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1. Introduction

Let X be a Banach space without the Schur property, that is, there is a weakly convergent sequence which is not norm
convergent. The asymptotic diameter and asymptotic radius of a sequence {xn} in a Banach space X are defined by

diama
({xn}) = lim

k→∞
sup

{‖xn − xm‖: n,m � k
}
,

ra
({xn}) = inf

{
lim sup

n→∞
‖xn − y‖: y ∈ conv

({xn})}.

The weakly convergent sequence coefficient [2] of X is defined by

WCS(X) = inf

{
diama({xn})

ra({xn})
}

where the infimum is taken over all weakly convergent sequences {xn} which are not norm convergent. It is clear that
1 � WCS(X) � 2. The definition of WCS(X) above does not make sense if the space X has the Schur property but in that
case we may say by convention that WCS(X) = 2. In this paper, we utilize the following equivalent formulation (see also
[1, Lemma VI.3.8])

WCS(X) = inf
{

lim
n,m;n �=m

‖xn − xm‖
}

where the infimum is taken over all weakly null sequences {xn} ⊂ X with ‖xn‖ = 1 for all n and limn,m;n �=m ‖xn − xm‖ exists.
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In this paper, let B X , S X , X∗ and X̃ be the closed unit ball, the unit sphere, the dual space, and the ultrapower (over
a free ultrafilter on the set of natural numbers N) of a Banach space X , respectively. For more details on the ultrapower
construction, the reader is directed to [15].

2. Domínguez-Benavides’ coefficient

Domínguez-Benavides [5] defined the coefficient, for a � 0,

R(a, X) = sup
{

lim inf
n→∞ ‖xn + x‖

}
where the supremum is taken over all x ∈ X with ‖x‖ � a and all weakly null sequences {xn} in B X such that
limn �=m ‖xn − xm‖ � 1. We note that R(0, X) = 1/WCS(X) if X fails the Schur property. Moreover, the coefficient remains
unaltered if in the definition we replace lim inf by lim sup.

Theorem 1. Suppose that a Banach space X fails the Schur property and d = WCS(X) > 1. Then, for any a � 0,

d − (d − 1)R

( |a − 1|
d − 1

, X

)
� R(a, X) � a + 1

d
. (1)

Proof. We prove the first inequality. For ε > 0, we choose a weakly null sequence {xn} ⊂ S X such that limn �=m ‖xn − xm‖
exists and

d � lim
n �=m

‖xn − xm‖ � d + ε.

It is easy to see that

lim inf
n→∞

∥∥∥∥ xn

d + ε
− axm

∥∥∥∥ � R(a, X)

for all m ∈ N and a � 0. In particular,

lim inf
n→∞ ‖xn − xm‖ � lim inf

n→∞

(∥∥∥∥ xn

d + ε
− axm

∥∥∥∥ + (d + ε − 1)

∥∥∥∥ xn

d + ε
− 1 − a

d + ε − 1
xm

∥∥∥∥
)

� R(a, X) + (d + ε − 1)R

( |a − 1|
d + ε − 1

, X

)
.

Letting m → ∞ gives

d � R(a, X) + (d + ε − 1)R

( |a − 1|
d + ε − 1

, X

)
.

By the arbitrariness of ε, the first inequality is proved.
To prove the latter one, let η > 0 and a � 0. We choose a weakly null sequence {yn} ⊂ B X and ‖y‖ = a such that

limn �=m ‖yn − ym‖ � 1 and

lim inf
n→∞ ‖yn + y‖ � R(a, X) − η.

Then, by the triangle inequality,

lim inf
n→∞ ‖yn + y‖ � lim inf

n→∞ ‖yn‖ + a � R(0, X) + a = 1

d
+ a.

The proof is finished. �
Corollary 2. Under the same assumptions done for Theorem 1, the following are true:

(i) d − (d − 1)R(0, X) = d − 1 + 1
d � R(1, X);

(ii) 1 � R( 1
d , X);

(iii) d+1
d � R( 1

d−1 , X).

