.

Definition 14 (elimtree). For ct : CT s, r : R and idc : co r
.= co _ ct let

elimtree s ct r idc : CTSeq (nxt r) → U

given by

�l : CTSeq (nxt r) . (cttree ((c, ids) � (r, idc) � l)),

where c = co _ ct and ids = idS
co _ ct .

We need to prove that the defined function has the properties �1–�3.

426 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

Proposition 15. For ct : CT s, r : R and idc : (co r)
.= (co _ ct)

�1 (nxt r) (elimtree s ct r idc).

Proof. Let c = co _ ct and ids = idS
co _ ct . The inhabitant of �1 s cttree gives an inhabitant e : set(cttree s (c, ids)).

The inhabitant of �2 s cttree (c, ids) e r idc proves the claim. �

Proposition 16. For ct : CT s, r : R and idc : (co r)
.= (co _ ct)

�2 (nxt r) (elimtree s ct r idc).

Proof. Let l : CTSeq (nxt r), e : set (elimtree s ct r idc l), r ′ : R, idc′ : (co r ′) .= (co _ l). Let c = co _ ct and
ids = idS

co _ ct . By (1) we get an inhabitant idc′′ : (co r ′) .= (co _ ((c, ids) � 〈r, idc〉 � l) from idc′ and the inhabitant
of �2 s cttree ((c, ids) � 〈r, idc〉 � l) e r ′ idc′′ proves the claim. �

Proposition 17. For ct : CT s, r : R and idc : (co r)
.= (co _ ct)

�3 (nxt r) (elimtree s ct r idc).

Proof. Induction on l : CTSeq (nxt r). �

The morphism part of the final coalgebra is now given by:

Definition 18 (elim). For ct : CT s we define

elim s ct : Prog s CT

by

〈co _ ct, idS
co _ ct, nextEl〉,

where nextEl r idc : CT (nxt r) is given by elimtree s ct r idc and Propositions 15–17 for r : R and idc : (co r)
.= (co _ ct).

We write nextEl _ ct for (elim _ ct)nextEl .

5.1. Bisimulation

We still need to define an equivalence relation on CT. The equivalence relation we are going to define expresses when
two programs behave in the same way. This is the case if they start with equal commands and give equivalent programs
for equal responses. The function elim gives a labelled transition system. There is a transition r : R between trees T0
and T1 if T1 is the subtree of T0 at branch r. Since this transition system is image finite we can define bisimulation by
means of natural induction.

Definition 19 (Bisimulation). For ct, ct ′ : CT s, n : N we define

ct ∼n ct ′ : Set

by

ct ∼zero ct ′ = True,
ct ∼succ n ct ′ = sig idc : c

.= c′
fct : (r : R, idcr : (co r)

.= c) → f r idcr ∼n f ′ r idcr′

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 427

and

ct ∼ ct ′ : Set
= ∀ n : N. ct ∼n ct ′,

where elim s ct� 〈c, idc, f 〉, elim s ct ′� 〈c′, idc′, f ′〉 and idcr′ is obtained from idcr by idc.

Proposition 20. ∼ is an equivalence relation on CT.

Proof. Straightforward. �

Proposition 21.

ct ∼ ct ′ ⇔ elim s ct ∼Prog elim s ct ′

for ct, ct ′ : CT s.

Proof. “⇒” Follows with UIP C.
“⇐” Trivial. �

Corollary 22. elim : CT → Prog CT is extensional.

This means that elim is a coalgebra morphism. We are going to prove that elim : CT → Prog CT is a final coalgebra
for Prog.

6. The unique morphism T into the final coalgebra

Let B : S → Set and g : (s : S, B s) → Prog B s. We keep B, g fixed for the rest of the article. We write co _ b,
idS

co _ b and nextEl s b for (g s b)command, (g s b)idS
co

, (g s b)nextEl , respectively, where b : B s. We must find a

unique morphism T : B → CT with elim ◦ T = Prog T ◦ g, i.e. elim s (T s b) ∼Prog (Prog T) s (g s b) for s : S,
b : B s. We get T by defining mutually the function value Ttree s b l : U for l : CTSeq s and an element of B (nxt r)

for those l which are nodes of Ttree s b where r is a response of co _ l. This element is essentially the element which
we get if we follow g along the responses which occur in l including r. The list (c, ids) is a node of the tree Ttree s b if
c is the command played by g at b, i.e. (co _ b)

.= c. The list (l, r, _, c, _) is a node of the tree Ttree s b if l is a node of
Ttree s b and c is the command played by g at the element of B (nxt r) described above. Things again become quite
involved since we have to shift the identities to meet the typing requirements.

Definition 23. We define mutually

Ttree s b l : U

and

A s b l r idc e : B (nxt r)

for s : S, b : B s, l : CTSeq s, r : R, idc : co r
.= co _ l and e : set (Ttree s b l) by

Ttree s b (c, ids) := NIdC c (co _ b),

Ttree s b (l′, r ′, idc′, c, ids) := NameSig (Ttree s b l′)
(�e : set(Ttree s b l′). NIdC c (c′ e)),

where c′ e := co _ (A s b l′ r ′ idc′ e) and

A s b (c, ids) r idc e := nextEl s b r idce,

A s b (l′, r ′, idc′, c, ids) r idc e := nextEl (nxt r ′) b′ r idc′′,

428 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

where in the first case idce is the composition of idc and e, and in the second case b′ := A s b l′ r ′ idc′ efst,
esnd : c

.= (co _ b′) and idc′′ := subst esnd idc.

