
Current Biology, Vol. 14, 611–617, April 6, 2004, 2004 Elsevier Ltd. All rights reserved. DOI 10.1016/j .cub.2004.03.031

The RanGAP1-RanBP2 Complex Is Essential
for Microtubule-Kinetochore Interactions In Vivo

RanGAP1 with equal efficiency from interphase and mi-
totic HeLa cell extracts (Figure S1A). Equal coprecipita-
tion efficiencies were also observed between inter-
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shown). Second, RanGAP1 and RanBP2 colocalize dur-National Institute of Child Health
and Human Development ing mitosis [3]. Third, RanGAP1 spindle localization is

absolutely dependent upon RanBP2 (Figure S1B).Building 18, Room 106
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chores showed identical requirements for other kinet-Bethesda, Maryland 20892
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turbed cell cycles (see below). These results provideThe Fox Chase Cancer Center
333 Cottman Avenue strong support for our earlier speculation that RanGAP1

and RanBP2 are targeted as a complex during mitosisPhiladelphia, Pennsylvania 19111
[3]. For the purposes of this report we have thus as-
sumed that RanGAP1 and RanBP2 are localized on spin-
dles as a single entity.

We have investigated how and why the RanGAP1-Summary
RanBP2 complex is targeted to kinetochores. We initially
examined which features of the kinetochore are criticalRanGAP1 is the activating protein for the Ran GTPase.
for recruitment of RanGAP1 and RanBP2. Because theirVertebrate RanGAP1 is conjugated to a small ubiqui-
kinetochore localization was MT dependent, we utilizedtin-like protein, SUMO-1 [1, 2]. This modification pro-
RNAi to suppress the expression of kinetochore proteinsmotes association of RanGAP1 with the interphase
that are required for stable MT-kinetochore interactionsnuclear pore complex (NPC) through binding to the
(Hec1/Ndc80 and Nuf2 [4–6]) and analyzed the effect onnucleoporin RanBP2, also known as Nup358. During
RanGAP1 and RanBP2 targeting. We also examined themitosis, RanGAP1 is concentrated at kinetochores in
localization of RanGAP1 and RanBP2 after the depletiona microtubule- (MT) and SUMO-1-dependent fashion
of CENP-E. CENP-E loss does not abolish MT attach-[3]. RanBP2 is also abundantly found on kinetochores
ment but does cause decreased numbers of MT-kinet-in mitosis [3]. Here we show that ablation of proteins
ochore attachments and loss of tension on kinetochoresrequired for MT-kinetochore attachment (Hec1/Ndc80,
[9, 10]. Finally, we examined the fate of RanGAP1 andNuf2 [4–6]) disrupts RanGAP1 and RanBP2 targeting
RanBP2 after depletion of CENP-I and Bub1 [7, 8], kinet-to kinetochores. No similar disruption was observed
ochore proteins that are implicated in other aspects ofafter ablation of proteins nonessential for MT-kineto-
kinetochore function and in spindle checkpoint sig-chore interactions (CENP-I, Bub1, CENP-E [7–9]). Ac-
naling.quisition of RanGAP1 and RanBP2 by kinetochores

Depletion of Hec1 and Nuf2 by RNAi compromisedis temporally correlated in untreated cells with MT
kinetochore-MT attachment in mitotic cells and thusattachment. These patterns of accumulation suggest
impaired chromosome alignment (Figure 1) [6, 11]. Un-a loading mechanism wherein the RanGAP1-RanBP2
der these circumstances, RanGAP1 and RanBP2 werecomplex may be transferred along the MT onto the
no longer associated with kinetochores, showing thatkinetochore. Depletion of RanBP2 caused mislocaliza-
Hec1 and Nuf2 are essential for targeting both proteinstion of RanGAP1, Mad1, Mad2, CENP-E, and CENP-F,
(Figure 1, data not shown). While Hec1 and Nuf2 areas well as loss of cold-stable kinetochore-MT interac-
required for recruitment of the RanGAP1-RanBP2 com-tions and accumulation of mitotic cells with multipolar
plex, they are not sufficient: Hec1 and Nuf2 are retainedspindles and unaligned chromosomes. Taken to-
on kinetochores in nocodazole-treated cells ([5]; datagether, our observations indicate that RanBP2 and
not shown), although RanGAP1 and RanBP2 are not [3].RanGAP1 are targeted as a single complex that is both
This fact suggests either that Hec1 and Nuf2 are notregulated by and essential for stable kinetochore-MT
competent to recruit the RanGAP1-RanBP2 complexassociation.
prior to MT-kinetochore attachment or that they are re-
quired indirectly through their role in stabilizing MT inter-

