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1. Introduction

In the recent paper [1] the authors have considered the Cauchy problem for the strictly hyperbolic
system

∂t U − λ(t)A(t)∂xU + B(t)U = 0, U (0, x) = U0(x). (1.1)

They developed an approach which gives information about

1. upper and lower bounds for the energy ‖U (t, ·)‖L2 ,
2. results about generalized energy conservation, that is, the following a priori estimate holds
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C1‖U0‖L2 �
∥∥U (t, ·)∥∥L2 � C2‖U0‖L2 , t � 0, (1.2)

with positive constants C1 and C2 which are independent of U0,
3. scattering results.

What remained open in [1] was an answer to the question if the upper or lower bounds for a possible
energy growth are sharp (we refer the interested reader to [6] concerning the optimality for wave
models). The main goal of this paper is to give an answer to this question.

We consider in [0,∞) × R the Cauchy problem for the 2 × 2 homogenous system

∂t U − λ(t)A(t)∂xU = 0, U (0, x) = U0(x) (1.3)

under the following basic assumptions:

Hypothesis 1. The matrix

A(t) =
(

a(t) b(t)
c(t) d(t)

)
is real-valued, continuous, bounded, and uniformly strictly hyperbolic, that is, there exists a positive
constant m0 such that

�(t) := (
a(t) − d(t)

)2 + 4b(t)c(t) � m0 > 0, t � 0. (1.4)

We denote ‖A‖L∞ := supt�0 ‖A(t)‖.

Hypothesis 2. We assume that λ ∈ C 1([0,∞)) is real-valued, strictly positive and monotonic. Let

Λ(t) := 1 +
t∫

0

λ(τ )dτ , t � 0,

be a strictly positive primitive of λ. We assume that limt→∞ Λ(t) = +∞ and that

∣∣λ′(t)
∣∣ � M0

λ2(t)

Λ(t)
(1.5)

for some M0 � 0.

Hypothesis 3. Let

Ã(t) := A(t) − 1

2
tr A(t) =

( a(t)−d(t)
2 b(t)

c(t) d(t)−a(t)
2

)
. (1.6)

We assume that Ã ∈ C 2([0,∞)) and that

∥∥ Ã(k)(t)
∥∥ � Mk

(
λ(t)

Λ(t)

)k

, t � 0, k = 1,2, (1.7)

for some M1, M2 � 0.
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We say that the oscillations in the entries of Ã(t) described in Hypothesis 3 are very slow. Never-
theless, Hypothesis 3 is not sufficient by itself to describe all the effects coming from the oscillations;
indeed, the interaction of oscillations may lead to a blow-up result of the energy. In [1] it is proved
that such a blow-up result can be excluded if one assumes together with Hypotheses 1 to 3, that
there exists a constant C � 0 such that

∣∣∣∣∣
t∫

0

�ψ(τ )dτ

∣∣∣∣∣ � C, t � 0, (1.8)

where the function ψ(t), coming out from the diagonalization procedure of A(t), is defined by

ψ(t) = (c − b − i
√

�)((a − d)(b + c)′ − (a − d)′(b + c))

2
√

�((b + c)2 + (a − d)2)
. (1.9)

In particular, it is proved that the generalized energy conservation property holds. In this paper we
show how to obtain a blow-up result for the energy for a large class of initial data by assuming an
integral condition for the function ψ . First, we present a special system for which we are able to give
a very precise description of the energy behavior. Following Example 1.6 and Theorem 2.5 from [5]
we consider the Cauchy problem (1.3) with λ(t) satisfying Hypothesis 2 and

A(t) =
( − cosω(t) sinω(t) + 1/

√
2

sinω(t) − 1/
√

2 cosω(t)

)
; (1.10)

it follows

a(t) − d(t) = −2 cosω(t), b(t) − c(t) = √
2, b(t) + c(t) = 2 sinω(t),

�(t) = 2, �ψ(t) = ω′(t)/2.

It is clear that Hypothesis 1 is verified. Now let

ω(t) = 	r(t)
(
2 − cos	1−r(t)

)
for some r ∈ (0,1), (1.11)

where 	(t) := log(Λ(t)). We write �ψ := ϕ1 + ϕ2, where

ϕ1(t) = − r

2
	′(t)	−(1−r)(t)

(
2 − cos	1−r(t)

)
is negative

and

ϕ2(t) = −1 − r

2
	′(t) sin	1−r(t) has an oscillating sign.

Hypothesis 3 is satisfied since 	′(t) = λ(t)/Λ(t). Obviously,

1

2
	r(t) �

t∫
0

�ψ(τ )dτ = 1

2
ω(t) � 3

2
	r(t). (1.12)
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Moreover, we can prove (see Section 3) that

t∫
0

∣∣�ψ(τ )
∣∣dτ ≈ 	(t). (1.13)

Theorem 1. If we choose the matrix A(t) as in (1.10), (1.11) together with Hypothesis 2, then the solution
of the Cauchy problem (1.3) satisfies the following two-sided estimate for any initial datum U0 ∈ M+(N),
where M+(N) is a set equipotent to L2(C) (see later, Definition 1), and for any t � T (U0), sufficiently large:

C ′ exp
(
	r(t)/2

)‖U0‖L2 �
∥∥U (t, ·)∥∥L2 � C0 exp

(
C1	

r(t)
)‖U0‖L2 .

The proof of this result is divided into two parts: the estimate from above will be carried out
thanks to the special structure of system (1.10) and it is proved in Theorem 2, whereas the estimate
from below is obtained from a blow-up result for more general systems in Theorem 3 for initial data
in the set M±(N) which will be introduced in Definition 1.

For the oscillating behavior from Hypothesis 3 we can allow faster oscillations for the entries
of Ã(t). In such a case we will replace Hypothesis 3 with the following one:

Hypothesis 4. We assume that Ã(t) ∈ C 2 in (1.6) satisfies

∥∥ Ã(k)(t)
∥∥ � Mk

(
λ(t)ν(t)

Λ(t)

)k

, t � 0, k = 1,2, (1.14)

for some M1, M2 � 0, where ν(t) ∈ C 1 is a real-valued strictly positive function such that

lim
t→∞ν(t) = +∞, ν(t) = o

(
Λ(t)

)
as t → ∞, (1.15)

0 � ν ′(t) � δ
λ(t)ν(t)

Λ(t)
, t � 0, for some δ ∈ (0,1/2). (1.16)

We say that the oscillations in the entries of Ã(t) which are described in Hypothesis 4 are not very
slow.

Remark 1.1. If (1.16) holds for ν(t), then 0 � ν ′/ν � δλ/Λ, therefore log(ν(t)/ν(0)) � δ log Λ(t), that
is,

ν(t) �
(
Λ(t)

)δ
ν(0). (1.17)

Example 1.2. The function ν(t) = (log(Λ(t) + cγ ))γ satisfies (1.15), (1.16) for any γ > 0 and for a
suitable constant cγ > 0 depending on γ . Indeed,

ν ′(t) = γ
(
log

(
Λ(t) + cγ

))γ −1 λ(t)

Λ(t) + cγ
,

hence (1.16) holds provided that cγ > e2γ − 1, that is,

γ

log(1 + cγ )
<

1 + cγ

2
.
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Example 1.3. The function ν(t) = (Λ(t))δ with δ < 1/2 satisfies (1.15), (1.16).

2. Main results

2.1. Energy estimates for the special system (1.3), (1.10)

We consider the system (1.3), (1.10) and we allow oscillations which are not very slow, that is, we
replace (1.11) by

ω(t) = 	r(t)
(
2 − cos	p(t)

)
, r ∈ (0,1), p � 1 − r. (2.1)

We define γ := r + p − 1 and we remark that γ � 0. Let 	(t) := log(Λ(t) + cγ ) with cγ > e2γ − 1 as
in Example 1.2. We write �ψ := ϕ1 + ϕ2, where

ϕ1(t) = − r

2
	′(t)	r−1(t)

(
2 − cos	p(t)

)
is negative

and

ϕ2(t) = − p

2
	′(t)	γ (t) sin	p(t) has an oscillating sign.

Hypothesis 3, that is, (1.11) corresponds to γ = 0. Hypothesis 4 corresponds to ν(t) = 	γ (t) for γ > 0
as in Example 1.2. It is clear that (1.12) still holds. Moreover, we can prove (see Section 3) that

t∫
0

∣∣�ψ(τ )
∣∣dτ ≈ 	p+r(t) = 	γ +1(t). (2.2)

We are able to derive the following a priori estimate for the solution U .

