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Abstract The aim of most supply chain optimization problems is to minimize the total cost of the
supply chain. However, since environmental protection is of concern to the public, a green supply chain,
because of its minimum effect on nature, has been seriously considered as a solution to this concern.
This paper addresses the modeling and solving of a supply chain design for annual cost minimization,
while considering environmental effects. This paper considers the cost elements of the supply chain,
such as transportation, holding and backorder costs, and also, the environmental effect components of
the supply chain, such as the amount of NO2, CO and volatile organic particles produced by facilities and
transportation in the supply chain. Considering these two components (cost and environmental effects),
we propose amulti-objective optimization problem. In thismodel, the facilities and transportation options
have a capacity constraint and, at each level of the chain, we have several transportation options with
different costs. We utilize a memetic algorithm in combination with the Taguchi method to solve this
complex model. We also propose a novel decoding method and priority based algorithm for coding the
solution chromosome. The performance of the proposed solution method has been examined against
the hybrid genetic Taguchi algorithm (GATA) on a set of numeric instances, and results indicate that the
proposed method can effectively provide better results than previous solution procedures.

© 2012 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

In a broad sense, a green supply chain refers to the
management between the facility operation, transportation
and environmental effects of all facilities in a supply chain,
i.e. the environment protection constraint is brought into
facility location and allocation. Its purpose is to add environment
protection consciousness into production and transportation, in
order to improve the competitive edge of the supply chain
regarding environmental effects.

The growing awareness of supply chain environmental
aspects is now greatly recognized by academic and industrial
communities [1]. Srivastava [2] defines a green supply chain
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as ‘‘integrating environmental thinking into supply chain
management, including product design, material sourcing and
selection,manufacturingprocesses, delivery of the final product
to the consumers, as well as the end of life management of the
product after its useful life’’.

Researchers have divided greenness into two types. Some
consider green designs for products [3] and others have placed
emphasis on green operations. Green operation includes topics
such as reverse logistics, network design [4,5], and waste
management [6,7]. However, our research has a different idea
regarding ‘‘greenness’’. More specifically, we are interested in
environmental investment decision making in the supply chain
design phase, and in taking precautions against environmental
pollution.

A green supply chain is a logistic network that guarantees
the product delivery from manufacturer to customer in an
environmentally friendlymanner. To reach this goal, companies
should invest in design and planning to optimize their logistic
network, while accounting for the trade-off between cost and
environmental effects [8,9].

Noci [10] pointed out that companies should construct
efficient management policies in supply chains. In fact, they
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should balance cost and environmental effects throughout the
entire supply chain.

Pagell et al. [11] proposed that supply chain managers need
to balance cost reduction and innovation, while maintaining good
environmental performance and a green supply chain. In recent
years, many researchers have proposed mathematical models
to solve problems considering environmental effects. One of
the first works was by Zhou et al. [12], which proposed a
goal programming model to calculate the sustainability of
continuous processes in a supply chain.

Guillen-Gosalbez and Grossmann [1] addressed the design
and planning of supply chains, and proposed a bi-objective
stochastic mixed integer non-linear program that simultane-
ously minimizes cost and environmental impact for a given
probability level for a liquid material supply chain. The same
authors [13] also developed a spatial branch and boundmethod
that extends the specific structure of the prior problem and
guarantees that the obtained results are a global solution that
minimizes the problem objective function.

The supply chain problem is usually considered as a single
objective problem, or can be converted to a single objective
using weighting method [14,15]. Modeling a supply chain,
considering environmental effects as a separate objective
besides cost and customer satisfaction is another influential
trend worthy of study. Comparing that with a single objective,
it is more reasonable in terms of actual applications. Multi-
objective optimization is utilized in a variety of decision
making problems [16–18]. In recent years, multi-objective
supply chain optimization has been considered by many
researchers. For example, Paksoy et al. [19] modeled a supply
chain to minimize total cost, prevent more CO2 gas emissions
and encourage customers to use recyclable products. They
proposed different transportation choices between echelons,
according to CO2 emissions. Mincirardi et al. [20] proposed
a multi-objective model to minimize solid waste in a supply
chain. Alçada-Almeida et al. [21] addressed a multi-objective
programming approach to identify the locations and capacities
of hazardous material incineration facilities, and balance social,
economic, and environmental impacts. Wang et al. [22] studied
a multi-objective optimization model that captures the trade-
off between total cost and environmental influence.

In this paper, we study an integrated supply chain with
five tiers that delivers products from suppliers to customers. In
this supply chain, we have several transportation options that
transport products to downstream facilities. All facilities and
transportation options have capacity constraints.

In some prior papers, manufacturers and warehouses have
capacity constraints, but in this paper, we assume that each
transportation option also has a capacity and we cannot always
use the transportation option with the least cost and pollution
effects. Thus, according to the amount of transported products
and distance between facilities, we need to choose the best
transportation options. The model of this paper is multi-
objective. We have one objective that focuses on total cost
minimization, which consists of transportation, raw material,
holding, fixed, backorder and variable costs. The second
objective is to minimize the amount of 3 gases, consisting of
NO2, CO and volatile organic particles produced by facilities
and transportation means. In this paper, we assume that in
addition to supply chain facilities, such as manufacturers,
warehouses and distribution centers, transportation options
also emit different amounts of dangerous gases, such as NO2,
CO and volatile organic particle.

We first model the supply chain mathematically, and next
propose a novel coding method that produces a feasible
solution. Utilizing this coding method, all generated solutions
are feasible and we do not need to check the feasibility of
solutions. We also use the memetic algorithm in combination
with the Taguchi method to solve the model and reduce
computational efforts.

