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SUMMARY

Priming of secretory vesicles is a prerequisite for
their Ca2+-dependent fusion with the plasma mem-
brane. The key vesicle priming proteins, Munc13s
and CAPSs, are thought to mediate vesicle priming
by regulating the conformation of the t-SNARE syn-
taxin, thereby facilitating SNARE complex assembly.
Munc13s execute their priming function through their
MUN domain. Given that the MUN domain of Ca2+-
dependent activator protein for secretion (CAPS)
also binds syntaxin, it was assumed that CAPSs
prime vesicles through the same mechanism as
Munc13s. We studied naturally occurring splice var-
iants of CAPS2 in CAPS1/CAPS2-deficient cells and
found that CAPS2 primes vesicles independently of
its MUN domain. Instead, the pleckstrin homology
domain of CAPS2 seemingly is essential for its prim-
ing function. Our findings indicate a primingmode for
secretory vesicles. This process apparently requires
membrane phospholipids, does not involve the bind-
ing or direct conformational regulation of syntaxin
by MUN domains of CAPSs, and is therefore not
redundant with Munc13 action.

INTRODUCTION

Priming of synaptic vesicles (SVs) and large dense-core vesicles

(LDCVs) is a prerequisite for any form of secretory communica-

tion by neurons and neuroendocrine cells, as it renders secretory

vesicles fusion competent. It is thought that the priming process

involves the partial assembly of a trans-SNARE complex be-

tween syntaxin and SNAP-25 on the plasmamembrane andSyn-

aptobrevin-2 in the vesicle membrane (Wojcik and Brose, 2007;

Jahn and Fasshauer, 2012; Südhof, 2012, 2013). The SNARE

complex then drives the fusion reaction upon the activation of

synaptotagmin by Ca2+ (Jahn and Fasshauer, 2012).

Two protein families of bona fide priming factors have been

identified thus far, Munc13s and Ca2+-dependent activator pro-

teins for secretion (CAPSs). The mammalian Munc13 family con-
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sists of fivemembers, Munc13-1 toMunc13-4 (Brose et al., 2000;

Koch et al., 2000) and Baiap3 (Shiratsuchi et al., 1998). Munc13s

are multidomain proteins containing a phorbol-ester-binding C1

domain and multiple C2 domains, at least one of which binds

Ca2+. Importantly, all Munc13 isoforms possess a so-called

MUN domain, which represents the minimal binding region for

the t-SNARE syntaxin and is sufficient to rescue the deficit in

exocytosis in neurons and neuroendocrine cells lackingMunc13s

(Basu et al., 2005; Madison et al., 2005; Stevens et al., 2005). The

crystal structure of an autonomously folded module within the

MUN domain is strikingly similar to that of CATCHR-type (com-

plex associated with tethering containing helical rods) tethering

factors, which bind to SNARE proteins through stacked a-helical

bundles and tether vesicles to sites of fusion (Li et al., 2011).

The mammalian CAPS family contains only two members,

CAPS1 and CAPS2 (Ann et al., 1997; Speidel et al., 2003).

CAPS1 was originally discovered as an essential component

for Ca2+-dependent exocytosis in neuroendocrine cells (Walent

et al., 1992). While initially thought to be specifically required

for LDCV fusion, it was later shown that the absence of CAPS

proteins also leads to a complete block of fast phasic transmitter

release from hippocampal neurons (Jockusch et al., 2007).

Functional CAPS isoforms act as dimers (Nojiri et al., 2009)

and contain several domains, including a dynactin interacting

domain (DID), a C2 domain, a pleckstrin homology (PH) domain,

a MUN domain that is also structurally related to CATCHR pro-

teins, and a C-terminal LDCV-binding site (Stevens and Rettig,

2009; James and Martin, 2013). As with Munc13s (Ma et al.,

2013), biochemical studies demonstrated that CAPS interacts

with SNARE proteins through this MUN domain (James et al.,

2009; Daily et al., 2010; Khodthong et al., 2011; Parsaud et al.,

2013) and thereby promotes SNARE-mediated membrane

fusion in vitro. This led to the conclusion that CAPSs prime

LDCVs and SVs by the same mechanism as Munc13s (Hammar-

lund et al., 2008; James et al., 2009), although the SNARE bind-

ing mode might be slightly different (Parsaud et al., 2013).