Theorem 2. We assume (1.10) and (2.1). Let p � 2(1 − r), that is, γ � 1 − r. Then there exist two constants
C0, C1 � 0 such that the solution of the Cauchy problem (1.3) satisfies the following estimate:

∥∥U (t, ·)∥∥L2 � C0 exp
(
C1

(
log

(
Λ(t) + cγ

))γ +r)‖U0‖L2 , t � 0. (2.3)

In particular,

• if γ + r < 1, then for any ε > 0 there exists Cε > 0 such that

∥∥U (t, ·)∥∥L2 � Cε

(
Λ(t) + cγ

)ε‖U0‖L2 , t � 0;

• if γ + r = 1, then we have

∥∥U (t, ·)∥∥L2 � C0
(
Λ(t) + cγ

)C1‖U0‖L2 , t � 0.

We remark that this result for the special system (1.3), (1.10) is more precise than the statements
of Theorem 4 in [1] for more general systems. Applying Theorem 4 from [1] implies

∥∥U (t, ·)∥∥L2 � C0 exp
(
C1

(
log

(
Λ(t) + cγ

))γ +1)‖U0‖L2 , t � 0.



482 M. D’Abbicco, M. Reissig / J. Differential Equations 252 (2012) 477–504
2.2. Blow-up for systems with very slow oscillations

The basic strategy in this paper relies into considering the Fourier transform of (1.3) with respect
to x, that is,

∂t Û (t, ξ) = iξλ(t)A(t)Û (t, ξ), Û (0, ξ) = Û0(ξ) (2.4)

estimating its fundamental solution E(t, s, ξ) with a different approach in the pseudo-differential zone
and the hyperbolic zone, a suitable division of the extended phase space in (t, ξ). In the first zone
we will estimate E(t, s, ξ) by a direct way, whereas in the hyperbolic zone we are going to use a
diagonalization procedure. Indeed, thanks to Hypothesis 1 we are able to find a diagonalizer H(t) for
the matrix A(t), namely

H−1(t)A(t)H(t) =
(

μ+(t) + d(t) 0
0 μ−(t) + d(t)

)
, t � 0,

where

μ±(t) := a(t) − d(t) ± √
�(t)

2
,

such that H(t) is bounded and uniformly regular. Following [5] we define

H(t) := (1 + i)

(
b(t) μ−(t)

−μ−(t) c(t)

)
+ (1 − i)

(
μ+(t) b(t)

c(t) −μ+(t)

)
, (2.5)

and we remark that |det H(t)| � 2m0 > 0 with m0 as in (1.4). Since

det H(t) = 2
√

�(t)
(
c(t) − b(t) + i

√
�(t)

);
after replacing U (t, x) = (det H(t))− 1

2 H(t)U #(t, x) the system in (1.3) is equivalent to

∂t U # − λ(t)

(
μ+ + d 0

0 μ− + d

)
∂xU # + ψ(t)

(
1 0
0 −1

)
U # +

(
0 h+(t)

h−(t) 0

)
U # = 0, (2.6)

where ψ(t) is as in (1.9), and

h±(t) = det H(t)

2�(t)

(√
�(t)(i(d(t) − a(t)) ± (b(t) + c(t)))

det H(t)

)′
. (2.7)

Thanks to Hypothesis 3 we have

|h±(t)|
|ξ |λ(t)

√
�(t)

� M3

|ξ |Λ(t)
(2.8)

for some M3 � 0 depending only on the constants m0 in (1.4) and M1 in (1.7). In correspondence to
some positive N , with N > 2M3, we define

t|ξ | =
{

Λ−1(N/|ξ |) if |ξ | � N,
(2.9)
0 otherwise,
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and

Zpd(N) = {t � t|ξ |}, Zhyp(N) = {t � t|ξ |}. (2.10)

In Zhyp(N) we introduce the refined diagonalizer

K (t, ξ) :=
(

1 h+(t)
iξλ(t)

√
�(t)

− h−(t)
iξλ(t)

√
�(t)

1

)
, (2.11)

and, from (2.8), we derive |det K (t, ξ)| � 3/4 and ‖K (t, ξ)‖ = 1, that is, K (t, ξ) is uniformly regular
and bounded. Via the change of variables

Û (t, ξ) = K (t, ξ)Û #(t, ξ) = K (t, ξ)
(
det H(t)

)−1/2
H(t)W (t, ξ) (2.12)

the system in (2.4) is in Zhyp(N) equivalent to

∂t W −
(

ϕ+(t, ξ) 0
0 ϕ−(t, ξ)

)
iW + �ψ(t)

(−1 0
0 1

)
W + J (t, ξ)W = 0, (2.13)

where

ϕ±(t, ξ) = (
μ±(t) + d(t)

)
λ(t)ξ ± �ψ(t)

are real-valued and the matrix J (t, ξ) satisfies the following estimate:

∥∥ J (t, ξ)
∥∥ � M4λ(t)

|ξ |Λ2(t)
(2.14)

for some M4 � 0 that depends only on the constants m0 in (1.4) and Mk for k = 0,1,2 in (1.5)
and (1.7).

Definition 1. Let N > 2M3. We define by M+(N) (resp. M−(N)) the set of initial data U0 ∈ L2(R,C
2)

such that the solution U (t, x) of (1.3) with initial datum U0 verifies

Û (t|ξ |, ξ) = K (t|ξ |, ξ)
(
det H(t|ξ |)

)− 1
2 H(t|ξ |)Y (ξ), (2.15)

where Y (ξ) = (y(ξ),0) (resp. Y (ξ) = (0, y(ξ))) for some y ∈ L2(R,C).

It is clear that M+(N) and M−(N) are equipotent to L2(R,C) thanks to the well-posedness of
the Cauchy problem (1.3). We are now in a position to estimate from below the blow-up rate of the
energy by using a time-dependent increasing function.

Theorem 3. We assume Hypotheses 1 to 3. We assume that the function t �→ ∫ t
0 �ψ(τ )dτ has a constant sign

and it satisfies

m1ν1(t) �
t∫
�ψ(τ )dτ � m2ν1(t)

(
resp. − m2ν1(t) �

t∫
�ψ(τ )dτ � −m1ν1(t)

)
(2.16)
0 0
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for some positive constants m1,m2 , where ν1(t) is a strictly positive, increasing function with limt→∞ ν1(t) =
+∞. Moreover, we assume that there exists a function θ(t) such that

∣∣∣∣∣
t∫

s

θ(τ )dτ

∣∣∣∣∣ � M5, �ψ(t) + θ(t) � 0
(
resp. �ψ(t) + θ(t) � 0

)
(2.17)

for some constant M5 � 0. Let N > N, where

N = max
{

2M3,4M4e2M5+1}, (2.18)

and M3 , M4 are from (2.8) and (2.14). Then there exists a positive constant C such that for any initial datum
U0 ∈ M+(N) (resp. U0 ∈ M−(N)) we can find a constant T (U0) � 0 such that the solution U (t, x) of (1.3)
with initial datum U0 satisfies

∥∥U (t, ·)∥∥L2 � C exp
(
m1ν1(t) − m2ν1

(
T (U0)

))‖U0‖L2 for t � T (U0). (2.19)

We remark that C is independent of U0 .

By using Hypothesis 3 to estimate �ψ(t) we can directly check that the function ν1(t) is bounded
from above by c logΛ(t) for some c > 0.

Remark 2.1. If we fix κ > 0, and for any U0 ∈ M±(N) we choose ε = ε(κ) > 0 such that the corre-
sponding function y (see Definition 1) verifies

∫
|ξ |�ε

∣∣y(ξ)
∣∣2

dξ = κ

∫
|ξ |�ε

∣∣y(ξ)
∣∣2

dξ, (2.20)

then we can take T (U0) = tε in (2.19) in Theorem 3 with tε as in (2.9).

Remark 2.2. If (2.17) holds true, then �ψ satisfies

t∫
s

�ψ(τ )dτ � −M5

(
resp.

t∫
s

�ψ(τ )dτ � M5

)
, t � s � 0. (2.21)

Remark 2.3. In order to construct the function θ we remark that (2.17) is satisfied if there exist a
function θ(t) such that �ψ + θ � 0 (resp. �ψ + θ � 0) and a strictly increasing sequence {t j} j�0 with
t1 = 0 and t j → ∞ such that

t2k+1∫
t2k−1

θ(τ )dτ = 0,

∣∣∣∣∣
t∫

t2k−1

θ(τ )dτ

∣∣∣∣∣ � M5, t ∈ (t2k−1, t2k+1).
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2.3. Blow-up with oscillations which are not very slow

In the context of oscillations which are not very slow we divide the extended phase space by using
a function t|ξ | that is different from the one in (2.9).

