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SUMMARY AND INTRODUCTION 

In a previous paper [l], a sequence of rational functions was constructed to 
economize summation of a certain type of asymptotic series. Only in certain 
special cases could it be shown that the above sequence converged to the 
desired limit. To facilitate an understanding of the convergence question, 
it was necessary to study the asymptotic properties with respect to the order 
of a general class of hypergeometric polynomials of which the well known 
Jacobi polynomials form a subclass. Such a study is the essence of the present 
and subsequent papers. 

For a discussion of asymptotic properties of the Jacobi polynomials, see 
[2, 31. To study the more general class of polynomials, our approach is based 
on constructing asymptotic solutions of differential equations containing a 
large parameter, see [4] and the references given there. 

Our results are useful to study zeros and extremal values of the polynomials 
and their confluent forms, e.g., Bessel functions of the first kind. 

I. DEFINITIONS AND PRELIMINARY RESULTS 

We are concerned with the hypergeometric polynomials1 

(1.1) 

* This research is a continuation of work given in Midwest Research Institute 
Technical Report, July 1959 and was supported by the United States Navy through 
the Applied Mathematics Laboratory of the David Taylor Model Basin under Contract 
No. Nonr-2638(00) (X). Reproduction in whole or in part is permitted for any pur- 
pose of the United States Government. 

r Equation (1.1) is a generalization of the classical Jacobi polynomials if g = p + 1. 
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where n is a positive integer and 

From (1.3) we see that when ai is a negative integer (- n), 

(- ,)kk!!h = qn + 1) n 
k! I+-k+l)T(k+= k ’ ii 

and the infinite series in (1.2) terminates at k = n. However, in general, the 
oli’s are not negative integers and it is necessary that p < q + 1 for the power 
series (1.2) to have a nonzero radius of convergence. If p = 9 + 1, (1.2) has a 
radius of convergence unity and if p < q + 1, it is infinite. Throughout 
this paper we use a contracted notation and write 

Thus (c& is to be interpreted as II:=,,, (c& and a similar interpretation holds 
far (1 + pJk. For (1.2) to be defined, the p;s cannot be negative integers. 
Also, it is assumed that no aj is equal to any 1 + pi. In contracted notation, 
and incorporating (1.4), we have 

F,(s) as given in [3] obeys a differential equation of the form 

(S(8 + pl) ... (6 + pe) -z(6 - n) (6 + n + A) (6 + q)--(S + cd> F,(z) = 0, 

The order of the differential equation is M = max {p + 2,q + 1). Equation 
(1.7) can also be written in the form 

{6(6 + PI) --* (6 + pa) + aNfi(8 + 4 **- (6 + 4 

- rs(6 + A) (6 + al) -a- (6 + a,)} F&z) = 0, (1.8) 

Nfl = n(n + A), (1.9) 

where the parameter fi is defined later, see the remarks following (1.20). 
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Some properties of the 6 operator are next of interest. Define 

AZ = 2 at”ut,-l -** at1, t, > t,-, > a** > t,, tj E (1, a’-, K}, j = 1, *a*, n 

= 1,m =o. 

Then by induction on K, it can be shown that 

fi (8 + 4 = 2 E PK-t.K+l-“+q zv~y, t-0 t=o 
where the PK.= ‘s satisfy the difference equation 

pK+L.L+l + (K + 1) pK+L.L = pK+L+~.L+~, K 20, 

with boundary conditions 

go= 1, 

L20 

PK,L = 0, A!. > K 2 0; PK.1 = 1, K > 0, 

PK,L = 0, L 5 0, K > 0; PK,K = 1, K 2 0. 

From (1.12) and the boundary conditions (1.13), it follows that 

K 

P K+L,L = c (1 + m> pm+L-~.L-~, 
m=O 

K 2 0, L 2 1. 

By direct computation from (1.14), we find 

m>O 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

P K+l,l = (" i' 1) IK '1 ll-' = 1, 

P K+2,2 = (K,“) ry1 _ w + y3, 

P K+3,"=(Kjt3)'3Kqf41, 

P K+4,4 = (K4+ 4) [4K2 +;2K + 81, 

P K+5.5 = (” 5’ 5, 

[5K3 +25K2 +(y)K+ 161 
16 ) 

(1.14) 

(1.15) 

P 
K+e,e=(K6+6)[6K4+44K3+I;K2+100Ki21!,etc. 
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Though it is not convenient for our purposes, an explicit expression for the 
PKmL’s is 

PK+L,L = &- 5 (- l)K-n (3 (1 + ??r)K+L-l, 
* m=o 

K 20, L 2 1. (1.16) 

That (1.16) is a solution of (1.12) with boundary conditions (1.13) is readily 
verified with the aid of a result given in [5]. 