Proof. The assertions are obtained by letting a = 1, 1
d ,0 in (1), respectively. �

Remark 3. The estimates (i) and (ii) in Corollary 2 remain true also for d = 1.



E. Casini et al. / J. Math. Anal. Appl. 346 (2008) 177–182 179
3. The James and von Neumann–Jordan constants

The von Neumann–Jordan constant CNJ(X) was defined in 1937 by Clarkson [3] as

CNJ(X) = sup

{‖x + y‖2 + ‖x − y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X and ‖x‖ + ‖y‖ �= 0

}
,

and the James constant J (X) was defined by Gao and Lau [11] as

J (X) = sup
{

min
{‖x + y‖,‖x − y‖}: x, y ∈ B X

}
.

It is noted that the James (and also von Neumann–Jordan) constants of a Banach space X and of its Banach space ultra-
power X̃ are the same because X can be embedded into X̃ isometrically (see [15]). Moreover, CNJ(X) = CNJ(X∗).

Lemma 4. Let X be a super-reflexive Banach space. Suppose that WCS(X) = d and X does not have Schur property. Then, there exist
x̃1, x̃2 ∈ S X̃ and f̃1, f̃2 ∈ S( X̃)∗ such that the following conditions are satisfied:

(a) ‖x̃1 − x̃2‖ = d and f̃ i(x̃ j) = 0 for all i �= j,

(b) f̃ i(x̃i) = 1 for i = 1,2,

(c) ‖ x̃2
d − x̃1‖ � R(1, X).

Proof. For ε > 0, we choose a weakly null sequence {xn} ⊂ S X such that limn �=m ‖xn − xm‖ exists and

d � lim
n �=m

‖xn − xm‖ < d + ε.

It follows from the definition of Domínguez-Benavides’ coefficient that

lim inf
n→∞

∥∥∥∥ xn

d + ε
− xm

∥∥∥∥ � R(1, X)

for all m ∈ N. Passing to a suitable subsequence, we may assume that there exist a sequence { fn} ⊂ S X∗ and f ∈ B X∗ such
that

fn(xn) = ‖xn‖ = 1 for all n ∈ N and fn
w∗→ f .

The last convergence follows from the reflexivity of X . We first choose an integer n1 so that

d − ε < lim
n→∞‖xn − xn1‖ < d + ε and

∣∣ f (xn1 )
∣∣ <

ε

2
.

Next, we choose n2 > n1 so that

d − ε � ‖xn2 − xn1‖ < d + ε,∥∥∥∥ xn2

d + ε
− xn1

∥∥∥∥ < R(1, X) + ε,∣∣ fn1 (xn2 )
∣∣ < ε,

∣∣ f (xn2 )
∣∣ < ε, and

∣∣( fn2 − f )(xn1 )
∣∣ < ε.

This implies that∣∣ fn2 (xn1 )
∣∣ �

∣∣( fn2 − f )(xn1 )
∣∣ + ∣∣ f (xn1 )

∣∣ < 2ε.

Next, for i = 1,2, we write

g(ε)
i = fni and z(ε)

i = xni .

Then x̃i = [{z(1/n)

i }∞n=1] and f̃ i = [{g(1/n)

i }∞n=1] are our candidates in the Banach space ultrapowers X̃ and X̃∗ = ( X̃)∗ . The
latter follows from the super-reflexivity of X . �
Theorem 5. Suppose that a Banach space X does not have the Schur property and WCS(X) = d. Then

J (X) � 1

d
+ 1

min{2,

√
4CNJ(X) − d2}

.
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Proof. We may assume in addition that X is super-reflexive. Otherwise, J (X) = CNJ(X) = 2 and the inequality becomes
2 � 1

d + 1
2 which is trivial. Let x̃1, x̃2 ∈ S X̃ , f̃1, f̃2 ∈ S X̃∗ be elements satisfying the conditions in Lemma 4. It follows that

‖x̃1 + x̃2‖ � min
{

2,

√
4CNJ(X) − d2

} := α.