The rest of paper is organized as follows: Section 2 gives an
explanation of problem assumptions. In Section 3, we propose
the mathematical model with its constraints, and Section 4
explains the solution approach. Section 5 presents a discussion
of the results and, finally, Section 6 concludes the paper.

2. Problem statement

Before the mathematical model is proposed, we provide a
verbal description of the model. In this model, we deal with al-
location of facilities and transportation options.We consider a 5
tire supply chain consisting of suppliers, manufacturers, ware-
houses, distribution centers and customers. At the first level, the
proposed model assigns each manufacturer, warehouse, distri-
bution center and customer to suppliers, manufacturers, ware-
houses and distribution centers, respectively. Between each
layer, we have several transportation options, such as trucks,
trains, planes and etc. According to the distance between fa-
cilities and the amounts of dangerous gases produced using a
specific transportation option, the proposed model allocates a
transportation option to each open facility. In this model, we
have two objectives. The first objective intends to minimize the
total cost of the supply chain, which consists of several compo-
nents, and the second objective attempts to minimize the envi-
ronmental effects of the supply chain.

Since the second objective is the amount of produced gases,
based on liter units, and we do not have the means to convert
one liter of dangerous gas, such as nitrogen monoxide, to an
equivalent amount of expenditure, we can not combine these
two objective functions and propose a single objective based on
cost or amount of dangerous gas production.
Other assumptions made in the problem are as follows:
• Rawmaterials aremore than one type and themanufacturer

provides them from several suppliers.
• Manufacturers, warehouses, distribution centers and trans-

portation options have capacity constraints. If the demand of
the supply chain is greater than the total capacity, we con-
front it with the backorder cost.

• Manufacturers and warehouses have a fixed lead time.
• Each supplier can fulfill the demand of more than one

manufacturer.
• The demand of each warehouse can be satisfied by more

than one manufacturer.
• The demand of each distribution center can be satisfied by

more than one warehouse.
• The demand of each customer can be satisfied by more than

one distribution center.
• The transportation options available to facilities in different

tiers are not identical.
• Each transpiration option has a predetermined rate of

hazardous gas production.
• Manufacturers, warehouses and distribution centers have

predetermined rates of hazardous gas production.
• A periodic review inventory replenishment policy is as-

sumed for warehouses and distribution centers.

2.1. Environmental effects

Nowadays, the major threat to the environment is posed
by traffic that emits a wide variety of pollutants; principally,
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Table 1: Notations regarding the function of cost and environmental effect
functions.

Environmental
impact
function

PN The amount of nitrogen oxide produced in supply
chain (liter)

PC The amount of carbon monoxide produced in
supply chain (liter)

PO The amount of volatile organic produced in
supply chain (liter)

Cost function

RC Total cost of purchasing raw materials from
suppliers

FC Fixed costs of opened facilities
VC Variable costs of opened facilities
TC Transportation costs
HC Holding inventory costs in warehouses and

distribution centers
BC Backorder cost

carbon monoxide (CO), nitrogen oxide (NO2), and volatile or-
ganic (VOCs), which have an increasing impact on environ-
mental conditions. Furthermore, industrial facilities impact an
environment by producing these dangerous gases. Environ-
mental effects are a major risk to health and are estimated to
cause approximately 2 million premature deaths worldwide
per year. For these reasons, we should establish a supply chain
with this requirement; that minimum amounts of dangerous
gases should be produced. In the environmental effects of a sup-
ply chain, several components are involved. Each facility and
transportation option produces dangerous gases based on its
operation type. This paper supposes that each facility produces
a predetermined amount of gas in proportion to its demand
handling. For transportation, this means the amount of pro-
duced gas is a function of distance and the number of products
carried by them. Appendix gives the gas emission rate of differ-
ent transportation options.

3. Mathematical model

In this section, we describe the mathematical model. As
previously stated, our model has two objectives and each
objective is divided into several components. Table 1 shows the
components of each objective.
The following notations are used in the model formulation:
Sets:

C set of customers,
D set of distribution centers,
W set of warehouses,
M set of manufacturers,

TM set of transportation options for manufacturers,
TW set of transportation options for warehouses,
TD set of transportation options for distribution centers,
I set of suppliers producing raw material, type i,
J set of suppliers producing raw material, type j.

Parameters:

demc demand of customer c with mean µc and standard
deviation σc ,

demf demand of facility f ∈ {m, w, d},
cr im unit raw material cost from supplier of type i to

manufacturerm,
cr jm unit raw material cost from supplier of type j to

manufacturerm,
ctmmw unit transportation cost from manufacturer m to ware-

house w with transportation option tm,
ctwwd unit transportation cost fromwarehousew to distribution

center dwith transportation option tw,
ctddc unit transportation cost from distribution center d to
customer c with transportation option td,

disff ′ distance between facility f ∈ {m, w, d} and facility f ′
∈

{w, d, c},
fcf fixed cost of opening facility f ∈ {m, w, d},
ltm lead time of facility f ∈ {m, w},
vcf unit variable cost per unit for facility f ∈ {m, w, d},
invf expected inventory at facility f ∈ {w, d},
nrr i number of units of raw material of type i required to

produce one unit of the product,
nrr j number of units of raw material of type j required to

produce one unit of the product,
p penalty cost per unit of customer demand if it is not

fulfilled,
caf the capacity of facility f ∈ {m, w, d},
caf

′

capacity of transportation option f ′
∈ {tm, tw, td},

Gf
N rate of released nitrogen oxide to produce/handle one unit

of product in facility f ∈ {m, w, d},
Gf
C rate of released carbon monoxide to produce/handle one

unit of product in facility f ∈ {m, w, d},
Gf
O rate of released volatile organic to produce/handle one

unit of product in facility f ∈ {m, w, d},
Gf ′
N rate of released nitrogen oxide per one unit of distance for

transportation option f ′
∈ {tm, tw, td},

Gf ′
C rate of released carbonmonoxide per one unit of distance

for transportation option f ′
∈ {tm, tw, td},

Gf ′
O rate of released volatile organic per one unit of distance

for transportation option f ′
∈ {tm, tw, td}.