We lift UIP C to set(Ttree s b l):

Proposition 24.

∀p, q : set(Ttree s b l) ⇒ p
.= q

for s : S, b : B s, l : CTSeq s.

Proof. If l� (c, ids) this is UIP C.
Let l� (l′, r, idc, c, ids),p, q : set(Ttree s b l)withp� 〈p′, idcp〉 andq� 〈q ′, idcq〉. We have id : p′ .=set(T s b l′)

q ′ by I.H. and idcp′ .= idcq by UIP C where we obtain idcp′ from idcp by id. This proves the claim. �

Corollary 25.

A s b l r idc p
.= A s b l r idc q

for s : S, b : B s, l : CTSeq s, r : R, idc : (co r)
.= (co _ l) and p, q : set (Ttree s b l).

Proof. Immediate from Proposition 24. �

The following three propositions state that Ttree s b is indeed an element of CT, i.e. that Ttree s b fulfils the
properties �1–�3.

Proposition 26. For s : S, b : B s

�1 s (Ttree s b).

Proof. The following term proves the claim:

〈co _ b, idS
co _ b, refl (co _ b), rootuniT〉,

where rootuniT c idsc p := p for c : C, idsc : (st c)
.= s and p : set(Ttree s b (c, idsc)). �

Proposition 27. For s : S, b : B s

�2 s (Ttree s b).

Proof. Let l : CTSeq s, p : set (Ttree s b l), r : R, idcr : (co r)
.= (co _ l).

For x : set(Ttree s b l) let b′ x := A s b l r idcr x, c′ x := co _ (b′ x) and ids′ x := idS
co _ (b′ x). The following

term proves the claim:

〈c′ p, ids′ p, (p, refl c′ p), commanduniT〉,
where commanduniT c idsc q := subst id qsnd and id : qfst

.= p the inhabitant according to Proposition 24 for
c : C, idsc : st c

.= nxt r and q : set(Ttree s b (l � 〈r, idcr〉 � (c, idsc))). �

Proposition 28. For s : S, b : B s

�3 s (Ttree s b).

Proof. Obvious. �

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 429

Definition 29. Let T(s : S)(b : B s) : CT s be

〈Ttree s b, Tphi s b〉,
where Tphi s b is given by Propositions 26–28.

We postpone the proof that T is extensional.

7. The repetition of the unique morphism T

We want to prove that T is the unique morphism making the coalgebra square below commute.

B
g� Prog B

CT

T

�

elim
� Prog CT

Prog T

�

That means we have to prove

b0 ≡ b1 ⇒ (Prog T ◦ g) _ b0 ∼ (elim ◦ T) _ b1

for s : S and b0, b1 : B s, where ≡ denotes the equivalence relation on B. We have

ct0 ∼n ct1 ⇔ co _ ct0
.= co _ ct1 and

nextEl _ ct0 r0 idcr0 ∼n−1 nextEl _ ct1 r0 idcr′
0

⇔ . . . and

nextEl _ (nextEl _ ct0 r0 idcr0) r1 idcr1 ∼n−2

nextEl _ (nextEl _ ct1 r0 idcr′
0) r1 idcr′

1

⇔ . . .

for ct0, ct1 : CT s. This observation leads to the definition of the repetition TRep of T which we use in the following
to prove the coalgebra property. We define the repetition TRep of T for every sequence l : CTSeq s which belongs to
Ttree s b. Essentially this will be the subtree of Ttree which we get when we follow the tree along the path l. We want
to define this by recursion on l. Again this cannot be done in a straightforward way, since the elements we get by the
induction hypothesis do not have the desired type. That means we have to shift them along certain identities which
must be defined simultaneously. Therefore we define mutually

TRep s b l p : CT(st _ l)

and identities

co _ l
.= C co _ (TRep s b l p), (3)

(TRep s b l p)tree l′ .= U Ttree s b (l#l′), (4)

where s : S, b : B s, l : CTSeq s, p : set(Ttree s b l), l′ : CTSeq(st _ l) and

(c, ids)#l′ := l′,
(l0, r, idc, c, ids)#l′ := (l0 � 〈r, idc〉 � l′).

The second identity (in U) is needed to prove the first one (in C). Note that l#(c, ids)� l if l� (c, ids) or
l� (l0, r, idc, c, ids).

430 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

Definition 30 (Repetition of T). We define mutually
TRep(s : S)(b : B s)(l : CTSeq s)(p : set(Ttree s b l)) : CT (st _ l)

by
TRep s b (c, ids) p = T s b

TRep s b (l′ r idc c ids) p = nextEl _ (TRep s b l′ p′) r idc′,
where the witness saying that l′ belongs to the tree T s b is given by p′ = �3 s b l p where �3 : �3 s (Ttree s b) as in
Proposition 28. The identity idc′ is obtained from idc by identity 3. Identity 3 is defined in the next step.

We define an inhabitant of

co _ l
.= co _ (TRep s b l p)

by

p if l = (c, ids),
�1rootuni

c ids p′ if l = (l′, r, idc, c, ids),

where �1 : �1 _ (TRep s b l p) as given by Proposition 26. The witness p′ saying that (c, ids) belongs to the tree
TRep s b l p is obtained from p by identity (4) since l#(c, ids)� l. Identity (4) is defined in the next step.