Results and Discussion actions. We favor the latter alternative, since there is no
precedent for direct interaction of Hec1 or Nuf2 with

We previously reported that RanGAP1 associates with the RanGAP1-RanBP2 complex. Consistent with this
kinetochores in a SUMO-1- and MT-dependent fashion notion, RNAi-mediated depletion of CENP-I and Bub1,
[3]. Several lines of evidence indicated that this targeting which are not essential for MT-kinetochore attachment
occurs in association with RanBP2. First, these proteins [7, 8], had no effect on the kinetochore binding of either
remain tightly bound throughout the cell cycle. Anti- RanGAP1 (Figure S2A) or RanBP2 (data not shown).
RanBP2 antibodies precipitated SUMO-1-conjugated As reported earlier [9, 10], depletion of CENP-E re-

sulted in mitotic arrest with a mixture of aligned and
unaligned chromosomes. In CENP-E-depleted cells,*Correspondence: mdasso@helix.nih.gov
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Figure 1. Hec1 and Nuf2 Are Required for
RanGAP1-RanBP2 Complex Localization

HeLa cells were transfected with siRNA oligo-
nucleotides specific for Hec1, Nuf2, and
CENP-E for 24–48 hr to knockdown the ex-
pression of indicated proteins. Depletion of
Hec1, Nuf2, and CENP-E could be achieved
after 48 hr, as evidenced by the undetectable
levels of these proteins at kinetochores in
cognate RNAi-treated cells as compared to
control RNAi-treated cells (data not shown).
Cells were fixed as described in the Supple-
mental Experimental Procedures. Kinetochore
localization of RanGAP1 (red) was examined
by using specific antibodies. The microtu-
bules were visualized with anti-�-tubulin
(green) and DNA with DAPI (blue).

RanGAP1 and RanBP2 were found at kinetochores of GAP1-RanBP2 complex did not accumulate on kineto-
chores prior to MT attachment. This could be clearlyaligned chromosomes, whereas kinetochores of unat-

tached chromosomes lacked detectable staining (Figure seen through the mutually exclusive localization of Ran-
GAP1 and Mad1 (Figure 2C) [12]. Mad1 localized to both1, data not shown). In the absence of CENP-E function,

MT-kinetochore attachment is achieved, although the kinetochores on a fully unattached chromosome, while
RanGAP1 bound neither (Figure 2C, insert 1). The mutu-number of kinetochore MTs is decreased and tension

on kinetochores is compromised [9]. Notably, neither ally exclusive localization of RanGAP1 and Mad1 was
even more apparent in the case of a chromosome thatRanGAP1 nor RanBP2 was displaced as a result of de-

creased kinetochore tension after loss of CENP-E. Con- had a single MT-attached sister kinetochore (Figure 2C,
insert 2): Mad1 was found only on the unattached sistersistent with this observation, RanGAP1 and RanBP2

localized to kinetochores in taxol-treated cells (data not kinetochore, whereas RanGAP1 was found only on the
attached sister. Like Mad1, Mad2 showed a distributionshown). Together, these data indicate that RanGAP1

and RanBP2 accumulation at kinetochores is compro- pattern that was inverse to the RanGAP1 pattern (data
not shown). Furthermore, RanBP2 deposition on kineto-mised in the absence of MT attachment but does not

appear to be sensitive to loss of kinetochore tension. chores was also mutually exclusive to both Mad1 and
Mad2 accumulation (data not shown).We further examined the correlation between MT at-

tachment and RanGAP1-RanBP2 complex acquisition These data support the idea that RanGAP1-RanBP2
complex accretion on kinetochores is closely coupledby kinetochores under unperturbed conditions through

careful comparison of Mad1 and RanGAP1 localization to MT attachment under unperturbed conditions. It is
plausible that MT attachment causes structural changesin untreated HeLa cells. Mad1 and Mad2 are checkpoint

proteins that become abundantly associated with unat- at the kinetochore that permit stable association of
the RanGAP1-RanBP2 complex. Another attractive pos-tached kinetochores in close correlation with spindle

checkpoint activation [12]. As reported earlier [13], Mad1 sibility that is not mutually exclusive with structural
changes at kinetochores is that the RanGAP1-RanBP2(Figure 2A) and Mad2 (data not shown) localized on

the nucleoplasmic side of the NPC during interphase; complex binds to MT and is transferred from the MT to
the kinetochore. A similar loading model has previouslyRanGAP1 (Figure 2A) and RanBP2 (data not shown) as-

sociated with the cytoplasmic side of the NPC [14]. Dur- been proposed for the DASH complex in budding yeast,
which accumulates on maturing kinetochores in aing nuclear envelope (NE) breakdown in prophase, Mad1

prominently localized to kinetochores, although residual MT-dependent fashion [15]. It is notable that the com-
plementary kinetochore localizations of proteins fromMad1 could still be observed on the NE (Figure 2B).