Variables:

xm

1 if manufacturerm is opened
0 otherwise

xw


1 if warehouse w is opened
0 otherwise

xd

1 if distribution center d is opened
0 otherwise

xtmmw quantity of products shipped from manufacturer m to
warehouse w by transportation option tm;

xtwwd quantity of products shipped from warehouse w to
distribution center d by transportation option tw;

xtddc quantity of products shipped from distribution center d to
customer c by transportation option td;

xim quantity of raw material transported to manufacturer m
from supplier that produce raw material type I;

xjm quantity of raw material transported to manufacturer m
from supplier that produce raw material type j.

With respect to the above notations, the multi-objective model
can be formulated as follows:

f1 = FC + VC + TC + RC + BC + HC, (1)

FC =


m

fcm · xm +


w

fcw · xw +


d

fcd · xd, (2)

VC =


m

vcm · demm +


w

vcw · demw

+


f

vcd · demd, (3)

TC =


m


w


tm

xtmmw · ctmmw · dismw

+


w


d


tw

xtwwd · ctwwd · diswd

+


d


c


td

xtddc · ctddc · disdc, (4)
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RC =


s


m

xism · cr ism +


s


m

xjsm · cr jsm, (5)

BC =


c

demc −


d


c


td

xtddc


· p, (6)

HC =


w

hw · invw +


d

hd · invd, (7)

f2 = PN + PC + PO, (8)

PN =


i


m

xim · Gm
N +


j


m

xjm · Gm
N

+


w

demw · Gw
N +


d

demd · Gd
N



+


m


w


tm

xtmmw · Gtm
N · dismw

+


w


d


tw

xtwwd · Gtw
N · diswd

+


d


c


td

xtddc · Gtd
N · disdc


, (9)

PC =


i


m

xim · Gm
C +


j


m

xjm · Gm
C

+


w

demw · Gw
C +


d

demd · Gd
C



+


m


w


tm

xtmmw · Gtm
C · dismw

+


w


d


tw

xtwwd · Gtw
C · diswd

+


d


c


td

xtddc · Gtd
C · disdc


, (10)

PO =


i


m

xim · Gm
O +


j


m

xjm · Gm
O

+


w

demw · Gw
O +


d

demd · Gd
O



+


m


w


tm

xtmmw · Gtm
O · dismw

+


w


d


tw

xtwwd · Gtw
O · diswd

+


d


c


td

xtddc · Gtd
O · disdc


. (11)

Objective Function (1) minimizes the total costs within the
supply chain. Objective Function (8) minimizes the produced
dangerous gases, such as NO2, CO and Volatile organic. Relation
(2) determines the fixed cost of the supply chain based on
opened facilities. Relation (3) calculates the amount of variable
cost based on the demand of each facility. Relation (4) computes
the transportation cost according to the distance and amount of
the transported product by each transportation option. Relation
(5) calculates the rawmaterial cost. Relation (6) determines the
penalty cost for the unsatisfied demand of each customer and
Relation (7) determines holding cost based on the inventory
level of warehouses and distribution centers. Relation (9)
calculates the amount of produced NO2. We consider that the
amount of NO2 produced by each facility is calculated, based
on its release rate of nitrogen oxide and its demand. With the
same procedure, Relations (10) and (11) calculate the amount
of produced CO and volatile organic gases, respectively.

demm =


tm


w

xtmmw ∀m, (12)

demw =


tw


d

xtwwd ∀w, (13)

demd =


td


c

xtddc ∀d, (14)

invw =
demw

2
+ zα · σw ·



m


tm

xtmmw ·
√
ltm

demw

 ∀w, (15)

invd =
demd

2
+ zα · σd ·



w


tw

xtwwd ·
√
ltw

demd

 ∀d, (16)

σw =


w


tw


d

σd · xtwwd

demw

, (17)

σd =


d


td


c

σc · xtddc

demd
, (18)

tm


w

xtmmw ≤ cam · xm ∀m, (19)
tw


d

xtwwd ≤ caw · xw ∀w, (20)
td


d

xtddc ≤ cad · xd ∀d, (21)

xm ≤


tm


w

xtmmw ∀m, (22)

xw ≤


tw


d

xtwwd ∀w, (23)

xd ≤


td


c

xtddc ∀d, (24)
i

xim = demm · nrr i ∀m, i, (25)
j

xjm = demm · nrr j ∀m, j, (26)