To complete the definition we must define an inhabitant of

(TRep s b l p)tree l′ .= Ttree s b (l#l′)

for s : S, b : B s, l : CTSeq s, p : set(T s b l) and l′ : CTSeq (st _ l).
In the case l� (c, ids) an inhabitant of this type is given by

refl (Ttree s b (l#l′))

since both sides of the equation evaluate to the same value.
For l� (l0, r, idc, c, ids) let p′ be as above,

s0 := st _ l0,

cl0 := co _ (TRep s b l0 p′),
idcsl0 := idS

co _ (TRep s b l0 p′),
sl0 := (cl0 , idcsl0),

sl1 := (c0, idcs0),

where l0 = (. . . , c0, idcs0) and idc′ is obtained from idc by identity (3). Let

left = (TRep s b l0 p′)tree (sl0 � 〈r, idc′〉 � l′),
middle = Ttree s b (l0#(sl0 � 〈r, idc′〉 � l′)),

right = Ttree s b (l0 � 〈r, idc〉 � l′).

We must prove left
.= right. We have sl0 � 〈r, idc′〉 � l′ .= sl1 � 〈r, idc〉 � l′ by Corollary 9 and by I.H.

left
.= middle.

If l0� (c0, idcs0) then

middle
.= right

by Principle 1 and we are done.
If l0� (l1, r0, idcr0, c0, idcs0) then

l1 � 〈r0, idcr0〉 � (sl0 � 〈r, idc〉 � l′) .= l1 � 〈r0, idcr0〉 � (sl1 � 〈r, idc′〉 � l′)
.= (l1 � 〈r0, idcr0〉 � sl1) � 〈r, idc′〉 � l′
.= l0 � 〈r, idc′〉 � l′,

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 431

where the first equation follows by Principle 1 and the second by the associativity of �. Principle 1 gives

middle
.= right

and we are done again. This finishes the definition of TRep.

Remark. Note that we could define the repetition of ct for arbitrary ct : CT s. Therefore we can proceed in a similar
way as above. We just need to replace p by �1rootuni

c ids p in the first case of the construction of the inhabitant of

identity (3) where �1 is the witness for �1 s ct . However, since this greater generality has no particular advantage for
us we work with the definition above.

As a corollary to Proposition 24 we get:

Corollary 31.

TRep s b l p
.= TRep s b l q

for p, q : Ttree s b l.

We need some auxiliary definitions. Let

nxtS s (c, ids) r := nxt r,

nxtS s (l′, r ′, idc, c, ids) r := nxtS s l′ r ′,

pred s (c′, ids′) r idc c ids := (c, ids),
pred s (l′, r ′, idc′, c′, ids′) r idc c ids := ((pred s l′ r ′ idc′ c′ ids′), r, idcr, c, ids),

where idcr is obtained from idc by the simultaneously defined inhabitant of

c
.= co _ (pred s l r idc c ids), (5)

which is given in both cases by refl c. Note that definition by cases is necessary again to define this inhabitant. The
operation pred _ l_ cuts off the first command and response of the list l. Since this is only possible for lists of
the form (l′, r ′, idc′, c′, ids′) we use the auxiliary arguments r, idc, c and ids. The obtained list is an inhabitant of
CTSeq (nxtS s l r). Further, we define an inhabitant of B (nxtS s l r) by

nextB s (c′, ids′) r idc c ids b (id0, id1) := A s b (c′, ids′) r idc id0,

nextB s (l′, r ′, idc′, c′, ids′) r idc c ids b (p′, id1) := nextB s l′ r ′ idc′ c′ ids′ b p′,

where b : B s and p : set (Ttree s b (l, r, idc, c, ids)) for p� (id0, id1), p� (p′, id1) and l� (c′, ids′),
l� (l′, r ′, idc′, c′, ids′), respectively. The inhabitant nextB _ l r _ is calculated by doing essentially only the first
step in the calculation of A _ l r _. Whereas A _ l r _ gives us an element of B (nxt r) by following all responses in
l including r, nextB _ l r _ is doing only the first step. The following proposition states that we get equal elements in
B (nxt r0) whether we apply A on b and a sequence (l, r, idcr, c, idsc) or do one step from b along this sequence and
apply A on the new bn and the sequence obtained from (l, r, idcr, c, idsc) by pred above.

Proposition 32. For s : S, l : CTSeq s, r, r0 : R, c : C, b : B s,

idcr : co r
.= co _ l,

idsc : st c
.= nxt r,

idcr0 : co r0
.= c,

p : set (Ttree s b (l, r, idcr, c, idsc)), q : set (Ttree sn bn lp), where

sn = nxtS s l r,

bn = nextB s l r idcr c idsc b p,

lp = pred s l r idcr c idsc,

432 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

we have

A s b (l, r, idcr, c, idsc) r0 idcr0 p
.= A sn bn lp r0 idcr′

0 q,

where idcr′
0 is obtained from idcr0 by identity (5).