RanGAP1 (Figure 2B) and RanBP2 (data not shown) were the nucleoplasmic (Mad1 and Mad2) and cytoplasmic
(RanGAP1 and RanBP2) faces of the NPC are oppositelystill found at the NE at this stage, but not on kineto-

chores. After NE breakdown was complete, the Ran- determined by MT attachment. Interestingly, the Nup107-
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Figure 2. Mad1 and Mad2 Require the RanGAP1-RanBP2 Complex for Kinetochore Binding but Do Not Colocalize on Unattached Kinetochores

HeLa cells (A–C) or RGG cells (D and E) were permeabilized and fixed as described in the Supplemental Experimental Procedures. The cells
in (A), (B), and (C) were stained for Mad1 (green) and RanGAP1 (red) with specific antibodies and fluorescent secondary antibodies. Where
indicated, immunofluorescent staining with CREST sera is shown in blue to show the localization of mitotic centromeres. The cells in (D) and
(E) were stained for CREST (Green) and Mad1 or Mad 2 (Red), as indicated.
(A) During interphase, RanGAP1 is localized on the cytoplasmic face of the NPC, while Mad1 staining is on the nucleoplasmic face of the
NPC.
(B) During prophase, Mad1 is recruited to loci adjacent to centromeres prior to the release of RanGAP1 from the NPC.
(C) During metaphase, RanGAP1 and Mad1 show inverse staining patterns. Insert 1 shows a chromosome where both kinetochores are
unattached; note the lack of RanGAP1 staining. Insert 2 shows a chromosome where a single kinetochore has become attached. Note that
this kinetochore has both released Mad1 and acquired RanGAP1, while its sister remains associated exclusively with Mad1.
(D and E) RGG cells were transfected with RanBP2 siRNA oligonucleotides and examined by immunflourescence 86 hr after transfection.
Note the absence of Mad1 and Mad2 recruitment during prophase to unattached kinetochores.

160 subcomplex of NPC proteins has been shown to response to MT attachment may have some role in de-
termining how other NPC components accumulate onreside on both sides of the pore during interphase [16],

and it is bound to kinetochores in a MT-independent the kinetochore.
To determine the significance of mitotic RanGAP1-fashion from prophase to late anaphase [16]. It is attrac-

tive to speculate that the Nup107-160 subcomplex might RanBP2 complex targeting, we depleted RanBP2 by
using RNAi in RGG cells, a stable, HeLa-derived cell lineplay an important role in mitotic recruitment of proteins

from both nuclear and cytoplasmic sides of the NPC to expressing a green fluorescent protein-labeled chimeric
protein consisting of HIV-1 Rev and a hormone-induciblekinetochores. If this were the case, biochemical and/or

structural changes in the Nup107-160 subcomplex in nuclear localization sequence (Rev-GR-GFP [17]). West-
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Figure 3. RanBP2 Depletion in RGG Cells by RNAi Causes Mitotic Arrest with Defective Spindle Assembly

RGG cells were transfected with siRNA oligonucleotides specific for RanBP2 or control oligonucleotides and analyzed after 86 hr unless
otherwise indicated. The relatively long time required for depletion of RanBP2 may reflect a slow turnover rate for this protein.
(A) Total cell lysates were prepared from control (1) or RanBP2-depleted (2) cells. The lysates were subjected to SDS-PAGE and immunoblotted
for RanBP2, RanGAP1, and Ran by using specific antibodies. Ran blot serves as a loading control. The arrow indicates SUMO-1 conjugated
form of RanGAP1, while the asterisk represents unconjugated form of RanGAP1. We reproducibly observed that a substantial fraction of
RanGAP1 became deconjugated from SUMO-1 in these samples, consistent with earlier reports indicating that RanBP2 protects SUMO-
conjugated RanGAP1 from deconjugation by isopeptidases [28].
(B) Mitotic index was calculated at different intervals after control or RanBP2 siRNA transfection by counting immunopositive cells for MPM2
and phospho-H3 antibodies over total DAPI-positive cells. The numbers above bars indicate percentage of cells dead over total cells counted.
In our hands, mitotic accumulation after RanBP2 depletion was more apparent in RGG cells than in other cell lines that we tested (e.g., HeLa,
U2OS).
(C) Control and RanBP2-depleted cells were fixed with formaldehyde and analyzed. Pie charts show the percentage of mitotic cells with bi-
and multipolar spindles. Lower panel shows immunofluorescence micrographs of bi- and multipolar spindles in RanBP2-depleted cells. The
spindle poles are stained for Aurora A (red) by using antibodies and DNA with DAPI (blue).
(D) To examine kinetochore MT stability, control and RanBP2-depleted cells were subjected to cold treatment for 10 min before fixing with
4% paraformaldehyde. Cells were then stained for microtubules (red), centromeres (green), and DNA (blue) by using �-tubulin antibody, CREST
antiserum, and DAPI, respectively.