m


tm

xtmmw = demw ∀w, (27)
w


tw

xtwwd = demd ∀d, (28)
d


td

xtddc ≤ demc ∀c, (29)
m


w

xtmmw ≤ catm ∀tm, (30)
w


d

xtwwd ≤ catw ∀tw, (31)
d


c

xtddc ≤ catd ∀td. (32)
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Eqs. (12)–(14) determine the demand of each facility.
Constraints (15) and (16) also calculate the inventory level
that each warehouse and distribution center must hold. Since
the demand of the facility is not served by only one facility,
and more than one manufacturer or warehouse can supply
the demand of a warehouse or a distribution center, in these
constraints, we used a weighting method to determine the
lead time for each facility. Eqs. (17)–(18) also show that the
standard deviation of demand for warehouses and distribution
centers is defined as the weighted average of the standard
deviation of demands assigned to them. Eqs. (19)–(21) ensure
that we cannot assign a demand to a facility that is higher
than its capacity. Eqs. (22)–(24) assure that if a facility does
not supply any facility at its lower level, it will be closed
and its binary variable is equal to zero. Constraints (25)
and (26) guarantee that the total raw material shipped from
suppliers to a manufacturer can not be greater than the
manufacturer demand, according to the required raw material
for one product unit. Eqs. (27)–(28) ensure that the amount
of product transported from a manufacturer and a warehouse
must be equal to warehouse and distribution center demand,
respectively. But, in thismodel, distribution centers are allowed
to not serve the percentage or total demand of a customer. Eq.
(29) shows this assumption. Finally, Constraints (30)–(32) are
capacity constraints on transportation means, which prohibit
assigningmore than their capacity to the transportationmeans.

The aforementioned supply chain model is NP-hard, within
which it is difficult to find the optimal point accurately [23].
We have also capacity constraints for facility and transportation
means thatmake the problemmore complex. For these reasons,
we use a meta heuristic method to solve themodel and find the
near optimum solution.

4. Solution approach

4.1. Memetic algorithm

The memetic was proposed by both the Darwinian principle
of natural evolution and Dawkins’ notion of a meme. The
Memetic Algorithm (MA) was first introduced by Moscato and
Norman [24], where he viewed MA as being close to a form
of population-based hybrid Genetic Algorithm (GA) coupled
with an individual learning procedure capable of performing
local refinements. In the last few years, many researchers have
become more attracted to this methodology as a way out of
some limitations present in other approaches. MAs were used
in a variety of optimization problems, such as supply chain [25],
scheduling [26], and partitioning problems [27], respectively.
In this paper, we utilize a memetic algorithm and propose a
modified coding method, and priority based decoding methods
to solve the supply chain model, as detailed below.

4.2. Coding method

In this paper, we divide the supply chain into 5 sections; two
sections for the manufacturer, according to the number of raw
material types needed to produce one unit of product (in this
case, we assume 2 types of raw material), and the 3 remaining
sections are assigned to warehouses, distribution centers and
customers, respectively. Figure 1 shows these sections and a
primary solution coding for a problem with 3 manufacturers,
4 warehouses, 5 distribution centers and 8 customers, with 3
transportation options in each layer.

For decoding this chromosome, we modified the method
proposed by Gen and Chen [28] that does not need a repair
mechanism. In this approach a solution is represented by a
|k| · |j| matrix, where k depicts the number of sources and j
indicates the number of demand centers. Then, solutions are
encoded as arrays of size |k| + |j|, in which the position of each
cell represents the sources and depots, and the value in cells
represents the priorities. In this paper,wemodified thismethod
and encoded the solution as an array of size |j|. Furthermore,
the value of cells in the proposed array can be zero, if a cell
value is zero, the demand of the cell is not satisfied and we
have backorder costs. For example, the value of the first cell
in Section 5 is zero, and the demand of customer one is not
satisfied. Algorithm 1 shows the modified decoding method.

4.3. Fitness function

In this paper, we have two different objectives; the
first calculates the total cost of the supply chain and the
second determines the amount of produced gases. For fitness
evaluation, there are different types of weighting method,
such as the random-weight approach proposed by Murata
et al. [29], the Bang–Bang Weighted (BBW) and the dynamic
weighted [30]. In this paper, we examine 2 types of weighting
method; dynamic weight and random weight. The weighted
objective is shown in Eq. (33)

Z =


i

wi · f nori . (33)
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Figure 1: Modified priority based coding method.
The advantage of random weight is that it gives the algorithm
a trend to demonstrate a variable search direction, enabling it
to sample the solution space uniformly over the entire frontier.
The random weight, wi, for objective function i is calculated by
the following formula, where ri is a random number for the ith
objective function.

wi =
ri
i
ri

. (34)

Dynamic weight is proper for bi-objective problems. In this
weighting method, we use Eq. (35), where t denotes the
iteration index, and R the weight change frequency, the
amount of R varies between 100 and 200 according to problem
specifications [29].

w1 = |sin (2π · t · R)| w2 = 1 − w1. (35)

Since the dimensions of the objective functions are different,we
normalize the value of each objective. Eq. (36) used to normalize
the objective values.

f nori =
fi

max(fi)
i = 1 · · · n. (36)

Based on the fitness values, the solutions with the best fitness
function value are passed on to the next population for elite
protection. The other solutions of the next population are gen-
erated through an evolutionary procedure and improvement
method.

4.4. Crossover method

In this paper, we utilize the Taguchi method in crossover
procedure. Two chromosomes are selected and all combina-
tions of their genes are produced according to the Taguchi table
design. To produce a combination of two parents, according to
the Taguchi table, if the value of the gene in the Taguchi table
is equal to 1, we use the value of parent 1, otherwise, we use
the value of parent 2 in combination. Then fitness value of all
combinations is calculated and the combination with the best
fitness function is passed to the next population. Figure 2 shows
the crossover procedure.

According to Figure 2, parents 1 and 2 are selected to
produce one chromosome for the next population. Total
combinations of genes of two chromosomes are performed in
32 experiments, according to the Taguchi design, for 23 factors
in 2 levels. In Figure 2, the ‘‘exp21’’ with the best fitness function
is selected for passing to the next population. This crossover
method is done until the next population is built completely.