Proof. Case l� (c′, ids), p� (id0, id1).
Then idcr′

0 evaluates to idcr0. Let idcr1, idcr2 be obtained from idcr0 by id1, q, respectively. By UIP C we have

idcr1
.= idcr2

and by Principle 1 we get

A s b ((c′, ids), r, idcr, c, idsc) r0 idcr0 (id0, id1)
.= f idcr1
.= f idcr2
.= A sn bn lp r0 idcr0 q,

where f = (g (nxt r) ((g s b)nextEl r idcr′))nextEl r0 and idcr′ is obtained from idcr by id0.
Case l� (l′, r ′, idc′, c′, ids), p� (p′, id1), q� (q ′, id2).
Then again idcr′

0 evaluates to idcr0. We define

f : (x : B (nxt r)) → IdC x → B (nxt r0),

where IdC x := ((co r0)
.= (co _ x)) by

f x y = (g (nxt r) x)nextEl r0 y

for x : B (nxt r), y : IdC x.
By I.H. we have

ih : A s b (l′, r ′, idc′, c′, ids) r idcr p′︸ ︷︷ ︸
=: left_b

.= A s′
n b′

n l′p r idcr2 q ′︸ ︷︷ ︸
=: right_b

,

where idcr2 is obtained from idcr by identity (5) and

s′
n := nxtS s l′ r ′,

b′
n := nextB s l′ r ′ idcr′ c′ ids b p′,
l′p := pred s l′ r ′ idcr′ c′ ids.

Let idcr1, idcr3 be obtained from idcr0 by id1, id2, respectively. By UIP C we get

subst ih idcr1
.= idcr3.

That means

(left_b, idcr1)
.= (right_b, idcr3)

and by Principle 1 we get

A s b (l, r, idcr, c, idsc) r0 idcr0 p
.= f left_b idcr1
.= f right_b idcr3
.= A sn bn lp r0 idcr′

0 q. �

Corollary 33.

co _ (A s b (l, r, idcr, c, idsc) r0 idcr0 p)
.= co _ (A sn bn lp r0 idcr′

0 q).

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 433

Let s : S, l : CTSeq s, r : R, idcr : (co r)
.= (co _ l), c : C, idsc : (st c)

.= (nxt r). We define an inhabitant of

st _ (l, r, idcr, c, idsc)
.= st _ (pred s l r idcr c idsc) (6)

by refl (nxt r) according to the shape of l. Again definition by cases is necessary to define this inhabitant. The following
lemma will be our main tool to prove all desired properties of T. Roughly speaking it says that we get the same trees
whether we take the subtree following the tree at b along the path (l, r, idcr, c, idsc) or do one step from b along this
sequence (get a new bn) and following the tree at bn along the path obtained from (l, r, idcr, c, idsc) by pred above.

Lemma 34 (Main Lemma). Let s, l, r, c, b, idcr, idsc, p, q as well as sn, bn, lp be as in Proposition 32. Then

T′
Rep s b (l, r, idcr, c, idsc) p ∼ TRep sn bn lp q,

where we obtain the left term from TRep s b (l, r, idcr, c, idsc) p by identity (6).

Proof. We have to distinguish cases l� (c′, ids) and l� (l′, r ′, idc′, c′, ids) in order to have

T′
Rep s b (l, r, idcr, c, idsc) p�TRep s b (l, r, idcr, c, idsc) p.

However, the proof proceeds in the same way in both cases:
Let n : N. For n� zero is nothing to do. Let n� succ m. Let l+ := (l, r, idcr, c, idsc) and

c0 := co _ (TRep s b l+ p),

c1 := c,

c2 := co _ lp,

c3 := co _ (TRep sn bn lp q).

We have

c0
.= c1

.= c2
.= c3,

where the first and last equations follow with identity (3) and the second with identity (5).
Now let r0 : R and idcr0 : co r0

.= c0. For i = 0, 1, 2 we obtain elements idcri+1 : co r0
.= ci+1 from idcri

by the above identities. Further, we obtain a second element idcr′
0 : co r0

.= c0 from idcr1 and a second element
idcr′

3 : co r0
.= c3 from idcr0. We have idcr0

.= idcr′
0 and idcr3

.= idcr′
3. 6 Let

nxt_lft := nextEl _ (TRep s b l+ p) r0,

nxt_rgt := nextEl _ (TRep sn bn lp q) r0,

and ct0 := nxt_lft idcr′
0, ct1 := nxt_lft idcr0, ct2 := nxt_rgt idcr3, ct3 := nxt_rgt idcr′

3. We have ct0
.= ct1 and

ct2
.= ct3. We have to prove ct1 ∼m ct3. Therefore it is enough to prove

ct0 ∼m ct2.

Let

cp := co _ (A s b l+ r0 idcr1 p),

cp_id := idS
co _ (A s b l+ r0 idcr1 p)

idcp given by identity (5).

We have

(p, refl cp) : set(Ttree s b (l+, r0, idcr1, cp, cp_id)),

(q, idcp) : set(Ttree sn bn (pred s l+ r0 idcr1 cp cp_id))

6 We do not need UIP C for this.

434 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

and

ct0�T′
Rep s b (l+, r0, idcr1, cp, cp_id) (p, refl cp),

ct2�TRep sn bn (pred s l+ r0 idcr1 cp cp_id) (q, idcp).

Therefore the claim follows by I.H. applied to s : S, l+ : CTSeq s, r0 : R, cp : C, b : B s, idcr1 : co r0
.= c,

cp_id : st cp
.= nxt r0, (p, refl cp), (q, idcp) and m : N. �

Corollary 35. For s : S, b : B s, r : R, idcr : (co r)
.= co _ (T s b), we have

(elim s (T s b))nextEl r idcr ∼ (Prog T s (g s b))nextEl r idcr.