Here, we show that CAPSs prime vesicles independently

of their MUN domain. Instead, our findings reveal a CAPS-

mediated priming mode for secretory vesicles, which requires

membrane phospholipids, does not involve the binding or direct

conformational regulation of syntaxin by MUN domains of

CAPSs, and is therefore not redundant with Munc13 action.
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Figure 1. CAPS2 Splice Variants Are Pre-

sent in Adrenal Glands

(A) Domain structure of CAPS2 splice variants

(Sadakata et al., 2007). Domains are as follows:

DID, C2 domain, PH domain, MUN domain.

Numbers refer to the amino acids defining the

respective domains. Alternatively spliced exons

are indicated underneath.

(B) RT-PCR of adrenal gland (AG) and cerebellum

(Cb) using primers specific for CAPS2 splice vari-

ants. Lysates from adrenal glands obtained from

mouse embryos at e18 and postnatal days 1, 10,

and 21 were used as templates for lanes 1–4, and

for lane 5, cerebellar lysate from postnatal day 7

mice was used as template. The outer lanes

contain size markers.
RESULTS

We examined the functionality of six naturally occurring splice

variants of CAPS2 (Sadakata et al., 2007) by assessing their

ability to reverse the profound secretory deficits of CAPS1/

CAPS2-deficient (CAPS1/CAPS2 DKO) chromaffin cells and hip-

pocampal neurons. Two of these splice variants, CAPS2a and

CAPS2b, contain all domains, but differ by the presence or

absence of one exon in the MUN domain (exon 22; Figure 1A).

A third splice variant, CAPS2c, has an incomplete PH domain

due to the absence of exon 11 (Figure 1A). The three remaining

splice variants, CAPS2d-CAPS2f, lack one or several domains,

with CAPS2d lacking part of the MUN domain, CAPS2e lacking

the entire MUN domain, and CAPS2f only containing the DID

domain (Figure 1A). The three short splice variants CAPS2d-

CAPS2f all contain a unique C terminus, while the N-terminal

sequence of all six splice variants is identical.
Cell Reports 9, 902–909,
RT-PCR from mouse adrenal glands

derived from different developmental

stages detected all six CAPS2 splice var-

iants at postnatal days p1, p10, and p21.

In contrast, at embryonic day 18, only

CAPS2e and to a lesser extent CAPS2f

were amplified. The other CAPS paralog,

CAPS1, was detected at all develop-

mental stages (Figure 1B). We cloned

the mouse cDNAs of all CAPS2 splice

variants as IRES-eGFP constructs into

a Semliki Forest virus vector (pSFV1)

and generated virus particles via estab-

lished protocols (Ashery et al., 1999).

We verified the correct expression of

the splice variants by western blotting

of BHK cell lysates with anti-CAPS2

antibodies and obtained single bands

of the expected molecular weights

for CAPS2a-CAPS2c, CAPS2e, and

CAPS2f. For CAPS2d, we failed to

generate a full-length protein, most likely

due to the high GC content of the unique

C terminus of this construct (Figure S1).
Since all CAPS2 splice variants are expressed in adrenal

glands, we first tested their ability to rescue the exocytosis deficit

in chromaffin cells derived from CAPS1/CAPS2 DKO mice (Liu

et al., 2008; Liu et al., 2010). For this purpose, we performed

Ca2+ uncaging experiments and recorded LDCV fusion by

measuring the resulting increase in membrane capacitance.

This recording method has a high temporal resolution and allows

separation of different kinetic release components that reflect

different releasable vesicle pools, a slowly releasable vesicle

pool (SRP) and a rapidly releasing vesicle pool (RRP) (Rettig

and Neher, 2002). The absence of both CAPS isoforms leads

to a selective loss of the RRP, with the SRP remaining unaffected

(Liu et al., 2008, 2010), an almost complete loss of the sustained

release component, which represents ongoing priming and

fusion of LDCVs in the presence of high intracellular Ca2+ con-

centrations, and a deficit in catecholamine loading of LDCVs

(Speidel et al., 2005). All of these phenotypic changes are
November 6, 2014 ª2014 The Authors 903



Figure 2. A Short CAPS2 Splice Variant

Lacking the Entire MUN Domain Rescues

LDCV Exocytosis from CAPS1/CAPS2 DKO

Adrenal Chromaffin Cells

(Left) Whole-cell capacitance response and free

intracellular Ca2+ concentration before and during

photolysis of caged Ca2+ (dots) in CAPS1/CAPS2

DKO chromaffin cells (black trace) and DKO

cells expressing the CAPS2a (A), CAPS2b (B), or

CAPS2e (C) splice variants (gray traces). The

corresponding domain structure is shown above

the data traces.