For our later work, we need to consider a function of the form 

G(z) = A exp 1 N jz 7(N, t) dt 1 , 

where A is a constant. Where no confusion will result. we write 

T(N, t) = 7. (1.18) 

The precise form of 7 is not pertinent at the moment, but is defined later 
by (1.20). 

By induction on K, it can be shown that 

-y) = (N# + NK-1 [ (-2;)2 rK-27(ll] 

+ NK-2 [‘- ‘I;,- K)3 7K-3,(2) + k$ TK-4(+b)j 

+ NK-3 [i+ TK-47(33 

+ (- 1) $.t?& 7K-5T(l)T(23 + $l+ +yTt1))3] 

+ NK-4 [‘- ‘)5(,- K)5 ,K-5,(4) + ‘; ;I” 7K-67(1)7(33 

+ k.!% +6(T(2))2 + (- ‘) (- K)7 7K-7(T,13)2T,2) 
3223 3 * 24 

(- K)E f-377 Ke8(~(1))4] + HK-5(N), (1.19) 

where (- K)m is the notation defined by (1.3), T@) is the mth derivative of 
r with respect to z, and H K--5(N) is a polynomial in N of degree K - 5, 
whose coefficients depend on rj, j = 0, 1, . . . . K. 
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Assume that 

(1.20) 

Using Eqs. (1.10)-(1.15), (1.8) can be changed into an equation involving 
the differential operator 9. If we assume that F,(z) is a function of the form 
G(s) as given by (1.17) and employ (1.19), formal substitution of these 
developments in (1.8) gives a power series in N equal to zero. Then, if Q 
and /3 are chosen so that all coefficients of powers of N are zero, and T,, # 0, 
a generally divergent series (1.20) is obtained. With the help of this series 
and (1.17), formal solutions of (1.8) are obtained which serve as asymptotic 
representations of certain solutions of (1.8) in appropriate regions of the 
s-plane. The equation for T,, is called the characteristic equation of the 
differential equation, and its behavior changes radically asp = p + 1 (Case I), 
q < p (Case II), or q 2 p + 2 (Case III). In this paper we consider Case I 
only. 

II. CASE I, q = $J + 1, Na = ?Z(tI + A) 

Since infinity is a regular singular point of (1.8), F,(Z) can be given as a 
linear combination of solutions around infinity of (1.8). Replacing the solu- 
tions around infinity by their asymptotic representations for large n, we arrive 
at an asymptotic representation for F,(z), for large tl. 

A fundamental set of solutions for Case I of (1.8) contains M = p + 2 
functions. There are p formal, algebraic, descending series solutions of (1.8) 
of the form 

%%&) = (1 + p*l)-@‘ 
c%J-at (2)-’ 

at, at - hl 1 
’ D+zFD+l (1 + at + II, 1 + at - tl - h, 1 + at - ap z I 1 

(2.1) 

where t = 1,2, **‘, p and 

@&z~ = Q (a3)-ls, 
i#t 

9+1 

(1 + PP+lLt = g (1 + P3)-a,, (2.2) 

and the denominator parameters of the hypergeometric function are 
l+ar,+n, l+at---n- A, and 1 + at - u3 (j = 1, *‘a, p; j # t). The 
.P ~~,&z)‘s are linearly independent if no q - aj, i # j, is equal to an 
integer or zero. If one of the’or, - a3, i f: j, is equal to an integer, limiting 
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forms of the J?‘) B+2,9+1(z) need be taken; see [6]. For ( z / > 1, the series 
defining the J@’ P+s,p+l(z)‘s converge, and are valid solutions of (1.8). Since n 
enters into two denominator parameters of the,+zFH,(z) in (2.1), 9’~$,,,(z) 
may be considered as essentially an asymptotic expansion for large 11 of a 
valid solution of (1.8). Then for 0 < 1 z 1 < 1, these same functions also 
serve as asymptotic expansions for large n to valid solutions of (1.8), see [4] 
and the references given there. The slat) p+B,P+l(~)‘~ then correspond to the p 
identically vanishing roots of the equation for ~a, see (1.20). 