Proof. Apply the Main Lemma to

s, (c0, ids0), r, c1, b, idcr, ids1, (refl c0, refl c2), refl c3,

where

c0 := co _ (T s b),

ids0 := idS
co _ (T s b),

c1 := co _ (nextEl _ (T s b) r idcr),

ids1 := idS
co _ (nextEl _ (T s b) r idcr),

c2 := co _ (A s b (c0, ids0) r idcr (refl c0)),

c3 := co _ ((g s b)nextEl r idcr). �

Note that (Prog T s (g s b))nextEl r idcr�T (nxt r) ((g s b)nextEl r idcr).

8. Proof of the final coalgebra property

Proposition 36. If g is extensional, then T is extensional.

Proof. We denote the equivalence relation on B by ≡ and the witness that g is extensional by ext. The proof is by
natural induction. Let s : S, b0, b1 : B s, rel : b0 ≡ b1, n� succ m : N. Let

c0 := co _ (T s b0),

c1 := co _ (T s b1),

left_fun := (g s b0)nextEl ,

right_fun := (g s b1)nextEl ,

id := (ext s b0 b1 rel)idc : c0
.= c1.

The term id gives the first component of the inhabitant we have to construct. For the second component let r : R,
idcr : (co r)

.= c0. We have to prove

(elim s (T s b0))nextEl r idcr ∼m (elim s (T s b1))nextEl r idcr′,

where idcr′ := subst id idcr. Let b′
0 := left_fun r idcr, b′

1 := right_fun r idcr′, then (ext s b0 b1 rel)fct r idcr gives
b′

0 ≡ b′
1 and by I.H. we have

T (nxt r) b′
0 ∼m T (nxt r) b′

1.

The claim follows with Corollary 35. �

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 435

Lemma 37.

elim ◦ T = Prog T ◦ g.

Proof. Let s : S, b0, b1 : B s, rel : b0 ≡ b1, c0 := ((elim ◦ T) s b0)command, c1 := ((Prog T ◦ g) s b1)command. It is
id := ext s b0 b1 rel : c0

.= c1. Let n : N, r : R and idcr : (co r)
.= c0. Then follows

((elim ◦ T) s b0)nextEl r idcr ∼n ((Prog T ◦ g) s b0)nextEl r idcr′ ∼n ((Prog T ◦ g) s b1)nextEl r idcr′,

where idcr′ := subst id idcr and the first relation follows by Corollary 35 and the second by the extensionality of g
and Prog T. �

Lemma 38. For T′ : B → CT with

elim ◦ T′ = Prog T′ ◦ g

we have T′ = T.

Proof. Natural induction. Let s : S, b0, b1 : B s, rel : b0 ≡ b1, n� succ m : N. Let comm : elim ◦ T′ = Prog T′ ◦ g,
c0 := ((elim ◦ T′) s b0)command, c1 := ((elim ◦ T) s b1)command. Then

id := (comm s b0 b1 rel)idc : c0
.= c1.

Let r : R and idcr : (co r)
.= c0, then

(T′ s b0)nextEl r idcr ∼n T′ (nxt r) ((g s b1)nextEl r idcr′) (7)

∼n T (nxt r) ((g s b1)nextEl r idcr′) (8)

∼n (T s b1)nextEl r idcr′, (9)

where idcr′ := subst id idcr. Relation (7) follows by

(comm s b0 b1 rel)fct r idcr,

relation (8) by the I.H. and the fact that ≡ is reflexive and relation (9) by Corollary 35. �

Theorem 39. elim : CT → Prog CT is a final coalgebra for Prog.

Proof. Lemmata 37 and 38. �

9. Carry over the result to the original functor of Hancock/Setzer

In this section we are going to translate the result to the original functor ProgHS of Hancock/Setzer above. We first
notice that we can write an uncurried version of the functor Prog as

Proguc X s := ∑
(p : (FamToPred′ st) s,

(q : (FamToPred′ co) pfst) → X (nxt qfst)).

We can prove a final coalgebra theorem for this functor in the same way as above (this is just a rearrangement of
parentheses). If (S, C, R, st, co, nxt) comes from a Hancock/Setzer interface (S, C, R, n) as described in Section 2.4,
Proguc X s rewrites is rewritten as∑

(p : ∑
(sc : ∑

(S, C), (st sc)
.= s),

(q : ∑
(scr : ∑

(
∑

(S, C), R′), (co scr)
.=∑

(S,C) pfst)) → X (nxt qfst)),

436 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

where st and co are the first projections and R′ is the uncurried version of R. We define functions

u_hs : Proguc X s → ProgHS X s

by

〈〈〈s′, c〉, id〉, f 〉 �→ 〈c′, f ′〉,
where c′ := subst id c, f ′ r := f 〈〈〈s, c′〉, r〉, id′〉 and id′ : 〈s, c′〉 .= 〈s′, c〉 is defined by structural induction on
id : s′ .= s and

hs_u : ProgHS X s → Proguc X s

by

〈c, f 〉 �→ 〈〈〈s, c〉, refl s〉, f ′〉,
where f ′ p = (subst psnd f) pfst.

We have p� u_hs (hs_u p) and therefore p
.= u_hs (hs_u p). We define equivalence relations � on Proguc X s

by

〈scid0, f0〉�〈scid1, f1〉 :⇔ ∃id : scid0
.= scid1.pointeq (f ′

0 id) f1,

where f ′
0 id := subst id f0 and pointeq (f ′

0 id) f1 expresses that (f ′
0 id), f1 are pointwise equal. By structural

induction on id follows that we have

� ⊂ ≡Prog

for arbitrary equivalence relations ≡ on X. Further, we have:

Proposition 40.

p � hs_u (u_hs p)

for p : Proguc X s.