4.5. Improvement method

In this paper, we utilize an improvement function to modify
the solution in order to gain a solution with a better fitness
function. The improvement function starts from a new solution,
generated at random by some other algorithms. Subsequently,
Table 2: Instances design.

Instances number
1 2 3 4 5

Supplier type 2 4 4 4 4
Manufacturers 3 4 8 6 6
Warehouses 4 7 10 12 12
Distribution centers 5 7 12 12 16
Customers 16 21 25 35 39
Transportation for warehouses 3 4 3 5 6
Transportation for distribution 3 3 4 5 5
Transportation for customers 3 4 6 6 4

it iterates, using a transition at each step, based on the
neighborhood of the current solution. The newly generated
solution turns out to be the current solution in the next step if it
has a better fitness value than the current solution. The whole
process is sketched in Algorithm 2.

5. Results and discussion

5.1. Test instances

We present the results obtained by implementation of the
proposed memetic algorithm to solve various test instances.
Five test instances of several sizes have been taken to examine
the effectiveness of the proposed method on large, as well as
small, data sets. The problems design is detailed in Table 2.
The required parameters for these instances are generated
randomly using uniform distribution at proper intervals.

5.2. Parameters tuning

In this paper, the algorithms were coded in Matlab and
implemented on a core 2 due PC running at 2.4 GHz. The
results are sensitive to algorithm parameters. Hence, it is
required to perform repeated simulations to find suitable
values for the parameters. Optimal parameter combinations
for different methods are experimentally determined by
conducting experiments with different parameter settings. In
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Figure 2: Selection procedure with Taguchi design.
Table 3: Factors and their levels.

Factor Levels Values

A (crossover probability) 5 0.6, 0.65, 0.7, 0.75, 0.8
B (mutation probability) 3 0.01, 0.012, 0.014
C (population size) 4 100, 200, 300, 400

this paper, we assumed that the crossover probability (Pc)
is selected between 0.6 and 0.8, in steps of 0.05, and other
parameters, such as mutation probability (Pm), are selected
between 0.01 and 0.014, by step .002, and the population size is
selected between 100 and 400, with step size 100. Based on this
assumption, we conduct a full factorial design to obtain the best
combination of parameters. A full factorial experimental study
is tackled, whose factors and respective levels and values are
shown in Table 3.

To investigate the significant difference of the analyzed
levels of factors, the analysis of variance (ANOVA) as a common
Table 4: Analysis of variance for weighted objective function.

Source DF SS MS F p-value

A 4 0.2272 0.0568 12.0032 0.00
B 2 0.3857 0.1928 40.7514 0.00
C 3 0.4321 0.1440 30.4389 0.00
AB 8 0.1351 0.0169 3.57072 0.00
AC 12 0.2161 0.0180 3.80708 0.00
BC 6 0.1561 0.0260 5.50161 0.00
ABC 24 0.0057 0.0002 0.05084 0.00
Error 120 0.5678 0.0047
Total 179 2.1260

statistical procedure is utilized. The results of experiments
which have been analyzed by means of a three-way ANOVA
with interactions are summarized in Table 4.

The last column of Table 4 indicates that the p-values
of all main effects and their interactions are zero, and all
factors and two-way interactions, and the only three-way
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Table 5: Optimum value for algorithm parameters.

Parameters Optimal value

Pm 0.012 or 0.014
Pc 0.65
Population size 200

Table 6: Comparison of performance of random and dynamic weights.

Instanceno. Random weight Dynamic weight
Average
value

objective 1

Average
value

objective 2

Average
value

objective 1

Average
value

objective 2

1 10.55180614 27740.37968 10.55087054 27742.88593
2 12.09223266 31673.67998 12.33127719 31705.65464
3 12.40878685 32405.89137 12.5422946 32463.37882
4 12.61783607 32860.08868 12.65972052 32875.80287
5 12.74644465 33137.49248 12.77578009 33168.7175

interaction, are significant at each α-level. For this matter,
we have to find the best level of each factor to propose the
best combination of algorithm parameters. To reach this goal,
the Student–Newman–Keuls (SNK) range test is used [31].
The SNK is often referred to as post hoc analysis, which is
usually concerned with uncovering patterns in subsets of the
sample. The SNK procedure compares pairs of level means
for a statistically significant factor and then ranks the group
means. Table 5 shows the results obtained by SNK for the best
combination of algorithm parameters.

5.3. Results on test instances

In order to show the privilege of the proposed method, we
have accomplished a comparative analysis on results obtained
by implementation of the proposed method and a hybrid of the
genetic algorithm with the Taguchi (GATA) algorithm. In order
to find the bestweightingmethod,we first compared the results
obtained by randomweight and dynamicweight. Table 6 shows
the results of this comparison.

From Table 6, it is clear that random weight obtains better
results than dynamic weight. For this reason, we run all
instances with random weight, and Table 7 shows all results
gained by running the proposed method and GATA for each
instance.

From Table 7, it is obvious that the proposed method
provides lower average cost in comparison with GATA in both
objective functions. Because we normalize the value of the
objective function, the value of fitness (weighted objective
function) has a tendency to be equal to 1. Hence, in each run, the
values of the best (minimum) fitness and theworst (maximum)
fitness of the population get close to each other. This continues
Figure 3: Convergence trends of the proposed algorithm.

Table 8: Percentage contribution of different types of costs (instance 1).