ern blotting showed that RanBP2 levels were signifi- distribution and spindle assembly were examined,
RanBP2-depleted cells showed aberrant MT structurescantly decreased (�80% depletion compared to con-

trols) 86 hr after transfection of siRNA oligonucleotides and an obvious failure of chromosome alignment on the
metaphase plate (Figure S3, see also [18]). Simultaneous(Figure 3A). Although RanBP2-depleted cells still local-

ized other nucleoporins to interphase NPCs (Figure S3A; depletion of RanBP2 and Mad2 by RNAi reverted the
elevation of mitotic index but also caused a dramaticsee also [18]), RanGAP1 did not associate with the NE

in the absence of RanBP2 (Figure S3B), consistent with increase in cells with micronuclei (data not shown),
possibly reflecting inappropriate exit from mitosis with-earlier data indicating that RanBP2 binding is critical

for its interphase targeting [19]. RanBP2-depleted RGG out accurate chromosome segregation. These results
indicate that RanBP2-depleted cells arrest in mitosiscells showed an increased mitotic index after 48 hr

(Figure 3B), with over 15% of the cells accumulating through activation of the mitotic spindle assembly
checkpoint.in mitosis 96 hr after transfection. When chromosome
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Although most spindles were multipolar after RanBP2 edented [11]. Particularly, this phenotype is again remi-
niscent of the defects observed in Hec1-depleted cells,depletion, there was a striking similarity among the bipo-

lar spindles formed in RanBP2-, Hec1-, and Nuf2- which fail to accumulate detectable levels of Mad1 and
Mad2 at their kinetochores yet mitotically arrest in adepleted RGG cells (Figures 1 and S1). Under all three

conditions, spindles were longer than those of control Mad2-dependent fashion [11].
Our findings are largely consistent with those of Sali-cells with unaligned chromosomes: cells transfected

with control oligonucleotides showed an average in- nas et al. [18], who observed that CENP-F, dynein and
checkpoint components (CENP-E, Mad1 and Mad2, andterpolar distance of 12.1 � 1.2 �m (n � 25) prior to

chromosome alignment, whereas RanBP2-depleted mi- Zw10), fail to bind kinetochores in the absence of
RanBP2. Through additional electron microscopy stud-totic cells with bipolar spindles had an average interpo-

lar distance of 16.6 � 1.5 �m (n � 25), which was closer ies that showed altered kinetochore morphology, they
concluded that RanBP2 depletion extensively or com-to Hec1-depleted cells (16.1 � 2.0 �m) and Nuf2-depel-

eted cells (16.4 � 1.8 �m). This similarity prompted us pletely disrupts kinetochore formation. Surprisingly, our
further analysis showed that three proteins associatedto examine the stability of kinetochore-MT attachment

in RanBP2-depleted cells. As described previously for with the kinetochore throughout mitosis (Hec1, Nuf2,
and CENP-I [5, 7, 23]) retained their correct localizationcells depleted of Nuf2 [6], we examined whether kineto-

chore MTs were sensitive to cold [20]. We subjected in RanBP2-depleted cells (Figure S2), arguing that many
of the underlying kinetochore structures still assembleRanBP2-depleted cells to cold treatment for 10 min prior

to fixation. The cells were stained with anti-�-tubulin in the absence of RanBP2. Moreover, checkpoint com-
ponents Bub1 and BubR1 also remained on kineto-antibodies and with CREST autoimmune sera that rec-

ognize centromeric proteins [21] (Figure 3D). While the chores (not less than 85% of levels in control cells;
Figure S2), arguing that many aspects of the cell cyclecontrol cells showed clear arrays of cold-stable kineto-

chore MTs, few kinetochore MTs were visible in the regulatory machinery remain intact in the absence of
RanBP2.RanBP2-depleted cells. This observation suggests that

a failure to form stable MT-kinetochore interactions may RanBP2-depleted RGG cells revealed a high fre-
quency of multipolar spindles among the mitotically ar-contribute to spindle defects in RanBP2-depleted cells.