Definition 2. If Hypothesis 4 holds, then the C 1 function

Θ : [0,∞) → [
1/ν(0),+∞)

, Θ(t) = Λ(t)

ν(t)
,

is strictly increasing since, by virtue of (1.16), we have

Θ ′(t) = λ(t)ν(t) − Λ(t)ν ′(t)
ν2(t)

� (1 − δ)
λ(t)

ν(t)
> 0.

We remark that limt→∞ Θ(t) = +∞ thanks to (1.15), that is, Θ is invertible and Θ(t) = o(Λ(t)) as
t → ∞.

Analogously to (2.8) from Hypothesis 4 it follows

|h±(t)|
|ξ |λ(t)

√
�(t)

� M3ν(t)

|ξ |Λ(t)
(2.22)

for some M3 � 0 depending only on the constants m0 in (1.4) and M1 in (1.14). In correspondence to
any N > 0 with N > 2M3 we define

t|ξ | =
{

Θ−1(N/|ξ |) if |ξ | � Nν(0),

0 otherwise,
(2.23)

with Θ(t) as in Definition 2 and Zpd(N), Zhyp(N) as in (2.10). As in the case for very slow oscillations
the refined diagonalizer K (t, ξ) in (2.11) is in Zhyp(N) uniformly regular with |det K (t, ξ)| � 3/4 and
bounded with ‖K (t, ξ)‖ = 1. After the change of variables (2.12) the system in (2.4) is equivalent
to (2.13) in Zhyp(N), where the matrix J (t, ξ) satisfies the following estimate:

∥∥ J (t, ξ)
∥∥ � M4λ(t)ν2(t)

|ξ |Λ2(t)
(2.24)

for some M4 � 0 that depends only on the constants m0 in (1.4) and Mk for k = 0,1,2 in (1.5)
and (1.14).

Lemma 2.1. Let ν(t) be as in Hypothesis 4 and let ε > 0. For any constant M > 0 there exists a constant
N(ε, M) such that

N � Mν(tε) for any N � N(ε, M). (2.25)

In fact, we remark that tε depends both on ε and N . With the notation from Lemma 2.1 we put

Nε = max
{

2M3, N
(
ε,4M4 exp(2M5 + 1)

)}
, (2.26)

where M3, M4 and M5 are as in (2.22), (2.24), and (2.17).
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We are now in a position to derive some blow-up results for the energy in the case of oscillations
which are not very slow. Our philosophy is that we are going to replace the classical estimate that
involves the L2 norm of the data and of the solution by some inequalities that compare the L2 norm
of the solution with some suitable behavior in the phase space of the initial data. In Theorem 4 we
estimate from below the L2 norm of the solution by the weighted norm of the initial data which is
introduced in the following definition.

Definition 3. Let g : (0,+∞) → (−∞,0) be a continuous increasing function with g(ρ) → −∞
as ρ → 0. We define the following weighted norm on L2:

‖U‖2
g :=

∫
R

exp
(
2g

(|ξ |))∣∣Û (ξ)
∣∣2

dξ.

By Plancherel’s theorem, the norm ‖ · ‖g is weaker than the usual norm ‖ · ‖L2 , since ‖U‖g � ‖Û‖L2

for any U ∈ L2. On the contrary, we can easily prove that ‖ · ‖g is not equivalent to ‖ · ‖L2 , that is, for
any C > 0 there exists U ∈ L2 such that ‖U‖L2 � C‖U‖g . In particular, this implies that (L2,‖ · ‖g) is
not complete.

As an example we propose g(|ξ |) = s log(|ξ |/〈ξ〉). Then ‖U‖2
g is equivalent to

∫
|ξ |�1

|ξ |2s
∣∣Û (ξ)

∣∣2
dξ +

∫
|ξ |�1

∣∣Û (ξ)
∣∣2

dξ,

that is, the natural norm on the space

χ(Dx)Ḣ s + (
1 − χ(Dx)

)
L2,

where χ is chosen as usually as a smooth cut-off function localizing near small frequencies.

Theorem 4. We assume Hypotheses 1, 2 and 4. Moreover, we assume (2.16), (2.17) and that ν(t) = o(ν1(t))
as t → ∞. We fix κ > 0. Let y ∈ L2(R,C) and let ε > 0 be such that (2.20) is satisfied. Let Nε be as in (2.26)
and let N � Nε . Let t|ξ | be as in (2.23) and let U0 ∈ L2(R,C

2) be such that the solution U (t, x) of (1.3) with
initial datum U0 satisfies (2.15). Finally, we define

g
(|ξ |) := −Nν(t|ξ |)‖A‖L∞ .

Then the solution of (1.3) with initial datum U0 fulfills

∥∥U (t, ·)∥∥L2 � C exp
(
m1ν1(t) − m2ν1(tε)

)‖U0‖g, t � tε, (2.27)

where m1 and m2 are as in (2.16) and C is a constant that is independent of y.

In the next Theorem 5 we shall use for the initial data a weighted L2 norm, but now the weight
depends on t itself. Therefore, we define for a fixed N > Nε the function ρt to be the inverse function
of tρ for ρ ∈ (0, Nν(0)], namely,

ρt = N

Θ(t)
= Nν(t)

Λ(t)
∈ (

0, Nν(0)
]

with ρt → 0 for t → ∞. (2.28)
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Definition 4. Let h : [0,+∞) → [0,+∞) be a continuous increasing function with h(t) → +∞ as
t → ∞. For any t ∈ [0,∞) we define the weighted L2-norm

‖U‖2
t,h :=

∫
|ξ |�ρt

∣∣Û (ξ)
∣∣2

dξ + exp
(−2h(t)

) ∫
|ξ |�ρt

∣∣Û (ξ)
∣∣2

dξ, U ∈ L2. (2.29)

It is clear that for any U ∈ L2 it holds ‖U‖t,h → ‖Û‖L2 as t → ∞ as a pointwise-limit. For this
reason ‖U0‖t,h is not equivalent to ‖U0‖g . In particular, for a fixed t the norm ‖ · ‖t,h is equivalent to
the usual norm ‖ · ‖L2 , since for any U ∈ L2 it holds

e−h(t)‖Û‖L2 � ‖U‖t,h � ‖Û‖L2 ,

but the lower bound is not uniform with respect to t .

Theorem 5. We assume Hypotheses 1, 2 and 4. We fix ε > 0. Moreover, we assume (2.16) and (2.17) and that
ν(t) = o(ν1(t)) as t → ∞. Let N � Nε with Nε as in (2.26). Let t|ξ | be as in (2.23) and ρt be as in (2.28). Then
there exists a constant C > 0 such that for any initial data U0 ∈ M+(N) (resp. U0 ∈ M−(N)), the solution
U (t, x) of (1.3) with initial data U0 satisfies

∥∥U (t, ·)∥∥L2 � C exp
(
m1ν1(t) − Nν(t)‖A‖L∞ − m2ν1(tε)

)‖U0‖t,h, t � tε, (2.30)

where m1 and m2 are as in (2.16), the constant C > 0 is independent of ε , and h(t) = m1ν1(t).

Remark 2.4. Theorem 5 is written in a non-standard form in comparison with Theorem 4. In both
cases, the difficulty arising with oscillations which are not very slow is managed by using a weighted
norm for the initial datum U0. The weight itself depends on the speed of the oscillations. It is clear
that if Û0(ξ) is more concentrated in a small neighborhood of ξ = 0, namely in the ball B2ε(0) for
small ε > 0, then the estimate of ‖U (t, ·)‖L2 is worst and it holds only for large time.

Let ε > 0. We remark that in Theorem 4, for any y ∈ L2(R,C) such that

supp y ⊂ B2ε(0),

∫
ε�|ξ |�2ε

∣∣y(ξ)
∣∣2

dξ �= 0,

we can choose an initial datum U0 with supp Û0 ⊂ B2ε(0), such that (2.27) holds for t � tε . On the
other hand, in Theorem 5 we can state (2.30) for any U0 ∈ M±(N), that is, supp Û0 can be arbitrarily
small. Nevertheless, the estimate (2.30) is non-trivial only for large t with respect to the radius of
supp Û0, due to the definition of ‖ · ‖t,h given in (2.29). Indeed, if supp Û0 ⊂ Bε1(0) for some ε1 ∈
(0, ε), then for any t ∈ [tε, tε1 ], it holds

exp
(
m1ν1(t)

)‖U0‖t,h = ‖Û0‖L2 .

In facts, the estimate (2.30) allows a more general statement.

3. Proof of the energy estimate in Theorem 2

First we prove (2.2) (we recall that (1.13) is the special case with γ = 0). We can directly check
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that

t∫
0

∣∣�ψ(τ )
∣∣dτ � C

t∫
0

	′(τ )	γ (τ )dτ � C ′	γ +1(t).