(Right) Bar graphs showing the values of the RRP,

SRP, and sustained release (mean ± SEM) of the

responses shown on the left.

***p < 0.001, **p < 0.01, *p < 0.05 (Mann Whitney

U test). n = number of cells, and N = number of

animals.
rescued by viral re-expression of CAPS1 (Liu et al., 2008) or rat

CAPS2b (Liu et al., 2010).

As expected, both mouse CAPS2a and mouse CAPS2b led to

a full rescue of secretory defects in CAPS1/CAPS2 DKO chro-

maffin cells (Figures 2A and 2B). The RRP was increased more

than 4-fold in both CAPS2a-expressing CAPS1/CAPS2 DKO

cells and CAPS2b-expressing CAPS1/CAPS2 DKO cells. The

sustained component in CAPS2a-expressing CAPS1/CAPS2

DKO cells was also increased, while the SRP was slightly, but

not significantly increased. The complete rescue of the secretory

defects in CAPS1/CAPS2 DKO chromaffin cells by the two

longest CAPS2 splice variants, CAPS2a and CAPS2b, verifies

the reversibility of the CAPS1/CAPS2 DKO phenotype and was

used as a reference for the subsequent analysis of the other

CAPS2 splice variants.

We next examined CAPS2e, which lacks the entire MUN

domain and is about half the size of CAPS2a and CAPS2b (Fig-

ure 1A). In view of previous studies showing that the MUN

domain of CAPSs binds SNAREs and promotes SNARE-medi-

ated vesicle fusion in vitro (James et al., 2009; Daily et al.,

2010; Khodthong et al., 2011), we expected CAPS2e to be

dysfunctional and hence to fail to rescue the secretory defect

in CAPS1/CAPS2 DKO chromaffin cells. Surprisingly, however,

we found that CAPS2e expression led to a more than 2-fold in-

crease in RRP size in CAPS2e-expressing CAPS1/CAPS2 DKO
904 Cell Reports 9, 902–909, November 6, 2014 ª2014 The Authors
cells (Figure 2C). Both the SRP and the

sustained release component were also

increased, although the increase in these

parameters was less pronounced than

the RRP increase. These data led to the

unexpected conclusion that the MUN

domain of CAPS2 is dispensable for

LDCV priming in chromaffin cells, that

CAPS2 primes LDCVs by a different

mechanism than Munc13s, and that the

unusual priming function of CAPS2 must

be mediated by its N terminus, which in-

cludes the DID, C2, and PH domains

(Figure 1A).
Wenext attempted to rescueCAPS1/CAPS2DKOcellswith the

shortest of the CAPS2 splice variants, CAPS2f, which only con-

tains the DID domain (Figure 1A). We found that CAPS2f cannot

rescue the secretory defect in CAPS1/CAPS2 DKO chromaffin

cells (Figure 3A), indicating that the priming function of the

CAPS2e splice variant is not mediated by the DID domain alone,

but requires the C2 domain and/or the PH domain. We then took

advantage of the fact that one of the three long CAPS2 splice var-

iants,CAPS2c, containsan incompletePHdomain (Figure1A) and

is therefore ideally suited to test whether the phospholipid binding

of the PH domain (James et al., 2008, 2009, 2010) is required for

the CAPS2 priming activity. When expressed in CAPS1/CAPS2

DKO chromaffin cells, CAPS2c reversed the defect in the sus-

tained release component of CAPS1/CAPS2 DKO cells and

primed vesicles into the SRP, but did not ameliorate the RRP

defect (Figure 3B). The effect of all five investigated CAPS2 splice

variants on the different components of catecholamine secretion

from chromaffin cells is summarized in Figure 3C. Comparison

of the responses of splice variant-expressing cells to their respec-

tive normalized controls clearly shows a rescue of the RRP by

CAPS2a, CAPS2b and CAPS2e, while the CAPS2c mutant in-

creases the SRP, but not the RRP. These data led to the conclu-

sion that the LDCV priming function of CAPS2 (and presumably

also of CAPS1) does not depend on the MUN domain, but rather

appears to involve a functional PH domain of the protein.



Figure 3. An Intact PH Domain of CAPS2 Is

Required for Vesicle Priming

(A and B) Left, whole-cell capacitance response

and free intracellular Ca2+ concentration before and

during photolysis of caged Ca2+ (dots) in CAPS1/

CAPS2DKO chromaffin cells (black trace) and DKO

cells expressing the CAPS2f (A) or CAPS2c (B)

splice variants (gray traces). The corresponding

domain structure is shown above the data traces.

right, bar graphs showing the values of the RRP,

SRP, and sustained release (mean ± SEM) of the

responses shown on the left.