No. of
customers

Average cost RC FC VC TC HC BC

20 27740.379 20.81 2.26 4.42 55.2 8.81 8.5
25 27742.568 16.92 2.3 5.41 56.51 8.63 10.23
30 28062.354 18.57 2.41 5.86 55.4 7.23 10.53
35 28157.842 19.54 2.08 6.32 53.2 7.53 11.33

until the fitness of all solutions in the population is identical.
Convergence of the proposed algorithm for instances 1–3 is
shown in Figure 3.

To realize the impact of the number of customers on the
total cost of the supply chain, we run the model on instances
with several customers. Table 8 gives the results of running
the model on instance 1 with several customers. We also show
the contribution of each cost in the total cost, in Table 8.
From the results, it is obvious that the transportation cost is
the major portion of the total cost, and raw material costs
are ranked second. The fixed cost of opened facilities and
holding costs comprise the lower proportion compared to
the costs mentioned above. Because of capacity constraint we
have backorder costs, and some customer demands are not
satisfied.

It is worthy to mention that the proposed algorithm gets
very close to the optimal solution at a much lower iteration
number in comparison with GATA. As shown in Figure 4a, the
value of objective 1 reaches its optimum value in iteration
number 9. Objective 2 also gains its best value in the 9th
iteration, for instance 1, as shown in Figure 4b. The convergence
of GATA for instance 1 is also shown in Figures 4c and 4d
for objectives 1 and 2, respectively. It is obvious that the
Table 7: Comparison of performance of the proposed algorithm and GATA.

Instanceno. Proposed method GATA
Best
value

objective
1

Average
value

objective
1

Best
value

objective
2

Average
value

objective
2

Average
fitness

CPU
time
(s)

Best
value

objective
1

Average
value

objective
1

Best
value

objective
2

Average
value

objective
2

Average
fitness

CPU
time (s)

1 10.5252 10.5518 27684.8989 27740.3797 0.9936 198.6 11.7943 12.0632 28576.3615 29127.8639 0.9726 178.12
2 12.0439 12.0922 31483.6379 31673.6800 0.9953 213.14 12.4337 12.6254 35995.0820 36189.1634 0.9774 198.05
3 12.3207 12.4088 32175.8095 32405.8914 0.9946 246.32 13.5570 13.7615 35417.0366 36022.1627 0.9840 226.79
4 12.5421 12.6178 32814.0846 32860.0887 0.9964 274.3 14.4124 14.6090 33182.6943 33277.1185 0.9861 246.87
5 12.6078 12.7464 32846.8767 33137.4925 0.9976 302.12 12.9926 13.0154 34789.5306 35135.1257 0.9927 287.73
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Table 9: Demand of customers in Instance 1.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

Demand 12 140 150 160 170 180 190 100 110 120 130 140 150 160 170 180
Table 10: Customers allocation to each distribution center and transportation option.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

TD1

D1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D2 0 0 150 0 0 0 0 0 0 0 0 140 0 110 0 0
D3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D4 0 0 0 0 0 0 0 0 0 0 130 0 0 0 0 0
D5 0 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0

TD2

D1 0 140 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D3 12 0 0 0 0 38 0 0 0 0 0 0 0 0 0 0
D4 0 0 0 0 0 0 0 0 0 30 0 0 0 50 0 0
D5 0 0 0 78 0 142 0 0 0 90 0 0 20 0 0 0

TD2

D1 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0
D2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D3 0 0 0 0 170 0 0 0 0 0 0 0 0 0 0 180
D4 0 0 0 0 0 0 190 0 0 0 0 0 0 0 0 0
D5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 4: Convergence trends of the proposed algorithm and GATA for each objective function.
convergence of the proposedmethod ismuch higher thanGATA
and prior methods in the literature.

After reviewing the results from a computational perspec-
tive, it should be explained how the supply chain manager can
use the obtained results from the model. In instance 1, we as-
sumed that the capacity of distribution centers,warehouses and
manufacturerswas 200, 600 and900units, respectively, and the
demand of each customer was as mentioned in Table 9.

Table 10 shows the number of products transported from
distribution centers to customers by each transportation
option. In this case, the supply chain could not satisfy the
demand of some customers, such as C8, C9, C15, and thismatter
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Table 11: Warehouse allocation to each manufacturer and transportation
option.

W1 W2 W3 W4

TM1
M1 0 0 0 0
M2 0 0 300 600
M3 0 600 0 0

TM2
M1 0 0 0 0
M2 0 0 0 0
M3 0 0 300 0

TM3
M1 0 0 0 0
M2 0 0 0 0
M3 0 0 0 0

Table 12: Distribution center allocation to eachwarehouse and transporta-
tion option.

D1 D2 D3 D4 D5

TW1

W1 0 0 0 0 0
W2 0 0 0 0 0
W3 0 0 0 0 400
W4 0 0 0 0 0

TW2

W1 0 0 0 0 0
W2 0 0 400 0 0
W3 0 0 0 0 0
W4 0 400 0 200 0

TW3

W1 0 0 0 0 0
W2 200 0 0 0 0
W3 0 0 0 200 0
W4 0 0 0 0 0

leads to backorder costs. Tables 11 and 12 also show the amount
of products transported to distribution centers andwarehouses
by each transportation option, respectively. For example, 400
products are shipped from warehouse 3 to distribution center
5 by transportation option 1.