To prove the estimate from below we define the sequence {t j} j� j0 (with j0 := 2k0 − 1 large enough
to make the sequence well defined) by

	p(t j) = jπ/2 + 3π/4.

After using the change of variables

σ = 	p(τ ),
dσ

dτ
= p	p−1(τ )	′(τ ) (3.1)

we get for any k � k0

p

t2k∫
t2k−1

	′(τ )	r+p−1(τ ) sin 	p(τ )dτ =
kπ+3π/4∫

kπ+π/4

σ r/p sinσ dσ ≈ (−1)k(kπ)r/p .

Therefore, by using −ϕ1 � c|ϕ2| in [t2k−1, t2k] for any k we conclude for any t � t j0

t∫
0

∣∣�ψ(τ )
∣∣dτ � c

l∑
k=k0

t2k∫
t2k−1

(−1)kϕ2(τ )dτ � c1

l∑
k=k0

(kπ)r/p

� c2(lπ)1+r/p ≈ 	p+r(t2l) ≈ 	p+r(t),

where t ∈ [t2l, t2(l+1)). This concludes the proof of (2.2).
Now we shall prove Theorem 2. First we prepare some integral estimates. Let 	p(t j) = jπ , that is,

t j := Λ−1(exp
(
( jπ)1/p) − cγ

) ↗ ∞, j � j0,

with j0 = j0(p, cγ ) = 2k0 − 1 sufficiently large to be well defined. It is clear that ϕ2(t j) = 0 and that
ϕ2 is strictly positive (resp. negative) for t ∈ (t2k−1, t2k) (resp. t ∈ (t2k, t2k+1)) with k � k0. Moreover,
by using (3.1) we derive

t2k+1∫
t2k−1

ϕ2(τ )dτ = −1

2

(2k+1)π∫
(2k−1)π

σ r/p sinσ dσ < 0. (3.2)

We define

I j = ‖ϕ2‖L1(t j−1,t j)
=

t j∫
t j−1

(−1) jϕ2(τ )dτ ,

θ∗(t) = −ϕ2(t)
I2k + I2k+1

2
×

{
1/I2k, t ∈ [t2k−1, t2k],
1/I , t ∈ [t , t ].
2k+1 2k 2k+1
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By (3.2) it holds I2k < I2k+1. From

t2k+1∫
t2k−1

ϕ2(τ )dτ = I2k − I2k−1 < 0

it can be proved that

0 > ϕ2(t) + θ∗(t) = ∣∣ϕ2(t)
∣∣1

2

t2k+1∫
t2k−1

ϕ2(τ )dτ ×
{

1/I2k, t ∈ [t2k−1, t2k],
1/I2k+1, t ∈ [t2k, t2k+1]. (3.3)

Indeed, let t ∈ [t2k−1, t2k]. Then we have ϕ2(t) = |ϕ2(t)| and

ϕ2(t) + θ∗(t) = ϕ2(t)

(
1 − I2k + I2k+1

2I2k

)
= ϕ2(t)

1

2I2k

t2k+1∫
t2k−1

ϕ2(τ )dτ .

Analogously we prove (3.3) for t ∈ [t2k, t2k+1], where ϕ2(t) = −|ϕ2(t)|. By using (3.2) we conclude
from (3.3) that

t2k+1∫
t2k−1

∣∣ϕ2(τ ) + θ∗(τ )
∣∣ = −

t2k+1∫
t2k−1

ϕ2(τ )dτ = 1

2

(2k+1)π∫
(2k−1)π

σ r/p sinσ dσ . (3.4)

Remark 3.1. The role of the function θ∗(t) is quite similar to the one of the function θ(t) that appears
in Theorems 3, 4, 5 in the setting of blow-up results. Indeed, here we also have

�ψ + θ∗ = ϕ1 + ϕ2 + θ∗ < ϕ1 � 0.

Nevertheless, we do not have an integral estimate on �ψ as the one in (2.16) (which we need to
prove blow-up). In fact, estimate (1.12) describes exactly such an integral behavior.

Lemma 3.1. For any k � k0 we have

t2k+1∫
t2k−1

θ∗(τ )dτ = 0, (3.5)

t2k+1∫
t2k−1

∣∣ϕ2(τ )
∣∣dτ � C	r(t2k−1), (3.6)

and for any s � t it holds
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t∫
s

∣∣ϕ2(τ ) + θ∗(τ )
∣∣dτ � C	r(t), (3.7)

∣∣∣∣∣
t∫

s

θ∗(τ )dτ

∣∣∣∣∣ � 2M6	
r(t). (3.8)

Proof. The proof of (3.5) is straight-forward. Indeed,

t2k+1∫
t2k−1

θ∗(τ )dτ = −
t2k∫

t2k−1

ϕ2(τ )
I2k + I2k+1

2I2k
dτ −

t2k+1∫
t2k

ϕ2(τ )
I2k + I2k+1

2I2k+1
dτ = 0.

By using (3.1) we can prove (3.6) since

t2k+1∫
t2k−1

∣∣ϕ2(τ )
∣∣dτ �

t2k+1∫
t2k−1

p

2
	′(τ )	r+p−1(τ )dτ = 1

2

(2k+1)π∫
(2k−1)π

σ r/p dσ

= 1 + r/p

2

((
(2k + 1)π

)1+r/p − (
(2k − 1)π

)1+r/p) ≈ (1 + r/p)π
(
(2k + 1)π

)r/p
.

To derive (3.7) it is sufficient to prove that

t2k+1∫
t2k0−1

∣∣ϕ2(τ ) + θ∗(τ )
∣∣dτ � 	r(t2k+1)

since 	r(t) ≈ 	r(t2k+1) for t ∈ [t2k−1, t2k+1]. By using (3.4) we obtain

t∫
s

∣∣ϕ2(τ ) + θ∗(τ )
∣∣dτ �

t2k+1∫
t2k0−1

∣∣ϕ2(τ ) + θ∗(τ )
∣∣dτ = 1

2

(2k+1)π∫
(2k0−1)π

σ r/p sinσ dσ .

After integrating by parts twice we get

1

2

(2k+1)π∫
(2k0−1)π

σ r/p sinσ dσ = 1

2

[
σ r/p](2k+1)π

(2k0−1)π
+ r

2p

(2k+1)π∫
(2k0−1)π

σ−(1−r/p) cosσ dσ

= 1

2

[
σ r/p](2k+1)π

(2k0−1)π
+ 0 + r(1 − r/p)

2p

(2k+1)π∫
(2k0−1)π

σ−(2−r/p) sinσ dσ .

The conclusion of the proof follows by putting the last integral on the left-hand side by taking account
of

r(1 − r/p)

2
� r(1 − r/p)

2
� 1

2
.

2pσ 2pπ 4π
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Now, let m and k be such that s ∈ [t2m−1, t2m+1) and t ∈ [t2k−1, t2k+1). By using (3.5) in [t2m+1, t2k−1]
and (3.6) in [t2m−1, t2m+1] and in [t2k−1, t2k+1] we are able to prove (3.8). �
3.1. Subzones of the hyperbolic zone

To prove the energy estimates in Theorem 2 we divide Zhyp(N) in two subzones and we follow
the ideas of the proof of Theorem 3 (see later, Section 4). Let t|ξ | be defined as in (2.23) by

Λ(t|ξ |)|ξ | = N	γ (t|ξ |),

whereas the function t̃|ξ | is defined by

Λ(t̃|ξ |)|ξ | = N	γ (t̃|ξ |)exp
(
L	r(t̃|ξ |)

)
for some L � 4M6, where M6 is as in (3.8). We recall from Definition 2 that Θ(t) = Λ(t)/	γ (t) is
increasing, therefore from

Θ(t̃|ξ |)
Θ(t|ξ |)

= exp
(
L	r(t̃|ξ |)

)
> 1

it follows that t|ξ | � t̃|ξ | (it is easy to prove that t̃|ξ | is well defined, too). Let q : (0,∞) → N
∗ be such

that q = q(|ξ |) satisfies t2q−1 < t̃|ξ | � t2q+1. We divide Zhyp(N) into the two subzones, the oscillation’s
subzone Zosc(N) and the interaction’s subzone Z intac(N) which are defined as follows

Zosc(N) = {t|ξ | � t � t2q+1} and Z intac(N) = {t � t2q+1}.