(C) Relative capacitance responses of cells ex-

pressing CAPS2 splice variants (data from Figures

2A–2C and A and B) as compared with their

respective CAPS1/CAPS2 DKO controls (left) and

the resulting RRP, SRP, and sustained component

values (right).

***p < 0.001, **p < 0.01, *p < 0.05 (Mann Whitney U

test). n = number of cells, and N = number of ani-

mals.
Since CAPS is also essential for the priming of SVs (Jockusch

et al., 2007), we next investigated whether our findings in

chromaffin cells, a model system for LDCV secretion, can be

extended to SV exocytosis in neurons. For this purpose, we

tested the ability of the CAPS2b, CAPS2e, and CAPS2c splice

variants to rescue exocytosis in cultured autaptic hippocampal

neurons from embryonic day 18 (e18) CAPS1/CAPS2 DKO

mice. Expression of CAPS2b in CAPS1/CAPS2 DKO cells led

to a striking rescue of action potential-evoked excitatory post-

synaptic currents (EPSCs) (Figures 4A and 4G). Importantly,

evoked EPSC amplitudes were also rescued in CAPS2e-ex-

pressing CAPS1/CAPS2 DKO neurons (Figure 4A), but not in

CAPS2c-expressing cells (Figure 4G).

The RRP size, which was assessed by measuring EPSCs

triggered by application of hypertonic sucrose solution (Rose-

nmund and Stevens, 1996), was rescued by expression of

CAPS2b in CAPS1/CAPS2 DKO neurons (Figure 4B). A similarly

significant rescue of the RRP size was observed in CAPS2e-

expressing CAPS1/CAPS2 DKO neurons, although the degree

of RRP rescue was less pronounced than with CAPS2b (Fig-

ure 4B). The strong rescue of EPSC amplitudes along with the

partial rescue of the RRP size in CAPS2e-expressing CAPS1/

CAPS2 DKO neurons indicates a higher vesicular release

probability as compared with CAPS2b-expressing neurons (Fig-

ure 4C). We then examined the responses of the CAPS2b- and
Cell Reports 9, 902–909,
CAPS2e-expressing CAPS1/CAPS2 DKO

neurons to trains of stimuli at 10 and

40 Hz. Expression of CAPS2e in CAPS1/

CAPS2 DKO neurons resulted in stronger

depression than did CAPS2b expression

(Figures 4D and 4E). This result is consis-

tent with the notion that release probabil-

ity is increased in CAPS2e-expressing

DKO neurons.

In contrast to these findings, no rescue

of hypertonic sucrose induced EPSC re-

sponses was observed in CAPS2c-ex-
pressing neurons (Figure 4H). Similar to CAPS1/CAPS2 DKO

neurons, CAPS2c-expressing CAPS1/CAPS2 DKO neurons

displayed a significantly higher augmentation of transmitter

release 2 s after a train of 100 action potentials at 40 Hz

when compared with CAPS2b-expressing CAPS1/CAPS2

neurons, which further reflects the inability of CAPS2c to

rescue the transmitter release deficiency in CAPS1/CAPS2

DKO cells.

DISCUSSION

We show here that vesicle priming mediated by CAPS proteins

does not depend on their syntaxin-binding MUN domain, but

rather requires a functional phosphatidylinositol-4,5-bisphos-

phate(PI 4,5-P2)-binding PH domain. A stimulatory role of PI

4,5-P2 in Ca2+-dependent secretion was demonstrated in chro-

maffin cells and pancreatic b cells (Olsen et al., 2003; Milosevic

et al., 2005). In these cell types, PI 4,5-P2 infusion increases the

pool of releasable vesicles as well as the sustained rate of vesicle

fusion, while depletion of PI 4,5-P2 levels by phosphatase over-

expression or long-term LY294002 application leads to a strong

reduction in secretion. PI 4,5-P2 in the plasma membrane is

enriched in submicrometer-sized clusters, apparently through

juxtamembrane basic residues of syntaxin (Milosevic et al.,

2005; James et al., 2008).
November 6, 2014 ª2014 The Authors 905
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Already shortly after its discovery as a cytosolic factor required

to restore Ca2+-dependent secretion from permeabilized PC12

cells (Ann et al., 1997), CAPS1 was reported to bind PI 4,5-P2

with high specificity, but moderate affinity (KD of 50–150 mM)