Proof. Let p� 〈〈〈s′, c′〉, ids〉, f 〉. We prove

〈〈〈s′, c′〉, ids〉, f 〉�hs_u (u_hs 〈〈〈s′, c′〉, ids〉, f 〉)
by structural induction on ids. That means we have to prove

〈〈〈s, c′〉, refl s〉, f 〉�hs_u (u_hs 〈〈〈s, c′〉, refl s〉, f 〉).
We get an inhabitant of this type by setting the first component

refl 〈〈s, c′〉, refl s〉.
The second component must now have type

pointeq f (hs_u 〈c, f ′〉)snd,

where f ′ := �r : R′ 〈s, c′〉.f 〈〈〈s, c′〉, r〉, refl 〈s, c′〉〉. Let sc′ : ∑
(S, C) and 〈〈sc, r〉, idsc〉 : ∑

(scr : ∑
(
∑

(S, C),

R′), scrfst
.=∑

(S,C) sc′). By structural induction on idsc we get

f 〈〈sc, r〉, idsc〉 .= (subst idsc f ′′) r,

where f ′′ := �r : R′ sc′.f 〈〈sc′, r〉, refl sc′〉. By setting sc′ = 〈s, c′〉 we get

f 〈〈sc, r〉, idsc〉 .= (hs_u 〈c, f ′〉)snd 〈〈sc, r〉, idsc〉. �

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 437

Corollary 41.

p ≡Prog hs_u (u_hs p)

for p : Proguc X s.

To view ProgHS as a functor in our category we must say what ProgHS is doing on the equivalence relations ≡ on
X. Therefore we define

p ≡ProgHS
q :⇔ (hs_u p) ≡Prog (hs_u q).

hs_u, u_hs are extensional in respect of this relation and we have

hs_u(u_hs p) ≡Prog p u_hs(hs_u q) ≡ProgHS
q,

i.e. Proguc X s and ProgHS X s are isomorphic in our category. We have

UIP S, UIP C ⇔ UIP S ∧ ∀s : S.UIP C s.

Therefore we get:

Theorem 42. If UIP S ∧ ∀s : S.UIP C s then u_hs ◦ elim : CT → ProgHS CT is a final coalgebra for ProgHS.

10. Related and future work

As we have seen, working in intensional type theory becomes quite complicated. The dependency on proof objects
for simple equations results in an intricate argumentation. We also needed the principle UIP for the sets S, C for our
proof to go through. So, what did we gain by the result above? First of all as already mentioned the result can be seen as
a justification for the rules of Hancock/Setzer if we replace definitional equality by bisimulation and have UIP for the
sets S, C. We are convinced that replacing definitional identity by bisimulation is not a serious restriction as long as we
are mainly interested in the behaviour of programs. Results such as those in Michelbrink/Setzer [34] that the monad
rules hold should be provable with the altered rules. There is also an advantage if we want to prove facts about the
behaviour of concrete interactive programs: we proved that the functor ProgHS has a final coalgebra whereas the rules
of Hancock/Setzer give us a weakly final coalgebra only (uniqueness is missing). This should outweigh that concrete
interactive programs are given by extensional functions X → Prog X whereas in the approach of Hancock/Setzer any
such function is sufficient. Sets S, C with UIP S, UIP C may as well be sufficient for practical work. However, from
a theoretical point of view this restriction is unsatisfactory. It would be nice to improve the above result by getting rid
of these conditions. However, the type theory enriched by the rules for a weakly final coalgebra as described in e.g.
[34] results in far more elegant proofs. Note also that more types become definitional equal by these rules whereas two
types which depend on bisimular programs do not have to be equal. Secondly a deeper analysis of the above proof and a
comparison with proofs in other frameworks may shed some light on why working in intensional type theory is so hard.
The same final coalgebra construction is already carried out in ZFC [34] and Gambino/Hyland [12] proved an initial
algebra theorem in extensional type theory. The problem of representing final coalgebras in type theory was addressed
by Lindström [26] for the special case of Aczel’s non-well-founded sets. Lindström used an inverse-limit construction
that requires extensional type theory. What can be said already is that the lack of a good concept for subsets as in set
theory complicates work. Note that the subset theory discussed in Nordström et al. [35] may be of less or no help as
long as we work in an intensional setting [39,38]. We think that Luo’s coercive subtyping [27] may at least be a way
to get crisper formulations.

There is an increasing interest in approaches to reason in dependent type theory about imperative programming,
interaction, non-termination and general recursion. We would like to mention recent work of Michael Abbott, Thorsten
Altenkirch, Neil Ghani and Conor McBride on containers [1–4]. The extension of a container (the result of applying the
container construction functor to a container) is a special variant of our functor ProgHS. More precisely a container with
parameters is a state dependent interface with trivial n where the command sets do not depend on the state. The main
difference to our work is that Abbott et al. work in an extensional type theory (the identity type is given by equalizers). In
fact, they require their ambient category to be locally cartesian closed, with disjoint coproducts, W- and M-sets. Geuvers