Lemma 3.2. It holds

t2q+1∫
t|ξ |

∣∣ϕ2(τ )
∣∣dτ � C ′L	r+γ (t̃|ξ |). (3.9)

Proof. Let m be such that t2m−1 � t|ξ | < t2m+1. Analogously to the proof of (3.6) we get

t2q+1∫
t|ξ |

∣∣ϕ2(τ )
∣∣dτ � 1 + r/p

2

((
(2q + 1)π

)1+r/p − (
(2m − 1)π

)1+r/p)
≈ (

(q + 1 − m)π
)(

(2q + 1)π
)r/p

≈ (
	p(t̃|ξ |) − 	p(t|ξ |)

)
	r(t̃|ξ |) ≈ (

	(t̃|ξ |) − 	(t|ξ |)
)
	r+p−1(t̃|ξ |)

≈ log

(
Λ(t̃|ξ |)
Λ(t|ξ |)

)
	γ (t̃|ξ |) =

[
L	r(t̃|ξ |) + log

(
	γ (t̃|ξ |)
	γ (t|ξ |)

)]
	γ (t̃|ξ |) ≈ L	r+γ (t̃|ξ |)

what we wanted to show. �
First we estimate the fundamental solution to (2.4) in Z intac(N). If we put W = T Z , where W is

as in (2.13), and choose
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T (t, ξ) :=
(

exp(− ∫ t
t2q+1

θ∗(τ )dτ ) 0

0 exp(
∫ t

t2q+1
θ∗(τ )dτ )

)
,

then we get

∂t Z −
(

ϕ+(t, ξ) 0
0 ϕ−(t, ξ)

)
i Z + (�ψ(t) + θ∗(t)

)(−1 0
0 1

)
Z + J̃ (t, ξ)Z = 0.

Thanks to (3.8), from L � 4M6 it follows

∥∥ J̃ (t, ξ)
∥∥ � C

	2γ (t)exp(L	r(t))λ(t)

|ξ |Λ2(t)
.

Hence,

∂t |Z |2 � 2
(∣∣�ψ(t) + θ∗(t)

∣∣ + ‖ J̃‖)|Z |2 � 2

(∣∣ϕ2(t) + θ∗(t)
∣∣ + 	r−1(t)λ(t)

Λ(t)
+ ∥∥ J̃ (t, ξ)

∥∥)
|Z |2.

Integrating by parts yields

t∫
t2q+1

∥∥ J̃ (τ , ξ)
∥∥dτ � C

	2γ (t2q+1)exp(L	r(t2q+1))

|ξ |Λ(t2q+1)
≈ C

N
	γ (t̃|ξ |), t � t2q+1.

By Gronwall’s lemma and by using (3.7) we conclude

∣∣Z(t, ξ)
∣∣ � exp

(
C	(t)

)∣∣Z(t2q+1, ξ)
∣∣ � C exp

(
C1

(
	(t)

)max{γ ,r})∣∣Z(t2q+1, ξ)
∣∣.

In Zosc(N) it is sufficient to use (3.9) (we recall that r + γ = 2r + p − 1) together with the estimate

t∫
t|ξ |

∥∥ J (τ , ξ)
∥∥dτ � C	2γ (t|ξ |)

|ξ |Λ(t|ξ |)
= C

N
	γ (t|ξ |),

whereas in Zpd(N) we use a straight-forward estimate.

4. Proof of blow-up results

4.1. Proof of Theorem 3

We look for the fundamental solution E = E(t, s, ξ) to (2.4). It solves for any s, t � 0 and ξ ∈ R the
Cauchy problem

∂t E(t, s, ξ) = iξλ(t)A(t)E(t, s, ξ), E(s, s, ξ) = I2.

We can directly estimate E(t, s, ξ) in Zpd(N). Indeed, from the boundedness of A(t) and the positivity
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of λ(t) it follows

∥∥Epd(t, s, ξ)
∥∥ � exp

(
|ξ |

t|ξ |∫
0

λ(τ )
∥∥A(τ )

∥∥dτ

)
� exp

(|ξ |Λ(t|ξ |)‖A‖L∞
) = exp

(
N‖A‖L∞

)
.

We can apply Liouville’s formula to estimate ‖E−1
pd (t, s, ξ)‖, so that

exp
(−N‖A‖L∞

)
�

∥∥Epd(t, s, ξ)
∥∥ � exp

(
N‖A‖L∞

)
, s, t � t|ξ |. (4.1)

Now let y ∈ L2 and let the initial data U0 be defined as in Definition 1. We claim that the solution
V = V (t, ξ) of the Cauchy problem{

∂t V − iξλ(t)A(t)V = 0, t � t|ξ |,
V (t|ξ |, ξ) = Û (t|ξ |, ξ),

(4.2)

verifies in Zhyp(N) the estimate

∣∣V (t, ξ)
∣∣ � C1 exp

(
m1ν1(t) − m2ν1(t|ξ |)

)∣∣y(ξ)
∣∣, t � t|ξ |, (4.3)

where the constant C1 is independent of ξ . Via the change of variables (2.12) the Cauchy problem (4.2)
becomes (2.13) with the initial data W (t|ξ |, ξ) = Y (ξ). For some positive ρ = ρ(N) that we will fix
later we define

T (t, ξ) :=
(

exp(− ∫ t
t|ξ |(θ(τ ) + ρλ(τ )

|ξ |Λ2(τ )
)dτ ) 0

0 exp(
∫ t

t|ξ |(θ(τ ) + ρλ(τ )

|ξ |Λ2(τ )
)dτ )

)
.

It follows

∥∥T (t, ξ)
∥∥,

∥∥T −1(t, ξ)
∥∥ � exp(M5 + ρ/N), t � t|ξ |.

If we put W = T (t, ξ)Z , then we get

⎧⎨⎩ ∂t Z −
(

ϕ+(t, ξ) 0
0 ϕ−(t, ξ)

)
i Z +

(
�ψ(t) + θ + ρλ(t)

|ξ |Λ2(t)

)(−1 0
0 1

)
Z + J̃ (t, ξ)Z = 0,

Z(t|ξ |, ξ) = Y (ξ),

(4.4)

where, thanks to (2.14), the matrix J̃ = T −1 J T verifies

∥∥ J̃ (t, ξ)
∥∥ � M4 exp(2M5 + 2ρ/N)λ(t)

|ξ |Λ2(t)
. (4.5)

We consider the case �ψ + θ � 0. Following [5] we define in Zhyp(N) the Lyapunov functional

S(t, ξ) := ∣∣z1(t, ξ)
∣∣2 − ∣∣z2(t, ξ)

∣∣2
,
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where Z(t, ξ) = (z1(t, ξ), z2(t, ξ)) solves (4.4). Then we derive

∂t S(t, ξ) � 2

(
�ψ(t) + θ(t) + ρλ(t)

|ξ |Λ2(t)
− 2

∥∥ J̃ (t, ξ)
∥∥)∣∣Z(t, ξ)

∣∣2
.

We fix ρ = N/2, N � N , that attains the maximum of the function f (ρ) = ρ exp(−2ρ/N). For such a
choice, by virtue of (2.18), it holds

ρ � 2M4 exp(2M5 + 2ρ/N). (4.6)

But this allows to conclude

∂t S(t, ξ) � 2
(�ψ(t) + θ(t)

)∣∣Z(t, ξ)
∣∣2 � 2

(�ψ(t) + θ(t)
)

S(t, ξ).

Thanks to Gronwall’s inequality, to Remark 2.2 and to the choice of initial data Y (ξ) = (y(ξ),0) it
follows

S(t, ξ) � exp

(
2

t∫
t|ξ |

(�ψ(τ ) + θ(τ )
)

dτ

)
S(t|ξ |, ξ)

=
(

2

t∫
0

(
�ψ(τ )dτ − 2

t|ξ |∫
0

�ψ(τ )dτ + 2

t∫
t|ξ |

θ(τ )

)
dτ

)∣∣y(ξ)
∣∣2

� exp
(
2m1ν1(t) − 2m2ν1(t|ξ |) − 2M5

)∣∣y(ξ)
∣∣2

, t � t|ξ |.

Therefore we proved (4.3) since |Z(t, ξ)| is equivalent to |V (t, ξ)|. In correspondence to y ∈ L2(R,C)

we take ε as in (2.20) and we derive

‖y‖2
L2
ξ

= 1 + κ

κ
‖yε‖2

L2
ξ

, where yε(ξ) :=
{

y(ξ), |ξ | � ε,

0, |ξ | < ε.
(4.7)

Taking into consideration (4.1) and (4.3), estimating −m2ν1(t|ξ |) � −m2ν1(tε) for |ξ | � ε , we get

∥∥Û (t, ·)∥∥L2 �
( ∫

|ξ |�ε

∣∣V (t, ξ)
∣∣2

dξ

) 1
2

� C1 exp
(
m1ν1(t) − m2ν1(tε)

)‖yε‖L2

� C1

√
κ

1 + κ
exp

(
m1ν1(t) − m2ν1(tε)

)‖y‖L2

� C exp
(
m1ν1(t) − m2ν1(tε)

)‖Û0‖L2 , t � tε . (4.8)

This concludes the proof (see Remark 2.1). The case �ψ � 0 can be treated in an analogous way.
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4.2. Proof of Theorem 4

In order to prove Theorem 4 some modifications to the proof of Theorem 3 are required. First of
all we prove Lemma 2.1 by using the following statement.