Now

J (X) � min

∥∥∥∥ x̃1 − x̃2

d
± x̃1 + x̃2

α

∥∥∥∥
� min

{
f̃1

(
x̃1 − x̃2

d
+ x̃1 + x̃2

α

)
, (− f̃2)

(
x̃1 − x̃2

d
− x1 + x2

α

)}

= 1

d
+ 1

α
. �

Remark 6. If X is a Hilbert space, then the preceding estimate becomes equality. In fact, J (X) = WCS(X) = √
2 and

CNJ(X) = 1.

Theorem 7. Suppose that a Banach space X fails the Schur property and d = WCS(X). Then

J (X) � 1

d
+ 1

R(1, X) + (1 − 1
d )

.

Proof. Let x̃1, x̃2 ∈ S X̃ be elements satisfying the conditions of Lemma 4. It follows that

‖x̃2 + x̃1‖ �
∥∥∥∥ x̃2

d
+ x1

∥∥∥∥ +
(

1 − 1

d

)
‖x̃2‖ � R(1, X) +

(
1 − 1

d

)
.

Now

J (X) � min

∥∥∥∥ x̃2 − x̃1

d
± x̃2 + x̃1

R(1, X) + (1 − 1
d )

∥∥∥∥ � 1

d
+ 1

R(1, X) + (1 − 1
d )

. �

Remark 8. The above estimate becomes equality if X = l2,∞ . In fact, J (X) = 1 + 1/
√

2 [13, Theorem 4], R(1, X) = √
2

[5, Theorem 4.1], and WCS(X) = 1.

Remark 9. Recently Mazcuñán-Navarro proved that [14, Theorem 23]

J (X) � 1

d

(
1 + 1

R(1, X)

)
.

It is easy to see that

1

d
+ 1

R(1, X) + (1 − 1
d )

� 1

d

(
1 + 1

R(1, X)

)
.

The inequality is strict for the case d > 1.

Remark 10. For X = lp,q , the right value of J (X) is unknown. If p � q, then R(1, X) = (1 + (1/2)p/q)1/p [7, Theorem 3], and
WCS(X) = 21/q [6, Corollary 3], so we have

J (lp,q) � 1

21/q
+ 1

(1 + (1/2)p/q)1/p + 1 − 2−1/q
.

Corollary 11. Suppose that a Banach space X fails the Schur property. Then

WCS(X) � 2

2 J (X) + 1 − √
5
.

In particular, J (X) < 1+√
5

2 implies WCS(X) > 1.

Proof. It was proved in [10] that

R(1, X) � J (X).
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Consequently,

J (X) � 1

d
+ 1

R(1, X) + (1 − 1
d )

� 1

d
+ 1

J (X) + (1 − 1
d )

,

or equivalently J (X) − 1
d � −1+√

5
2 . �

Remark 12. The preceding corollary improves [4, Theorem 3.2]. More precisely, it is clear that

2

2 J (X) + 1 − √
5

>
J (X) + 1

( J (X))2

provided that J (X) < 1+√
5

2 .

4. The coefficient of weak orthogonality

Let us mention another interesting coefficient introduced by Sims [16]. As in [12], we prefer to use its inverse, μ(X),
which is defined as the infimum of the set of real numbers r > 0 such that

lim sup
n→∞

‖x + xn‖ � r lim sup
n→∞

‖x − xn‖

for all x ∈ X and for all weakly null sequences {xn} in X . The proof of the following lemma is almost the same as that of
Lemma 4, so it is omitted.