These findings are largely consistent with a recent report rested population (Figure 3C). We assessed the number
of spindle poles by Aurora-A staining [24] in control andfrom Salinas et al. [18], who concluded that RanBP2

depletion causes kinetochore defects, resulting in a RanBP2 siRNA-treated cells to determine the proportion
of cells that were multipolar: while 3% of mitotic RGGspindle checkpoint-dependent mitotic arrest. Since

RanBP2 becomes mislocalized in mitotic cells after cells transfected with the control oligonucleotide formed
multipolar spindles, 69% of the cells transfected withRNAi-mediated depletion of Hec1 and Nuf2 (Figure 2),

our findings also suggest that some part of the failure the oligonucleotide directed against RanBP2 were
multipolar. These observations were interesting in lightto form stable MT-kinetochore interactions in the ab-

sence of Hec1 and Nuf2 [5, 6] may be related to an of previous reports that overexpression of the Ran-GTP
binding protein RanBP1 leads to unscheduled centro-inability to correctly recruit the RanGAP1-RanBP2 com-

plex under these circumstances. some splitting [25, 26].
To determine whether the additional poles containedWe examined the localization of a number of kineto-

chore components after RanBP2 depletion. Kineto- centrosomes, RanBP2-depleted cells were stained
with antibodies against human Centrin [27]. The numberchores of RanBP2-depleted cells lacked Mad1, Mad2,

CENP-E, and CENP-F, a kinetochore-associated pas- and distribution pattern of centrosomes both during in-
terphase (data not shown) and mitosis (Figure 4) differedsenger protein that interacts with CENP-E (Figure 2A,

Figure S2). Mislocalization of these proteins was remark- significantly compared to control RNAi-treated cells:
more than 95 percent of the control mitotic cells pos-able for two reasons: First, RanGAP1 and RanBP2 are

not associated with kinetochores when Mad1 and Mad2 sessed two centrosomes, each of which contained a
pair of centrioles. These centrosomes were distributedare present (Figure 2C), seemingly precluding direct

binding of Mad1 and Mad2 to the kinetochores through to opposite spindle poles. The majority of multipolar
cells in the RanBP2-depleted samples (72%) also pos-the RanGAP1-RanBP2 complex. Our findings may thus

imply an indirect requirement for the RanGAP1-RanBP2 sessed two pairs of centrioles. These centrioles were
typically found within MT organizing centers (MTOCs)complex in loading of Mad1 and Mad2 onto kineto-

chores. Changes in Ran-GTP levels may contribute to at spindle poles, although not all MTOCs had foci of
Centrin staining. Spindles possessing single, unpairedthis phenotype, since recent experiments in Xenopus

egg extracts demonstrated that Mad1 and Mad2 are centrioles within their MTOCs were also evident in
RanBP2-depleted cells (17%). Some MTOCs withinreleased from kinetochores by elevated Ran-GTP con-

centrations [22]. Second, the accumulation of check- these cells lacked Centrin foci, indicating that they did
not possess centrioles. Finally, around 11% of thepoint proteins on kinetochores is typically closely cou-

pled to activation of spindle checkpoint arrest pathways multipolar RanBP2-depleted cells had more than two
pairs of centrioles, not all of which were associated with[12]. However, RanBP2-depleted cells showed a strong

Mad2-dependent checkpoint arrest in mitosis without obvious MTOCs. It is unclear whether the maldistribu-
tion of centrioles in RanBP2-depleted cells is a primarysuch accumulation (data not shown, see also [18]). Spin-

dle checkpoint arrest of RanBP2-depleted cells in the result of RanBP2 disruption or a secondary phenotype,
caused indirectly by defects during earlier mitotic divi-absence of kinetochore accumulation of multiple check-

point components is thus unusual, although not unprec- sions in the absence of adequate levels of RanBP2.
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Figure 4. Disruption of Spindle Poles in RanBP2-Depleted Cells

RGG cells were transfected with siRNA oligonucleotides specific for RanBP2 or control oligonucleotides and processed for immunostaining
after 86 hr. Cells were stained with Aurora A (green) and Centrin (red) antibodies for visualizing spindle poles and centrosomes, respectively.
DNA was visualized by DAPI staining. Although over 95% of the control mitotic cells formed bipolar spindles where each pole contained a
single pair of centrioles, the number of poles and centrioles in RanBP2-depleted cells varied widely. Numbers to the right of the RanBP2
depleted cells (�RanBP2) show the percentage of multipolar cells found in each of the major phenotypic classes (see text for further details).
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