438 M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439

[13] investigated formalizations of inductive and coinductive types in different lambda calculi, mainly extensions of the
polymorphic lambda calculus. He showed that by adding a categorical notion of (primitive) recursion, recursion can be
defined by corecursion and vice versa using polymorphism. Coquand proposed in [8] to add a guarded proof induction
principle to type theory to reason about infinite objects. He gives a syntactical criterion to ensure that every term has a
head normal form. Gimenéz [14] formalized an extension of the Calculus of Construction with inductive and coinductive
types using similar ideas. In Capretta’s [6] Ph.D. thesis coinductive types are added to Martin-Löf type theory with
bisimulation as equality. Filliatre [11] interpreted Hoare triples for a programming language with both imperative
and functional features in the Calculus of Inductive Constructions and proved a correctness result. There is ongoing
work following the line initiated by Peter Hancock and Anton Setzer [15–19,23,34] on reasoning about interfaces and
programs using ideas from category theory and functional programming, linear logic, game theory, refinement calculus
and formal topology. Interfaces can be seen as objects in different categories and there are many interesting monads,
comonads, adjoint situations and equivalences. In the author’s paper [33] the notion of interfaces is generalized and
simplified. With this simplified notion the relationship of interfaces to games becomes apparent. Stateless networks
like the Internet are a natural application area for this simplified notion. As shown by Hancock/Hyvernat [15] interfaces
(interaction structures) seen as predicate transformers give a connection to formal topology [40]. In fact every interface
gives a natural example for a non-distributive topology. This gives as well a (until now rather vague) interpretation of
safety and liveness properties of programs [25]. In [23,24] Hyvernat uses interfaces to give a model of linear logic.

Acknowledgements

The author wishes to thank Anton Setzer and Peter Hancock for fruitful discussions and encouragement for this
work. I also thank two anonymous referees for their valuable comments and remarks. This article would be much less
readable without their work. Last but not least I thank Ken Johnson for correcting my English in this article.

References

[1] M. Abbott, T. Altenkirch, N. Ghani, Categories of containers, in: A. Gordon (Ed.), Proc. of FOSSACS 2003, Lecture Notes in Computer
Science, Vol. 2620, Springer, Berlin, 2003, pp. 23–38.

[2] M. Abbott, T. Altenkirch, N. Ghani, C. McBride, Derivatives of containers, in: M. Hofmann (Ed.), Typed Lambda Calculi and Applications,
TLCA 2003, Lecture Notes in Computer Science, Vol. 2701, Springer, Berlin, 2003, pp. 16–30.

[3] M. Abbott, T. Altenkirch, N. Ghani, C. McBride, � for data, Fund. Inform. 65 (1–2) (2005) 1–28.
[4] M.G. Abbott, Categories of containers, Ph.D. Thesis, University of Leicester, 2003.
[5] G. Barthe, V. Capretta, O. Pons, Setoids in type theory, J. Funct. Programming 13 (2) (2003) 261–293.
[6] V. Capretta, Abstraction and computation: type theory, algebraic structures, and recursive functions, Ph.D. Thesis, University of Nijmegen,

2002.
[7] C. Coquand, Agda, Internet, URL 〈www.cs.chalmers.se/catarina/agda/〉.
[8] T. Coquand, Infinite objects in type theory, in: H. Barendregt, T. Nipkow (Eds.), Selected Papers of the First Internat. Workshop on Types

for Proofs and Programs, TYPES’93, Nijmegen, The Netherlands, 24–28 May 1993, Vol. 806, Springer, Berlin, 1994, pp. 62–78. URL
〈citeseer.ist.psu.edu/107677.html〉.

[9] P. Dybjer, Inductive families, Formal Aspects of Comput. 6 (1994) 440–465.
[10] P. Dybjer, A general formulation of simultaneous inductive–recursive definitions in type theory, J. Symbolic Logic 65 (2) (2000) 525–549.
[11] J.-C. Filliatre, Verifications of non-functional programs using interpretations in type theory, J. Funct. Programming 13 (4) (2003) 709–745.
[12] N. Gambino, M. Hyland, Wellfounded trees and dependent polynomial functors, in: M.C. Stefano Berardi, F. Damiani (Eds.), Types for Proofs

and Programs (TYPES 2003): Third Internat. Workshop, TYPES 2003, Torino, Italy, April 30–May 4, 2003, Revised Selected Papers, Lecture
Notes in Computer Science, Vol. 3085, Springer, Berlin, 2004.

[13] J. Geuvers, Inductive and coinductive types with iteration and recursion, in: B. Nordstrom, K. Petersson, G. Plotkin (Eds.), Informal Proc. 1992
Workshop on Types for Proofs and Programs, Bastad, Sweden, 1992, pp. 183–207.

[14] E. Gimenéz, Codifying guarded definitions with recursive schemes, in: Proc. 1994 Workshop on Types for Proofs and Programs, Lecture Notes
in Computer Science, Vol. 996, 1994, pp. 39–59.

[15] P. Hancock, P. Hyvernat, Programming interfaces and basic topology, Annals of Pure and Applied Logic 137 (1–3) (2006) 189–239.
[16] P. Hancock, A. Setzer, The IO monad in dependent type theory, in: Electronic Proc. Workshop on Dependent Types in Programming, Göteborg,

27–28 March, 1999, URL 〈www.md.chalmers.se/Cs/Research/Semantics/APPSEM/dtp99.html〉.
[17] P. Hancock, A. Setzer, Interactive programs in dependent type theory, in: P. Clote, H. Schwichtenberg (Eds.), Proc. 14th Annu. Conf.

of EACSL, CSL’00, Fischbau, Germany, 21–26 August 2000, Vol. 1862, Springer, Berlin, 2000, pp. 317–331, URL 〈citeseer.ist.psu.edu/
article/hancock00interactive.html〉.