Lemma 13. Let X be a super-reflexive Banach space. Suppose that WCS(X) = d, μ(X) = μ, and X does not have Schur property. Then,
there exist x̃1, x̃2 ∈ S X̃ and f̃1, f̃2 ∈ S( X̃)∗ such that the following conditions are satisfied:

(a) ‖x̃1 − x̃2‖ = d, ‖x̃1 + x̃2‖ � μd, and f̃ i(x̃ j) = 0 for all i �= j,

(b) f̃ i(x̃i) = 1 for i = 1,2.

We now consider the parameterized James constant J(t, X), where t � 0, which is defined by

J (t, X) = sup
{

min
{‖x + ty‖,‖x − ty‖}: x, y ∈ B X

}
.

The following theorem unifies the recent results of Mazcuñán-Navarro.

Theorem 14. Suppose that a Banach space X fails the Schur property and d = WCS(X), μ = μ(X). Then

J (t, X) � 1

d

(
1 + t

μ

)
for all 0 � t � 1.

Proof. As before, we have the following estimate

J (t, X) � min

{∥∥∥∥1

d
(x̃1 − x̃2) ± t

μd
(x̃1 + x̃2)

∥∥∥∥
}

� 1

d
+ t

μd
. �

Remark 15. It is not hard to see that J (t, l2,∞) = 1 + t/
√

2 for all 0 � t � 1 and μ(l2,∞) = √
2 (see [13]). Hence there is

a Banach space such that the estimate above becomes equality for all 0 � t � 1.

Corollary 16. Suppose that a Banach space X fails the Schur property and d = WCS(X), μ = μ(X). Then

(i) (see [14, Theorem 31]) J(X) � 1
d (1 + 1

μ);

(ii) (see [14, Proposition 30]) CNJ(X) � 1
d2 (1 + 1

μ2 );

(iii) (see [14, Theorem 27]) 1 + ρX (t) � 1
d (1 + t

μ) for all t � 0.

Recall that ρX denotes the modulus of smoothness of X defined by

ρX (t) = sup

{‖x + ty‖ + ‖x − ty‖
2

− 1: x, y ∈ B X

}
for t � 0.
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Proof. (i) is obtained by letting t = 1 while (ii) follows from CNJ(X) � ( J (t,X))2

1+t2 where t = 1
μ . Finally, it is easy to see that

1 + ρX (t) � J (t, X) and hence (iii) follows. �
5. García-Falset’s coefficient

In 1997, García-Falset proved that every nearly uniformly smooth space has the fixed point property. To prove this, he
introduced the following coefficient, the so-called García-Falset coefficient,

R(X) := sup
{

lim inf
n→∞ ‖xn + x‖

}
where the supremum is taken over all weakly null sequences {xn} in B X and all x ∈ S X . He proved that a reflexive Banach
space X with R(X) < 2 enjoys the fixed point property [9].

Theorem 17. Suppose that a Banach space X fails the Schur property and d = WCS(X). Then

(1) J (X) � 1
d + 1

R(X)
;

(2) CNJ(X) � 1
d2 + 1

(R(X))2 .

Proof. Using García-Falset’s coefficient instead of Domínguez-Benavides’ coefficient in Lemma 4, we have ‖x̃2 + x̃1‖ � R(X).
This implies

J (X) � min

∥∥∥∥ x̃2 − x̃1

d
± x̃2 + x̃1

R(X)

∥∥∥∥ � 1

d
+ 1

R(X)

and

CNJ(X) = CNJ
(

X∗) � 1

4

(‖ f̃2 − f̃1‖2 + ‖ f̃2 + f̃1‖2) � 1

d2
+ 1

(R(X))2
. �

Remark 18. Both estimates above become equality when X = �2,∞ and X = �p where 1 < p � 2 (see [8,13]).

Remark 19. The result above is better than the result involving the coefficient of weak orthogonality of Sims. In fact, our
estimate still makes sense when μ(X)d > 2. ((a) of Lemma 13 becomes trivial in this case.)
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