Lemma 4.1. Under Hypothesis 4 it holds

ν ◦ Θ−1(N) = o(N) as N → +∞. (4.9)

Proof. From (1.17) we have ν(0)Θ(t) � (Λ(t))1−δ . We recall (see Definition 2) that Θ−1 is an increas-
ing function from [1/ν(0),+∞) to [0,∞). Let N > 1/ν(0) and t = Θ−1(N). Then

ν(0)N � Λ
(
Θ−1(N)

)1−δ
,

that is, being Λ−1 increasing,

Θ−1(N) � Λ−1((ν(0)N
) 1

1−δ
)
.

Therefore, since δ/(1 − δ) < 1, by using (1.17) again, we get

ν ◦ Θ−1(N) � ν(0)
(
ν(0)N

) δ
1−δ = (

ν(0)
) 1

1−δ N
δ

1−δ = o(N) as N → +∞.

This completes the proof. �
Proof of Lemma 2.1. We fix M > 0 and ε > 0 and define M ′ := M/ε and N ′ := N/ε . Therefore we
want to prove that there exists a constant CM′ > 0 such that

ν(tε)

N ′ � 1

M ′ for any N ′ � CM ′ .

Thanks to (4.9) this holds for any positive M ′ since

lim
N ′→+∞

ν(tε)

N ′ = lim
N ′→+∞

ν ◦ Θ−1(N ′)
N ′ = 0.

So we can take N(ε, M) � εCM′ in Lemma 2.1. �
Now we fix y ∈ L2(R,C) and ε > 0 as in (2.20). Let N � Nε with Nε from (2.26). Analogously

to the proof of Theorem 3 we can straight-forward estimate the fundamental solution E(t, s, ξ) in
Zpd(N), deriving, in particular, that

∥∥Epd(t, s, ξ)
∥∥ � exp

(−Nν(t|ξ |)‖A‖L∞
) = exp

(
g
(|ξ |)), s, t � t|ξ |. (4.10)

In Zhyp(N) we can prove that

∣∣V (t, ξ)
∣∣ � C1 exp

(
m1ν1(t) − m2ν1(t|ξ |)

)∣∣y(ξ)
∣∣, |ξ | � ε, t � t|ξ |. (4.11)

We follow the proof of Theorem 3, but now for some ρ = ρ(N, ε) > 0 that we will choose later. We
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introduce

T (t, ξ) :=
(

exp(− ∫ t
t|ξ |(θ(τ ) + ρλ(τ )ν2(τ )

|ξ |Λ2(τ )
)dτ ) 0

0 exp(
∫ t

t|ξ |(θ(τ ) + ρλ(τ )ν2(τ )

|ξ |Λ2(τ )
)dτ )

)
.

Taking into consideration∥∥T (t, ξ)
∥∥,

∥∥T −1(t, ξ)
∥∥ � exp

(
M5 + ρν(t|ξ |)/N

)
, t � t|ξ |,

the matrix J̃ = T −1 J T verifies

∥∥ J̃ (t, ξ)
∥∥ � M4 exp(2M5 + 2ρν(t|ξ |)/N)λ(t)ν2(t)

|ξ |Λ2(t)
.

We fix ρ = N/(2ν(tε)), that attains the maximum of the function f (ρ) = ρ exp(−2ρν(tε)/N). Thanks
to (2.25) for such a choice of ρ it holds

ρ � M4 exp
(
2M5 + 2ρν(tε)/N

)
.

We remark that, with such a choice of ρ , the norms ‖T (t, ξ)‖ and ‖T −1(t, ξ)‖ are uniformly bounded
by exp(M5 + 1/2). We follow the proof of Theorem 3 and we derive (4.11). Now, let yε be as in (4.7).
Analogously to (4.8), estimating −m2ν1(t|ξ |) � −m2ν1(tε) for |ξ | � ε , it follows

∥∥Û (t, ·)∥∥L2 �
( ∫

|ξ |�ε

∣∣V (t, ξ)
∣∣2

dξ

) 1
2

� C1 exp
(
m1ν1(t) − m2ν1(tε)

)‖yε‖L2

� C1

√
κ

1 + κ
exp

(
m1ν1(t) − m2ν1(tε)

)‖y‖L2

� C exp
(
m1ν1(t) − m2ν1(tε)

)‖U0‖g, t � tε, (4.12)

where in the last estimate, by virtue of (4.10), we used

‖y‖2
L2 � C2

∫
R

∣∣Û (t|ξ |, ξ)
∣∣2

dξ = C2

∫
R

∣∣Epd(t|ξ |,0, ξ)Û0(ξ)
∣∣2

dξ � C2‖U0‖2
g .

4.3. A corollary to Theorem 4

If we restrict in Theorem 4 the set to which y has to belong, that is, the choice of the initial data
U0 in (1.3), then we can improve our result. We define

Gε := {
V ∈ L2: dist(supp V ,0) � ε

}
, Fε := {

U ∈ L2: Û ∈ Gε

}
,

and we remark that

F = {
U ∈ L2: dist(supp Û ,0) > 0

} =
⋃

Fε
ε>0
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is dense in L2. For any ε > 0 and N � Nε let M±(N, ε) be the set of initial data U0 ∈ Fε such that the
solution of (1.3) with initial data U0 verifies (2.15). Such a set is equipotent to Fε .

Corollary 4.2. We assume Hypotheses 1, 2 and 4. Moreover, we assume (2.16) and (2.17) and that ν(t) =
o(ν1(t)) as t → ∞. We fix ε > 0. Let Nε be as in (2.26) and let N � Nε and t|ξ | as in (2.23). Then, for any
initial data U0 ∈ M+(N, ε) (resp. U0 ∈ M−(N, ε)) the solution of (1.3) with initial data U0 verifies

∥∥U (t, ·)∥∥L2 � Cε exp
(
m1ν1(t)

)‖U0‖L2 , t � tε, (4.13)

where Cε = C exp(−Nν(tε)‖A‖L∞ − m2ν1(tε)) with C > 0 independent of ε .

In order to prove Corollary 4.2 it is sufficient to notice that if y ∈ Gε , then U (t, ·) ∈ Fε , therefore,
we can directly glue (4.10) and (4.11) to derive

∣∣Û (t, ξ)
∣∣ � C1 exp

(
m1ν1(t) − m2ν1(t|ξ |)

)∣∣y(ξ)
∣∣

� C1 exp
(
m1ν1(t) − m2ν1(t|ξ |)

)
exp

(
g
(|ξ |))∣∣Û0(ξ)

∣∣
for any t � tε . The proof follows from −m2ν1(t|ξ |) � −m2ν1(tε) and exp(g(|ξ |)) � exp(g(ε)).

4.4. Proof of Theorem 5

We divide the space Rξ into the pseudo-differential limited interval [−ρt ,ρt] and the hyperbolic
complementary R \ [−ρt ,ρt] at any time t � tε . This division is related to zones which we proposed
in the previous sections. Here ε > 0 is fixed and N � Nε . We recall that ρt � ε for any t � tε . In the
expected estimates we have to replace (4.10) by

∥∥Epd(t,0, ξ)
∥∥ � exp

(
−Nν(t)max

s�t

∥∥A(s)
∥∥)

, |ξ | � ρt, (4.14)

that is,

∣∣Û (t, ξ)
∣∣ � exp

(
−Nν(t)max

s�t

∥∥A(s)
∥∥)∣∣Û0(ξ)

∣∣, |ξ | � ρt,

whereas we replace (4.11) by

∣∣Û (t, ξ)
∣∣ � C1 exp

(
m1ν1(t) − m2ν1(t|ξ |)

)∣∣y(ξ)
∣∣

� C exp
(
m1ν1(t) − m2ν1(t|ξ |)

)∣∣Epd(t|ξ |,0, ξ)Û0(ξ)
∣∣

� C exp
(

m1ν1(t) − m2ν1(t|ξ |) − Nν(t|ξ |) max
s�t|ξ |

∥∥A(s)
∥∥)∣∣Û0(ξ)

∣∣, |ξ | � ρt, t � tε .

(4.15)

Gluing together (4.14) and (4.15), estimating −m2ν1(t|ξ |) � −m2ν1(tε) and −ν(t|ξ |) � −ν(t) in (4.15),
and integrating with respect to ξ we conclude the proof.