It is obvious that all allocations mentioned in Tables 10–12
are feasible and pass all constraints in the model. These
allocations minimize the amount of dangerous gases and the
total cost of the supply chain simultaneously.
6. Conclusion

This paper studied a problem of a supply chain at a tactical
level, where all facilities and transportation options have
a capacity constraints. We also consider the environmental
effects of the facilities and transportation options in the supply
chain as an objective function, in addition to the total cost
function, considering that these components of the supply
chain bring the model closer to reality. In regard to the
problem with these specifications, computational effort is very
complicated. Thus, in order to overcome this complexity, we
utilized the Taguchi method in combination with the memetic
algorithm and proposed a modified antibody priority based
coding and selecting method to avoid spending a lot of time
and cost on problem optimization. An increase in convergence
and a decrease in average cost are the results of using Taguchi
in combination with the memetic algorithm. The results of
extensive computational tests indicated that the proposed
method is both effective and efficient for a wide variety of
problem sizes and structures.
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Appendix

Transportation options can be divided in two categories.
First is the road transportation option, and second is the
nonroad transportation option; each category in turn having
several options. For example, in the road category, we have
several transportation options, such as automobiles, heavy
trailers and semi-heavy trailers. Airplanes and locomotives
are categorized as nonroad transportation. In this paper,
we assume that at each level of the supply chain, several
transportation options exist, according to their specifications,
such as motor volume and fuel. Table 13 shows the emission
rates of dangerous gases.
Table 13: Emission rate of dangerous gases.

Road transportation

Rated power CO (g/bhp-h) HC (g/bhp-h) NO2 (g/bhp-h) PM (g/bhp-h)

25 < hp 8.5 1 6.9 0.4
175 =< hp <= 750 8.5 1 5.8 0.16
hp = 751+ 8.5 1 6.9 0.4

Locomotive

Type CO (g/bhp-h) HC (g/bhp-h) NO2 (g/bhp-h) PM (g/bhp-h)

Line-haulduty-cycle 11.5 0.3 5.5 2.2
Switchduty-cycle 12.4 0.6 8.1 2.4

Aircraft

Type CO (g/kN) HC (g/kN) NO2 (g/kN) PM (g/kN)

TF 118 19.6 40 24
T8 with ro above 26.7 kN 118 19.6 32 24
T8, TF newly manufactured (above 26.7 kN) 118 19.6 32 21

g/bhp-h: grams per brake horsepower-h.
g/kN: grams per kilonewton.
TF: all turbofan and turbojet aircraft engines except engines of Class T3, T8, and TSS.
T8: all aircraft gas turbine engines of the JT8D model family.
Switch: locomotives with four or six axles.
Line-haul: locomotives move between two major cities or ports, especially those more than about 1500 km or 1000 miles apart.



1886 R. Jamshidi et al. / Scientia Iranica, Transactions E: Industrial Engineering 19 (2012) 1876–1886
References

[1] Guillen-Gosalbez, G. and Grossmann, I.E. ‘‘Optimal design and planning
of sustainable chemical supply chains under uncertainty’’, AIChE Journal,
55(1), pp. 99–121 (2009).

[2] Srivastava, S.K. ‘‘Green supply chain management: a state of the art
literature review’’, International Journal of Management Reviews, 91,
pp. 53–80 (2007).

[3] Kuo, T.C., Huang, S. and Zhang, H. ‘‘Design for manufacture and design
for ‘‘X ’’: concepts, applications and perspectives’’, Computers & Industrial
Engineering, 41, pp. 241–260 (2001).

[4] Fleischmann, M., Beullens, P., Bloemhof-Ruwaard, J.M. and Van Wassen-
hove, L.N. ‘‘The impact of product recovery on logistics network design’’,
Production & Operations Management, 10, pp. 156–173 (2001).

[5] Zhu, Q., Sarkis, J. and Lai, K.H. ‘‘Green supply chain management
implications for closing the loop’’, Transportation Research, Part E, 44(1),
pp. 1–18 (2008).

[6] Bloemhof-Ruwaard, J.M., Van Wassenhove, L.N., Gabel, H.L. and
Weaver, P.M. ‘‘An environmental life cycle optimization model for
the European pulp and paper industry’’, Omega, 20, pp. 615–629 (1996).

[7] Cheng, S., Chan, C.W. and Huang, G.H. ‘‘An integrated multi-criteria deci-
sion analysis and inexact mixed integer linear programming approach for
solid waste management’’, Engineering Application of Artificial Intelligence,
16, pp. 543–554 (2003).

[8] Barbosa-Póvoa, A. ‘‘Sustainable supply chains’’, Computer Aided Chemical
Engineering, 27, pp. 127–132 (2009).

[9] Grossmann, I.E. ‘‘Challenges in the new millennium: product discovery
and design, enterprise and supply chain optimization, global life cycle
assessment’’, Computers & Chemical Engineering, 29(1), pp. 29–39 (2004).

[10] Noci, G. ‘‘Designing ‘green’ vendor rating systems for the assessment of a
supplier’s environmental performance’’, European Journal of Purchasing &
Supply Management, 3(2), pp. 103–114 (1997).

[11] Pagell, M., Yang, C.L., Krumwiede, D.W. and Sheu, C. ‘‘Does the competitive
environment influence the efficacy of investment in environmental
management?’’ Journal of Supply Chain Management, 40(3), pp. 30–39
(2004).

[12] Zhou, Z., Cheng, S. and Hua, B. ‘‘Supply chain optimization of continuous
process industries with sustainability considerations’’, Computers &
Chemical Engineering, 24(2), pp. 1151–1158 (2000).

[13] Guillen-Gosalbez, G. and Grossmann, I. ‘‘A global optimization strategy for
the environmentally conscious design of chemical supply chains under
uncertainty in the damage assessment model’’, Computers & Chemical
Engineering, 34(1), pp. 42–58 (2010).