The lead terms of the exponential asymptotic expansions of the remaining 
M - p = 2 solutions of the fundamental set of solutions are computed by the 
formal procedure given in Section I, and are denoted by Xv)(z); j = 1, 2; 
see [4] and and the references given there. Thus, denoting asymptotic 
equivalence by N, we have 

F,(z) - 2 AgP’) PC2,P+l(4 + A,+,3Yi%) + A,+,4(% (2.3) 
t-1 

where the At’s are constants. By the principle of confluence, 

Lim F, 
i 

’ j = Lim n, n + 4 ap 
n-m .+2FtJ+l (- 1 + pp+i 

Z 

?l-+XJ n(n + A) n(n + A) 1 

= $‘,+I ( 1 t”;p+l - z . I j 

If z in (2.3) is replaced by z/n(n + A), while 0 < 1 z 1 < n(n + A), then the 
A,‘s can be determined asymptotically by comparison with the asymptotic 
representation of 9FD+1(TTPP+1 ( - ) f 1 g z or ar e z; see [6]. Since the real axis is 
the Stokes line for $‘D+l(~P,+l ) - z), and the confluence on Fn(z) effectively 
moves the singularity at unity of (1.8) out to infinity along the positive real 
axis, we restrict ) arg z 1 57~ - 6i, pi > 0, 1 arg (z - 1) / < c2, c2 > 0 
and write, through the 7q terms (see (1.20)),2*a 

F - 
( 

n, n + A, as 
P+2 P+l 1 + pl)+l 

+ w + Pp+l) rtcu.jrt1,2j N2yCsin (WN2y kos (WW"+ exp W-2~2(~) + OW4)) 

x ~0s we + T + ~-~~,p) + w393(e) + w-y), (2.5) 

I arg z / IT - Ed, I arg (z - 1) I 2 c2, 61 >o, 5 > 0, 

’ The procedure outlined above permits the inference A, N N-% for large II, 
t = 1, 2, . ..( p. However, N-W N (n + X),j(n + l),t, and this choice makes (2.5) 
exact if any of the at’s are negative integers. 

a S. 0. Rice, see [7j, derived the analog of (2.5) for the polynomials sFI(- n, n + 1, 

r; 1, P; 4. 
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where 

cos e = 1 - 22 
iv2 = n(n + A) 

or 2 = sin [(0/2)J2 
y = (4)-l (1 + 2B, - 2C,) 

B,=& 
t=1 

CL+1 

Cl = 2 (1 + Pt> 
t=1 

9+18-l 

c, = 2 c (1 + PSI (1 + Pt> 

s-2 t=1 

22 7-11-l 9+17-1s-1 

KY = 2 c 2 (4 b-4 (4 G = c c 2 (1 + Pr) (1 + PJ (1 + Ps> 
r=3 r=2 t=1 *=3.9=2 kl 

etc. 

~~(0) = (pl + p2) tan (Q) - 34 cot 8 - d/2 

v2(e) = p4[sec omi2 + kb ww 

v3(q = (3)-l(h + tc7 + kJ [tan ww + G3 - PJ tan (e/2) + t4v2 

+ (- 4/3) bCLe + a.+,,) bt 013 + ( - 4) ho + 2~d cot e 

+ (413) fleb 013 (2.6) 

cl2 = Wl (Cl - 4) (2Bl + h - 1) + B, - C, + l/4 

I-Ls = (4)-l (B, - C,) (3B, + C, - 2) + C, - B, - 3116 

p4 = (16)-l (2~ + h - 1) (2~ + 4 = - (4)-l (PI + ~2 + PJ 

p5 = (16)-l (C, - B,) (8B2 - 8B,2 + 1 lB, + C, - 2) 

+ (4)-l (‘2, - B,) (2B, - 3) - (2)-l (C, - B,) + 3/64 

p7 = (4)-l (B, - C,) [4B, + IOB, - 8BlB2 + 7B, + 4Bf - 1OBf 

+ 2AB, + 2XB, - 2AB1” - h2B,/2 - ha/4 + A214 + h/2 - l/2] 

+ (4)-l (B, - C,) [4B, - 4B,a + lOB, + 2M3, - 2h + h2/2 - 71 

+ (2)-l (2B, - h - 5) (B3 - C,) + C, - B4 + 3P/32 - l/16 
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/Lo,, = (64)-l (B, - Cl) [C; + 5B,C,2 + 35B;C, - 105g + 236B; 

+ 160B,B, - 24&C, - SC& - 40&C, - 4C,z - 192B, - 64Bs 
- 291Brj2 - C,/2 + 91 + (8)-l (II, - C,) [2C, - lOB, + 6C, 

- 30B, - 7B,C, + 15q + 73/4] 

+ (2)-l (B, - C,) (Cl - 3B, + 6) + B, - C, + 63/1024 [2.6] cont. 