498 M. D’Abbicco, M. Reissig / J. Differential Equations 252 (2012) 477–504
5. Concluding remarks

Concerning the problem of generalized energy conservation, that is, to derive (1.2), one can in general
not expect that this holds in the case of oscillations which are not very slow. Nevertheless, we can get
some benefit of higher regularity of the coefficients by assuming a so-called stabilization condition.
The case of C 2 stabilization condition together with (1.8) has been considered in [1]. Here we propose
a Cm stabilization condition, m � 2, for a special class of systems (1.3) with λ ∈ Cm−1 and

A(t) =
(

a(t) b(t)
c(t) a(t)

)
, (5.1)

where a ∈ C 0 and b, c ∈ Cm are real-valued and bounded. Condition (1.4) in Hypothesis 1 reads as
�(t) = 4b(t)c(t) � m0 > 0. In particular, b(t) and c(t) have the same sign and this is constant. Let H(t)
be as in (2.5). We remark that the eigenvalues of Ã(t) are μ±(t) = ±μ(t), where μ(t) := √

b(t)c(t).
System (2.6) reads as

∂t V − λ(t)

(
μ + a 0

0 −μ + a

)
iξ V + h(t)

(
0 1

−1 0

)
V = 0, (5.2)

where

h(t) = det H(t)

2�(t)

(√
�(t)(b(t) + c(t))

det H(t)

)′
= i

c′b − b′c
2bc

∈ iR.

We remark that �h = −ih is the derivative of the function log(
√

c(t)/b(t) ).
We assume Hypotheses 2 and 4 in correspondence with a Cm regularity rather than only C 2, that

is, we replace (1.5) and (1.14) by

∣∣λ(k)(t)
∣∣ � M ′ λk+1(t)

Λk(t)
, t � 0, k = 1, . . . ,m − 1, (5.3)

∣∣b(k)(t)
∣∣ + ∣∣c(k)(t)

∣∣ � M ′
(

λ(t)ν(t)

Λ(t)

)k

, t � 0, k = 1, . . . ,m, (5.4)

for some M ′ � 0. Moreover, we assume the following condition:

Hypothesis 5 (Cm-stabilization condition). We assume that there exists a positive, strictly increasing,
continuous function Θ1(t) such that:

• limt→∞ Θ1(t) = +∞;
• there exists a constant C1 > 0 such that Θ1(t) � C1Θ(t) for t � 0;
• there exists a constant C2 > 0 such that

∞∫
t

(
Θ(τ)

)−m
λ(τ )dτ � C2

(
Θ1(t)

)−(m−1)
, t � 0; (5.5)

• there exist two constants b∞ and c∞ and a constant C3 > 0 such that

t∫
0

λ(τ )
(∣∣b(τ ) − b∞

∣∣ + ∣∣c(τ ) − c∞
∣∣)dτ � C3Θ1(t), t � 0. (5.6)
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If (5.6) holds, then b∞ and c∞ are uniquely determined and b∞c∞ > 0. We are ready to state the
following result about generalized energy conservation.

Theorem 6. Let A(t) be as in (5.1), and we assume Hypotheses 2 and 4 (in absence of (1.16)) in correspondence
with Cm regularity, that is, (5.3), (5.4). If we assume Hypothesis 5, then the solution to (1.3) satisfies (1.2).

Remark 5.1. If we directly consider the system (5.2) with no assumption about Cm regularity or sta-
bilization and we define its Lyapunov functional as

S(t, ξ) = |v1|2 − |v2|2,
where V = (v1, v2) is the solution to (5.2), then

∂t S(t, ξ) = 2�(
(∂t v1)v1 − (∂t v2)v2

) = 2�(−hv2 v1 − hv1v2) = 2�(−h2�(v1 v2)
) = 0.

This proves, in particular, that if S(0, ξ) �≡ 0, that is, the two components of U0 do not coincide in L2,
then ‖U (t, ·)‖L2 � C > 0, that is, the energy cannot vanish for t → ∞.

One can find more details and some examples about stabilization condition in [2–4]; in particular,
for systems, see [1].

5.1. Examples

Example 5.2 (Polynomial growth). Let λ(t) = (1 + t)p−1 with p > 0, that is, Λ(t) ≈ (1 + t)p , and let
ν(t) = (1 + t)q with 0 < q < p, that is, Θ(t) ≈ (1 + t)p−q . It follows

∞∫
t

(
Θ(τ)

)−m
λ(τ )dτ � C(1 + t)−((p−q)m−p),

provided that q < p(m − 1)/m. Hence, we may choose Θ1(t) = (1 + t)r with r = p − qm/(m − 1).
Therefore, (5.6) holds if

t∫
0

(1 + τ )p−1(∣∣b(τ ) − b∞
∣∣ + ∣∣c(τ ) − c∞

∣∣)dτ � C3(1 + t)r . (5.7)

Example 5.3 (Exponential growth). Let λ(t) = ept with p > 0, that is Λ(t) ≈ ept , and let ν(t) = eqt with
0 < q < p, that is, Θ(t) = e(p−q)t . It follows

∞∫
t

(
Θ(τ)

)−m
λ(τ )dτ � Ce−((p−q)m−p)t,

provided that q < p(m − 1)/m. Hence, we may take Θ1(t) = ert with r = p − qm/(m − 1). There-
fore (5.6) holds if

t∫
0

epτ
(∣∣b(τ ) − b∞

∣∣ + ∣∣c(τ ) − c∞
∣∣)dτ � C3ert . (5.8)
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Now we show how to construct explicitly coefficients b(t) and c(t) in the polynomial case (resp.
exponential case) satisfying (5.7) (resp. (5.8)).

Example 5.4. Let b∞, c∞ ∈ R with b∞c∞ > 0. For the sake of simplicity we assume b∞, c∞ � 1. For
each of these, say b∞ , we construct a not identically vanishing function ϕ ∈ Cm with suppϕ ⊂ [0,1]
and

−1 < ϕ(k)(t) < 1, k = 0, . . . ,m,

and we look for a sequence {t j, δ j, η j} j�1 such that

t j ↗ ∞, 0 � δ j � t j+1 − t j, 0 � η j � 1.

If we put

b(t) = b∞ +
∞∑
j=1

η jϕ
(
(t − t j)/δ j

)
,

then

∣∣b(k)(t)
∣∣ � η jδ

−k
j �

(
η

−1/m
j δ j

)−k
, t ∈ [t j, t j+1]

for any k = 1, . . . ,m. For an opportune choice of {t j} j�1 let

λ j = λ(t j), Λ j =
j∑

l=1

(tl+1 − tl)λl, ν j = Λ jη
1/m
j

δ jλ j
.

We have to choose {t j, δ j, η j} j�1 in a such way that ν j → +∞ and ν j = o(Λ j).
Via the change of variables σ = (τ − tl)/δl for t ∈ [tl, tl+1] we are able to estimate

t∫
t1

λ(τ )
∣∣b(τ ) − b∞

∣∣dτ � C
j∑

l=1

ηlλl

tl+1∫
tl

∣∣ϕ(
(τ − tl)/δl

)∣∣dτ = C‖ϕ‖L1

j∑
l=1

ηlλlδl.

In order to derive (5.7) we choose {t j, δ j, η j} j�1 in a such way that

j∑
l=1

ηlλlδl ≈ Θ j = Θ1(t j). (5.9)

In the polynomial case let t j = e j so that λ j = e j(p−1) and Θ j = e jr with r = p −qm/(m − 1) as in Ex-
ample 5.2, where ν j ≈ e jq . Let δ j = e jα with α � 1 and η j = e− jβ with β � 0. Then the condition (5.9)
is satisfied if we take

−β + α + p − 1 = p − qm/(m − 1), that is, α = 1 + β − qm/(m − 1). (5.10)
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By definition of ν j and from (5.10) we derive

q = 1 − β/m − α = −β(m + 1)/m + qm/(m − 1), that is, β = qm/
(
m2 − 1

)
.

It follows α = 1 − qm2/(m2 − 1).
In the exponential case, let t j = j so that λ j = e jp and Θ1, j = e jr with r = p − qm/(m − 1) as in

Example 5.3, where ν j ≈ e jq . Let δ j = e jα with α � 0 and η j = e− jβ with β � 0. Analogously to (5.10)
to obtain (5.9) we take

−β + α + p = p − qm/(m − 1), that is, α = β − qm/(m − 1). (5.11)

By definition of ν j and from (5.11) we derive

q = −β/m − α = −β(m + 1)/m + qm/(m − 1).

Therefore we get again β = qm/(m2 − 1) and α = 1 − qm2/(m2 − 1).