[14] Melkote, S. and Daskin, M.S. ‘‘Capacitated facility location/network design
problems’’, European Journal of Operational Research, 129, pp. 481–495
(2001).

[15] Santoso, T., Ahmed, S., Goetschalckx, M. and Shapiro, A. ‘‘A stochastic pro-
gramming approach for supply chain network design under uncertainty’’,
European Journal of Operational Research, 167, pp. 96–115 (2005).

[16] Hu, C.F. and Li, S.Y. ‘‘Two-phase interactive satisfying method of fuzzy
multiple objective optimization with linguistic preference’’, International
Journal of Information Technology & Decision Making, 8(3), pp. 427–443
(2009).

[17] Max Shen, Z.J. and Daskin, M.S. ‘‘Trade-offs between customer service and
cost in integrated supply chain design’’,Manufacturing& Service Operations
Management, 7(3), pp. 188–207 (2005).

[18] Sabri, E.H. and Beamon, B.M. ‘‘A multi-objective approach to simultaneous
strategic and operational planning in supply chain design’’, Omega, 28,
pp. 581–598 (2000).

[19] Paksoy, T., Ozceylan, E. and Weber, G.W. ‘‘A multi-objective model for
optimization of a green supply chain network’’, 3rd Global Conference on
Power Control and Optimization, Gold Coast, Queensland, Australia (2010).

[20] Mincirardi, R., Paolucci, M. and Robba, M. ‘‘A multiobjective approach for
solid waste management’’, Proceedings of the 1st Biennial Meeting of the
IEMSs, pp. 205–210 (2002).
[21] Alçada-Almeida, L., Coutinho-Rodrigues, J. and Current, J. ‘‘A multiobjec-
tivemodeling approach to locating incinerators’’, Socio–Economic Planning
Sciences, 43, pp. 111–120 (2009).

[22] Wang, F., Lai, X. and Shi, N. ‘‘A multi-objective optimization for green
supply chain network design’’, Decision Support Systems, 51, pp. 262–269
(2011).

[23] Tiwari, M.K., Raghavendra, N., Agrawal, S. and Goya, S.K. ‘‘A hybrid
Taguchi-Immune approach to optimize an integrated supply chain design
problemwithmultiple shipping’’, European Journal of Operational Research,
203, pp. 95–106 (2010).

[24] Moscato, P. and Norman, M.G. ‘‘A memetic approach for the traveling
salesman problem implementation of a computational ecology for
combinatorial optimization on message-passing systems’’, International
Conference on Parallel Computing and Transputer Applications, Amsterdam,
Netherlands (1992).

[25] Boudia, M. and Prins, C. ‘‘A memetic algorithm with dynamic population
management for an integrated production–distribution problem’’, Euro-
pean Journal of Operational Research, 195(3), pp. 703–715 (2009).

[26] Tavakkoli-Moghaddam, R., Safaei, N. and Sassani, F. ‘‘A memetic algorithm
for the flexible flow line scheduling problem with processor blocking’’,
Computers & Operations Research, 36(2), pp. 402–414 (2009).

[27] ElMekkawy, T.Y. and Liu, S. ‘‘A new memetic algorithm for optimizing
the partitioning problem of tandem AGV systems’’, International Journal
of Production Economics, 118(2), pp. 508–520 (2009).

[28] Gen,M. andCheng, R.,Genetic Algorithms and EngineeringOptimization, 2nd
Edn., Wiley and Sons, New York (2000).

[29] Murata, T., Ishibuchi, H. and Tanaka, H. ‘‘Multi-objective genetic algo-
rithms and its application to flowshop scheduling’’, Computers & Industrial
Engineering, 30(4), pp. 957–968 (1996).

[30] Parsopoulos, K.E. and Vrahatis, M.N. ‘‘Recent approaches to global
optimization problems through particle swarm optimization’’, Natural
Computing, 1, pp. 235–306 (2002).

[31] Keuls, M. ‘‘The use of the studentized range in connection with an analysis
of variance’’, Euphytica, 1, pp. 112–122 (1952).

Rasoul Jamshidi received his M.S. degree in Industrial Engineering from
Amirkabir University of Technology, Tehran, where he is currently studying
for a Ph.D. degree. His M.S. dissertation was ‘‘Proposing a new hybrid meta
heuristic to optimize a supply chain network with the Taguchi method’’. His
present research interests include: reliability optimization and maintenance
scheduling.

Seyyed Mohammad Taghi Fatemi Ghomi was born in Ghom, Iran in 1952.
He received his B.S. degree in Industrial Engineering from Sharif University,
Tehran, Iran in 1973, and a Ph.D. degree in Industrial Engineering from Bradford
University, UK, in 1980. From 1980 to 1983, he worked as a Planning and
Control Expert in the group of construction and cement industries within
the Organization of National Industries of Iran. Also, in 1981, he founded
the Department of Industrial Training in the aforementioned organization. He
joined Amirkabir University of Technology, Tehran, Iran, as a faculty member in
1983.

His research and teaching interests include: stochastic activity networks,
production planning and control, scheduling, queuing systems, and statistical
quality control.

Behrooz Karimi received his Ph.D. degree in Industrial Engineering, in 2002,
from Amirkabir University of Technology, Tehran, Iran, where he is now
Associate Professor. His areas of research include: supply chain planning,
scheduling and simulation.


	Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method
	Introduction
	Problem statement
	Environmental effects

	Mathematical model
	Solution approach
	Memetic algorithm
	Coding method
	Fitness function
	Crossover method
	Improvement method

	Results and discussion
	Test instances
	Parameters tuning
	Results on test instances

	Conclusion
	Acknowledgments
	Appendix
	References