2/~, + ps - /Lo,, = (64)-l (B, - Cl) [2B, - 8X2B, - 8X3 + 4P + 24X - I] 

+ (8)-l (B, - Cl)2 [A - 2hB, - 3h2/4 + 23/16] 

+ (64)-l (B, - Cl)3 (4 - 7B, - Cl) 

i @-'(B2 - G) (4 - Cd2 + (B2 - C2) (8 - Cd (A/4) 
+ (32)-l (4h” - 1) (B, - C,) + 25X2/128 - 47/1024 

~~~+~~,+~l~+~~~+t~~~=-(64)-1(2~+~-33)(2~+h--) 
x (2~ + A) (2~ + h A 2) = (2))’ ~~(3 - 8pu.4). 

Again I’(ru,) and r(l + pe+t) are to be interpreted as nyzr I’(cx,) and 
II::: F(l + pt), respectively. By induction, it can be shown that with the 
exception of rry, only odd powers of N appear inside the cosine term of (2.5) 
with curly brackets, while only even powers of N appear in the exponential 
term. 

Representations valid along the negative real axis and positive real axis 
to the right of unity can be similarly constructed. The connecting constants in 
this instance are determined from (2.5) by comparing the dominant terms in 
those overlapping regions where both representations are valid. Hence 

F - 
i 

12, n + x, 010 
Bf2 P+l 1 + pp+l 

+ w + Ps+d N2Y 
0%) W/2) 

[sinh (f/2)]“’ [cash (t/2)]-2v-” exp {W2cp2([i) + O(N-*)) 

x cash {iV[ - iPF,( [i) - iN-$,( 5;) + o(N--5)}, (2.7) 
cash .$ = 1 + 22, I arg .2 / 5 T - c3, 63 > 0, 

l =+(-) if argz < (>)O. 

F - 
i 

n, n + A, a 
Y+2 P+l 1 + Pp+l 

+ C-1 ‘(&TPy$,r [cash (v/2)]“’ [sinh (~/2)]-~v-~ 

x exp {W2v2(rr + +) + O(N-*)} 

x cash (NV - iN-‘[q+ + +) + /qr/2] - W3[& + +) -per/21 + OQF5)), 
coshV =22- 1, 1 arg (z - 1) / 7 n - c4, E4 > 0. (2.8) 
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We remark that the generalized Jacobi functions 

9+89+1(- 
fxfl + CL, 0.m + 4 a9 

1 +p9+l 12); w#O, 121 <I; 

can be similarly treated, and their expansion agrees with (2.5) and (2.7) if in 
(2.6), except for N8, X is replaced by h + p, 

and where now 

N8 = (wn - p) (wn + A), (2.9) 

49~;,,+,(4 - twn + 3-q (~,Lx, 

hJ - P + lb, (1 + P9+1)-ar, 

x F 9+8 9+1 ( 
at9 at - h+l 
1 + OLt + Wrr - II, 1 + ut - Ml- x, 1 + OLt - oL9 I ) 

I . (2.10) 
2 

Finally, note that the above representations for p = 0 differ from the clas- 
sical expression for the Jacobi polynomials in terms of O(n-l). This difference 
comes from our choice of the large parameter. Classically, one puts 

N=n+;, (2.11) 

but from the differential equation (14, it is much more natural to set 

N = n (1 + ;)“s = 11 + $ + O(n-1) 

which agrees with (2.11) through terms of O(n-l). 
The choice Ns = n(n + X) is advantageous since N large leads to the dual 

interpretation that either n or h or both n and h are large. We have found 
that if in our asymptotic developments of (1.6), I is replaced by s/(x + X), 
0 < n < h, then by confluence on ;\ (that is, let h + m), we can get like 
developments for ,,+,F,,(~~~ 1 2). This includes results for the classical 
Laguerre polynomials. However, further discussion is deferred for a later 
paper. 

Except for those values of 2 explicitly excluded, and the singular points 
zero, unity, and infinity, (2.5), (2.7), and (2.8) hold for all fixed values of x as 
N + *. For N fixed and s varying, we require that the correction terms in 
the above representations be small, i.e., ) 2 1 2 O(N-8), 1 1 - 2 1 I: O(Nm8) 
and log 1 2 I < O(N) for 2 near zero, unity, and infinity, respectively. A study 
of F,(5) for large n in the neighborhood of these singularities is deferred to a 
later paper. Also, Case II and Case. III analyses (see remarks after (1.20)), as 
well as a study of the zeros and extrema for all cases, will be the subject of 
future papers. 
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