5.2. Proof of Theorem 6

In the proof of Theorem 6 we will use a refined diagonalization. The system in (5.2) has a special
structure since the lower order term is anti-diagonal and its entries are anti-conjugate. Such a special
structure is preserved by successive steps of diagonalization and this property is fundamental to de-
rive suitable energy estimates if (5.5) is satisfied for m > 2. The procedure of refined diagonalization
itself can be applied to ordinary differential equations with parameter, in general. For the ease of
readiness we use a different notation for the system’s entries.

Lemma 5.1. Let ξ be a parameter; for any ξ , let φ(t, ξ) be continuous and complex-valued, let α1(t, ξ) be
continuous and real-valued and let β1(t, ξ) ∈ C1 complex-valued, with respect to the t variable, and let Iξ be
an interval such that supt∈Iξ |β1(t, ξ)|2 < 1. If we define

α2 := (1 − 3|β1|2)α1 + [(�β1)
′(�β1) − (�β1)(�β1)

′]
1 − |β1|2 ∈ R, β2 := α1β1|β1|2 − iβ ′

1/2

α2(1 − |β1|2)
then the system ∂t U1 = φ(t, ξ)U1 + A1(t, ξ)U1 is equivalent to ∂t U2 = φ(t, ξ)U2 + A2(t, ξ)U2 in Iξ , where

A j = iα j

[(
1 0
0 −1

)
− 2

(
0 β j

−β j 0

)]
, j = 1,2,

via the change of variables U1 = M(det M)−1/2U2 with

M =
(

1 β1
β1 1

)
.

Proof. Straight-forward calculations imply the statement. Indeed, applying the change of variable
U1 = M(det M)−1/2U2 we derive

∂t U2 = (
φ + (det M)′/(2 det M) + M−1 A1M − M−1M ′)U2

= φU2 + (det M)−1((det M)′/2 + Madj(A1M − M ′))U2,
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where det M = 1 − |β1|2 and Madj is the adjoint of M , given by

Madj =
(

1 −β1
−β1 1

)
.

Therefore, this gives

A2 := (det M)−1((det M)′/2 + Madj(A1M − M ′))
= 1

1 − |β1|2
(

−1

2

(
β1β1

′ + β ′
1β1

) +
(

1 −β1
−β1 1

)[
iα1

(
1 − 2|β1|2 −β1

β1 −(1 − 2|β1|2)
)

−
(

0 β ′
1

β1
′ 0

)])
= 1

1 − |β1|2
(

1 0
0 −1

)(
iα1

(
1 − 3|β1|2

) + 1

2

(
β1β1

′ − β ′
1β1

))
− 1

1 − |β1|2
(

0 2iα1β1|β1|2 + β ′
1

−2iα1β1|β1|2 + β1
′ 0

)
.

The conclusion of the proof follows from the following property:

β1β1
′ − β ′

1β1 = 2i
[
(�β1)

′(�β1) − (�β1)(�β1)
′]. �

Proof of Theorem 6. For some N > 0, that we will fix later, we define

t|ξ | =
{

Θ−1
1 (N/|ξ |) if Θ1(0)|ξ | � N,

0 otherwise,
(5.12)

where Θ1(t) is the function in Hypothesis 5. We need the zones Zpd(N) and Zhyp(N) as in (2.10). In
Zpd(N) we consider the Cauchy problem{

∂t Û − λ(t)
(
a(t)I2 + A∞

)
iξ Û = 0, t � t|ξ |,

Û (0, ξ) = Û0(ξ),
(5.13)

where we denoted

A∞ :=
(

0 b∞
c∞ 0

)
.

The matrix A∞ is strictly hyperbolic due to b∞c∞ > 0. Hence, it admits a (constant) diagonalizer H∞ .
Therefore the fundamental solution E∞(t, s, ξ) for (5.13) satisfies the estimate ‖E∞(t, s, ξ)‖ � C and
E−1∞ (t, s, ξ) = E∞(s, t, ξ). Coming back to the Cauchy problem (2.4) for any (t, ξ), (s, ξ) ∈ Zpd(N) we
write its fundamental solution in the form

Epd(t, s, ξ) = E∞(t, s, ξ)Q ∞(t, s, ξ),

that is, the matrix Q ∞(t, s, ξ) has to solve the following Cauchy problem:{
∂t Q ∞(t, s, ξ) = λ(t)iξ R(t, s, ξ)Q ∞(t, s, ξ), t � t|ξ |,

Q ∞(s, s, ξ) = I2,
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where

R(t, s, ξ) = E∞(s, t, ξ)
(

Ã(t) − A∞
)

E∞(t, s, ξ).

Thanks to the boundedness of E∞(t, s, ξ) we derive ‖R(t, s, ξ)‖ � C2‖ Ã(t)− A∞‖. From (5.6) it follows
that

∥∥Q ∞(t, s, ξ)
∥∥ � exp

(
C2|ξ |

t̃|ξ |∫
0

λ(τ )
∥∥ Ã(τ ) − A∞

∥∥dτ

)
� exp

(
C ′|ξ |Θ1(t̃|ξ |)

)
� exp

(
C ′N

) = C1.

By Liouville’s formula we derive such an estimate from below, too. Therefore we proved that the
fundamental solution is bounded both from above and from below in Zpd(N). In Zhyp(N) we use the
procedure of refined diagonalization presented in Lemma 5.1.

Coming back to (5.2) we put

μ1(t, ξ) := μ(t) ≡ √
bc, h1(t, ξ) := h(t) ≡ i

c′b − b′c
2bc

.

By (finite) induction, we define for any j = 1, . . . ,m − 1

g j(t, ξ) := h j

2iξλμ j
, K j(t, ξ) :=

(
1 g j
g j 1

)
,

and

μ j+1(t, ξ) := (1 − 3|g j|2)μ j + [(�g j)
′(�g j) − (�g j)(�g j)

′]
1 − |g j|2 , h j+1(t, ξ) := h j|g j|2 − iξλg′

j

1 − |g j|2 .

We remark that μ j is real-valued for any j, whereas g j and h j are, in general, complex-valued. We
claim that (5.2) is equivalent to the system

∂t W j −iξλ(t)a(t)W j − iξλ(t)μ j(t, ξ)

(
1 0
0 −1

)
W j +

(
0 h j

h j 0

)
W j = 0,

that is,

∂t W j = iξλ(t)a(t)W j + iξλ(t)μ j(t, ξ)

[(
1 0
0 −1

)
− 2

(
0 g j

−g j 0

)]
W j (5.14)

for any j = 1, . . . ,m, provided that N > N(m) with N(m) sufficiently large. It is clear that (5.2) is (5.14)
for j = 1, where we put V = W1. By the principle of induction it is sufficient to prove that the
system (5.14) in correspondence with j = k is equivalent to (5.14) in correspondence with j = k + 1.
To prove this, it is sufficient to apply Lemma 5.1 with

U1 = Wk, U2 = Wk+1, φ = iξλ(t)a(t), α1 = ξλ(t)μk(t, ξ), β1 = gk(t, ξ), M = Kk,

after taking N(m) sufficiently large to have |g j| � 1/2 for any j = 1, . . . ,m. Indeed, by (finite) in-
duction we can prove that |g j(t, ξ)| can be taken arbitrarily small in correspondence of sufficiently
large N . This can be easily proved by having in mind the related symbol classes for g j , μ j+1, h j+1
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(see, for instance, Lemma 3 in [2]), which we did not introduced in this paper for the sake of brevity.
By using the properties of the hyperbolic zone Zhyp(N) this leads to the above estimate for g j . Then
it is clear that K j is invertible.

We write the fundamental solution to (5.14) for j = m in the form Em(t, s, ξ)Q m(t, s, ξ) for
t, s � t|ξ | , where

Em(t, s, ξ) =
(

exp(iξ
∫ t

s (a(τ ) + μm(τ , ξ))dτ ) 0

0 exp(iξ
∫ t

s (a(τ ) − μm(τ , ξ))dτ )

)
.

We have ‖Em‖ = 1 and E−1
m (t, s, ξ) = Em(s, t, ξ), whereas Q m is bounded both from above and from

below since it solves

∂t Q m = −E−1
m

(
0 hm

hm 0

)
Em Q m, Q m(s, s, ξ) = I2.

Here we haven taken into consideration that (5.5) implies

∞∫
t|ξ |

∣∣hm(τ , ξ)
∣∣dτ � C ′

Θm−1
1 (t|ξ |)|ξ |m−1

= C ′

Nm−1
.

Therefore, the fundamental solution E(t, s, ξ) is bounded both from above and from below in Zhyp(N)

too. This completes the proof. �
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