(Loyet et al., 1998). Subsequently, it was shown that CAPSs lo-

calizes to PI 4,5-P2 clusters in the plasma membrane of PC12

cells, and that point mutations in the PH domain of CAPSs

abolish this specific localization as well as the stimulatory effect

of CAPSs on SNARE-dependent liposome fusion (James et al.,

2008). Further in vitro studies revealed that CAPSs drive trans-

SNARE complex formation and liposome membrane fusion

through syntaxin (James et al., 2009) and that CAPSs bind not

only to syntaxin, but also to SNAP-25 and synaptobrevin 2 (Daily

et al., 2010).

Two independent studies showed that the MUN domain of

CAPSs is essential for SNARE-binding (Khodthong et al., 2011;

Parsaud et al., 2013). According to the model that evolved

from these in vitro studies, CAPSs first connect the secretory

vesicle membrane and the PI 4,5-P2-containing plasma mem-

brane via their LDCV-binding site and PH domain, and then

bind to SNAREs via their MUN domain (Khodthong et al., 2011;

James and Martin, 2013), thereby facilitating SNARE complex

assembly, which is thought to be the molecular basis for the

vesicle priming process (Jahn and Fasshauer, 2012; Südhof,

2012, 2013).

Our data are incompatible with this model. We show that

LDCVs in chromaffin cells are primed into the SRP even in the

absence of CAPSs (Figures 2 and 3) and that re-expression of

CAPS2 splice variants with an intact N terminus, including the

PH domain leads to a rescue of secretory defects in chromaffin

cells and neurons, regardless of the presence of the SNARE-

binding MUN domain and the C-terminal LDCV-binding site.

Thus, the vesicle priming process apparently consists of at least

two independent steps, the assembly of the SNARE complex,

which likely involves Munc13s, and a CAPS-mediated interac-

tionwith PI 4,5-P2. Such a scenario would also explain the nonre-

dundant functions of Munc13s and CAPSs in secretory vesicle

priming (Jockusch et al., 2007; Liu et al., 2010).

The CAPS1 (Cadps1) and CAPS2 (Cadps2) genes contain

more than 30 exons each, and the corresponding mRNAs are

spliced in a complex manner, resulting in at least four CAPS1

and six CAPS2 splice variants. Our data show that the priming

function of CAPS2 resides in the N-terminal part of the protein.

This part is present in all known splice variants, except in

CAPS2f, which documents the importance of this functionally
Figure 4. Expression of CAPS2e Rescues Priming Deficiency in CAPS1

Evoked EPSC responses from CAPS1/CAPS2 DKO neurons expressing CAPS

evoked EPSC responses in experiments with CAPS2e, and 3 of 25 CAPS1/CAPS

showed no evoked EPSCs in experiments with CAPS2c. The inset depicts repre

(B and H) Mean RRP sizes as determined by measuring the charge transfer of EP

representative traces for sucrose-evoked EPSCs.

(C and I) Vesicular release probability, calculated by dividing the charge transfer

sucrose-induced EPSC.

(D and E) Changes in normalized EPSC amplitude during trains of action potentials

n = 28), plotted against the number of stimuli.

(F and J) Augmentation ratio as determined by dividing the amplitude of the first E

after the action potential train. The number of cells analyzed is indicated in histo

The error bars represent SEM. *p < 0.05, **p < 0.01; ***p < 0.001 (unpaired, two-

C

essential region of the CAPS2 protein. In chromaffin cells,

CAPS2e is the only CAPS2 splice variant whosemRNA is already

detectable at embryonic stage e18 (Figure 1B). At this develop-

mental stage, chromaffin cells contain only few LDCVs, which

are located in close proximity to the plasma membrane (Liu

et al., 2008). It thus seems that priming of the few LDCVs in

very young chromaffin cells can be achieved by CAPS2e alone,

whereas additional regulatory functions of CAPS2 in more

mature chromaffin cells, e.g., in fine tuning LDCV priming, re-

quires the remaining CAPS2 splice variants. Future studies will

have to clarify what other functions CAPS proteinsmight perform

(Speidel et al., 2005; Sadakata et al., 2010, 2012) and how alter-

native splicing contributes to these functions.

On aggregate, our data indicate that CAPSs and Munc13s are

nonpromiscuous and nonredundant priming factors with distinct

functional roles in the priming process of secretory vesicles.