[18] P. Hancock, A. Setzer, Specifying interactions with dependent types, in: Workshop on Subtyping and Dependent Types in Programming,
Portugal, 7 July 2000, 2000, electronic proceedings, URL 〈www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html〉.

http://www.cs.chalmers.se/catarina/agda/
http://citeseer.ist.psu.edu/107677.html
http://www.md.chalmers.se/Cs/Research/Semantics/APPSEM/dtp99.html
http://citeseer.ist.psu.edu/article/hancock00interactive.html
http://citeseer.ist.psu.edu/article/hancock00interactive.html
http://www-sop.inria.fr/oasis/DTP00/Proceedings/proceedings.html

M. Michelbrink / Theoretical Computer Science 360 (2006) 415 –439 439

[19] P. Hancock, A. Setzer, Interactive programs and weakly final coalgebras in dependent type theory, in: L. Crosilla, P. Schuster (Eds.), From Sets
and Types to Topology and Analysis. Towards Practicable Foundations for Constructive Mathematics, Oxford Logic Guides, Clarendon Press,
2005, URL 〈www.cs.swan.ac.uk/∼csetzer/〉.

[20] M. Hedberg, A coherence theorem for Martin-Löf’s type theory, J. Funct. Programming 8 (4) (1998) 413–436.
[21] M. Hofmann, Extensional concepts in intensional type theory, Ph.D. Thesis, University of Edinburg, 1995.
[22] M. Hofmann, T. Streicher, A groupoid model refutes uniqueness of identity proofs, in: Proc. Ninth Symp. on Logic in Computer Science, Paris,

1994.
[23] P. Hyvernat, Predicate transformers and linear logic: yet another denotational model, in: J. Marcinkowski, J. Tarlecki (Eds.), 18th Internat.

Workshop CSL 2004, Lecture Notes in Computer Science, Vol. 3210, Springer, Berlin, 2004.
[24] P. Hyvernat, Synchronous games, simulations and �-calculus, in: D.R. Ghica, G. McCusker (Eds.), Games for Logic and Programming

Languages, GaLoP (ETAPS 2005), 2005, pp. 1–15.
[25] L. Lamport, Proving the correctness of multiprocess programs, IEEE Trans. Software Eng. 3 (2) (1977) 125–143.
[26] I. Lindström, A construction of non-wellfounded sets within Martin-Löf’s type theory, J. Symbolic Logic 54 (1) (1989) 57–64.
[27] Z. Luo, Coercive subtyping, J. Logic and Comput. 9 (1) (97–13) (1999) 105–130.
[28] P. Martin-Löf, Intuitionistic Type Theory, Bibliopolis, Napoli, 1984.
[29] P. Martin-Löf, Mathematics of infinity, in: P. Martin-Löf, G. Mints (Eds.), COLOG-88, Internat. Conf. on Computer Logic, Tallinn, USSR,

December 1988, Proceedings, Lecture Notes in Computer Science, Vol. 417, Springer, Berlin, 1990, pp. 147–197.
[30] P. Martin-Löf, An intuitionistic theory of types, in: G. Sambin, J. Smith (Eds.), Twenty-Five Years of Constructive Type Theory, Oxford

University Press, Oxford, 1998.
[31] C. McBride, Dependently typed functional programs and their proofs, Ph.D. Thesis, University of Edinburg, 1999.
[32] M. Michelbrink, Verifications of final coalgebra theorem in: Interfaces as Functors, Programs as Coalgebras—A Final Coalgebra Theorem in

Intensional Type Theory, 2005, URL 〈www.cs.swan.ac.uk/csmichel/〉.
[33] M. Michelbrink, Interfaces as games, programs as strategies, in: J.-C. Filliatre, C. Paulin, B. Werner (Eds.), Types for Proofs and Programs

(TYPES 2004), Lecture Notes in Computer Science, Vol. 3839, Springer, Berlin, 2006, pp. 215–231.
[34] M. Michelbrink, A. Setzer, State-dependent IO-monads in type theory, in: L. Birkedal (Ed.), Proc. 10th Conf. on Category Theory in Computer

Science (CTCS 2004), Electronic Notes in Theoretical Computer Science, Vol. 122, Elsevier, Amsterdam, 2005, pp. 127–146.
[35] B. Nordström, K. Peterson, J.M. Smith, Programming in Martin-Löf’s Type Theory: An Introduction, Clarendon Press, Oxford, 1990.
[36] E. Palmgren, On universes in type theory, in: G. Sambin, J. Smith (Eds.), Twenty-Five Years of Constructive Type Theory, Oxford University

Press, Oxford, 1998.
[37] K. Peterson, A programming system for type theory, Technical Report S-412 96, Chalmers University of Technology, Göteborg, 1982.
[38] A. Salvesen, On information discharging and retrieval in Martin-Löf’s type theory, Ph.D. Thesis, University of Oslo, 1989.
[39] A. Salvesen, J.M. Smith, The strength of the subset type in Martin-Löf’s type theory, in: Proc. of LICS’ 88, Edinburgh, 1988.
[40] G. Sambin, The Basic Picture, a structure for topology (the Basic Picture, I), 2001.
[41] A. Setzer, Proof theory of Martin-Löf type theory—an overview, Math. et Sci. Humaines 42 (165) (2004) 59–99.
[42] T. Streicher, Semantical Investigation into Intensional Type Theory, Habilitationsschrift, LMU München, 1993.

http://www.cs.swan.ac.uk/~csetzer/
http://www.cs.swan.ac.uk/csmichel/