While Munc13s mediate vesicle priming by a direct interaction

of their MUN domain with the SNARE protein syntaxin, the prim-

ing function of CAPS must involve a different molecular mecha-

nism that does not involve its MUN domain and that depends

instead on its PH domain (Figures 3 and 4) (Grishanin et al.,

2002), its C2 domain (Grishanin et al., 2004; Speese et al.,

2007), and its DID (Speese et al., 2007).

EXPERIMENTAL PROCEDURES

Mice

CAPS1/CAPS2-deficient (DKO) mice (Jockusch et al., 2007) from days e18

and e19, and WT mice from e19, postnatal days p1, p7, p10, and p21 were

used for experiments. The breeding strategy for obtaining CAPS1/CAPS2

DKOs involved four breeding steps, the fourth one with male and female

CAPS1+/�/CAPS2�/� mice. As a result, we typically obtained a Mendelian dis-

tribution of 50% CAPS1+/�/CAPS2�/�, 25% CAPS1+/+/CAPS2�/�, and 25%

CAPS1�/�/CAPS2�/� (DKO). Thus, we do not obtain WT littermates that could

be used as a proper reference. In view of the typical interlitter and interprepa-

ration variability that we and others have observed in many studies, we always

compared DKO cells expressing the respective CAPS2 splice variant with con-

trol DKO cells from the same preparation to have optimal (negative) controls.

All experiments were performed in compliance with the guidelines for the wel-

fare of experimental animals issued by the Federal Government of Germany,

the State of Lower Saxony, and the NIH.

RT-PCR and Western Blot

RNA was isolated from homogenized adrenal glands (e19, p1, p10, 21) and

cerebella (p7) by Trizol preparation. Single-strand cDNAs were produced by

RT from 10 ng of total RNA using random hexamers. CAPS1 and CAPS2 splice

variants were amplified using specific primers by standard PCR. Mouse glyc-

eraldehyde-3-phosphate dehydrogenase was used as internal control. In the
/CAPS2 DKO Neurons, whereas CAPS2c Does Not

2b, CAPS2e, and CAPS2c. Nine of 40 CAPS1/CAPS2 DKO cells showed no

2 DKO neurons and 2 of 25 CAPS1/CAPS2 DKO neurons expressing CAPS2c

sentative traces for AP-evoked EPSCs.

SCs evoked by application of 0.5 M sucrose solution for 6 s. The inset depicts

of a single action potential-evoked EPSC by the charge transfer of hypertonic

at 10 Hz (CAPS2b, n = 23; CAPS2e, n = 18) or 40 Hz (CAPS2b, n = 32; CAPS2e,

PSC during a train of 100 action potentials at 40 Hz by the EPSC amplitude 2 s

gram bars.

tailed Student’s t test).
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negative control, the template was omitted. Western blotting was performed

on lysates of transfected BHKcells (pSFV1-CAPS2x-IRES-eGFP) using a poly-

clonal rabbit antiserum to recombinant CAPS2e protein.

Cell Preparation and Infection

Chromaffin cells and hippocampal neurons from e19 or e18 CAPS1/CAPS2

DKO mice were prepared as described (Jockusch et al., 2007; Liu et al.,

2010). For rescue experiments, chromaffin cells were infected for 4–6 hr with

100 ml of activated pSFV1-CAPS2a-IRES-eGFP, pSFV1-CAPS2c-IRES-

eGFP, pSFV1-CAPS2e-IRES-eGFP, or pSFV1-CAPS2f-IRES-eGFP virus,

following a protocol described previously (Ashery et al., 1999) and resulting

in a 3- to 5-fold overexpression as comparedwith endogenousCAPS2 expres-

sion levels. Correspondingly, neurons were infected for 10–14 hr with 30 ml of

the activated viruses.

Electrophysiology

Whole-cell recordings and capacitance measurements were performed as

described previously (Jockusch et al., 2007; Liu et al., 2010). All experiments

were performed at room temperature.

Calcium Measurements and Photolysis of Caged Ca2+

Fura-4F and Furaptra were excited by a monochromator-based system

(T.I.L.L. Photonics), and the fluorescence signal was measured using a photo-

multiplier. To convert the ratio R of the fluorescent signals at both wavelengths

into [Ca2+]i, an in vivo calibration curve was used (Voets, 2000). To obtain step-

wise increases in [Ca2+]i, a short flash of ultraviolet light from a Xenon arc flash

lamp (Rapp OptoElectronics) was applied to the entire cell.
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